34 research outputs found

    Fractionally sampled decorrelating detectors for time-varying rayleigh fading CDMA channels

    Get PDF
    In this dissertation, we propose novel decorrelating multiuser detectors in DSCDMA time-varying frequency-nonselective and frequency-selective fading channels and analyze their performance. We address the common shortcomings of existing multiuser detectors in a mobile environment, such as detector complexity and the error floor. An analytical approach is employed almost exclusively and Monte Carlo simulation is used to confirm the theoretical results. Practical channel models, such as Jakes\u27 and Markovian, are adopted in the numerical examples. The proposed detectors are of the decorrelating type and utilize fractional sampling to simultaneously achieve two goals: (1) the novel realization of a decorrelator with lower computational complexity and shorter processing latency; and (2) the significant reduction of the probability of error floor associated with time-varying fading. The analysis of the impact of imperfect power control on IS-95 multiple access interference is carried out first and the ineffectiveness of IS-95 power control in a mobile radio environment is demonstrated. Fractionally-spaced bit-by-bit decorrelator structures for the frequency-nonselective and frequency-selective channels are then proposed. The matrix singularity problem associated with decorrelation is also addressed, and its solution is suggested. A decorrelating receiver employing differentially coherent detection for an asynchronous CDMA, frequency-nonselective time-varying Rayleigh fading channel is proposed. A maximum likelihood detection principle is applied at the fractionally spaced decorrelator output, resulting in a significantly reduced error floor. For coherent detection, a novel single-stage and two-stage decision feedback (DF) maximum a posteriori (MAP) channel estimator is proposed. These estimators are applicable to a channel with an arbitrary spaced-time correlation function. The fractionally-spaced decorrelating detector is then modified and extended to a frequency-selective time-varying fading channel, and is shown to be capable of simultaneously eliminating MAI, ISI, and path cross-correlation interference. The implicit equivalent frequency diversity is exploited through multipath combining, and the effective time diversity is achieved by fractional sampling for significant performance improvement. The significance of the outcome of this research is in the design of new lower complexity multiuser detectors that do not exhibit the usual deficiencies and limitations associated with a time-varying fading and multipath CDMA mobile environment

    High Capacity CDMA and Collaborative Techniques

    Get PDF
    The thesis investigates new approaches to increase the user capacity and improve the error performance of Code Division Multiple Access (CDMA) by employing adaptive interference cancellation and collaborative spreading and space diversity techniques. Collaborative Coding Multiple Access (CCMA) is also investigated as a separate technique and combined with CDMA. The advantages and shortcomings of CDMA and CCMA are analysed and new techniques for both the uplink and downlink are proposed and evaluated. Multiple access interference (MAI) problem in the uplink of CDMA is investigated first. The practical issues of multiuser detection (MUD) techniques are reviewed and a novel blind adaptive approach to interference cancellation (IC) is proposed. It exploits the constant modulus (CM) property of digital signals to blindly suppress interference during the despreading process and obtain amplitude estimation with minimum mean squared error for use in cancellation stages. Two new blind adaptive receiver designs employing successive and parallel interference cancellation architectures using the CM algorithm (CMA) referred to as ‘CMA-SIC’ and ‘BA-PIC’, respectively, are presented. These techniques have shown to offer near single user performance for large number of users. It is shown to increase the user capacity by approximately two fold compared with conventional IC receivers. The spectral efficiency analysis of the techniques based on output signal-to interference-and-noise ratio (SINR) also shows significant gain in data rate. Furthermore, an effective and low complexity blind adaptive subcarrier combining (BASC) technique using a simple gradient descent based algorithm is proposed for Multicarrier-CDMA. It suppresses MAI without any knowledge of channel amplitudes and allows large number of users compared with equal gain and maximum ratio combining techniques normally used in practice. New user collaborative schemes are proposed and analysed theoretically and by simulations in different channel conditions to achieve spatial diversity for uplink of CCMA and CDMA. First, a simple transmitter diversity and its equivalent user collaborative diversity techniques for CCMA are designed and analysed. Next, a new user collaborative scheme with successive interference cancellation for uplink of CDMA referred to as collaborative SIC (C-SIC) is investigated to reduce MAI and achieve improved diversity. To further improve the performance of C-SIC under high system loading conditions, Collaborative Blind Adaptive SIC (C-BASIC) scheme is proposed. It is shown to minimize the residual MAI, leading to improved user capacity and a more robust system. It is known that collaborative diversity schemes incur loss in throughput due to the need of orthogonal time/frequency slots for relaying source’s data. To address this problem, finally a novel near-unity-rate scheme also referred to as bandwidth efficient collaborative diversity (BECD) is proposed and evaluated for CDMA. Under this scheme, pairs of users share a single spreading sequence to exchange and forward their data employing a simple superposition or space-time encoding methods. At the receiver collaborative joint detection is performed to separate each paired users’ data. It is shown that the scheme can achieve full diversity gain at no extra bandwidth as inter-user channel SNR becomes high. A novel approach of ‘User Collaboration’ is introduced to increase the user capacity of CDMA for both the downlink and uplink. First, collaborative group spreading technique for the downlink of overloaded CDMA system is introduced. It allows the sharing of the same single spreading sequence for more than one user belonging to the same group. This technique is referred to as Collaborative Spreading CDMA downlink (CS-CDMA-DL). In this technique T-user collaborative coding is used for each group to form a composite codeword signal of the users and then a single orthogonal sequence is used for the group. At each user’s receiver, decoding of composite codeword is carried out to extract the user’s own information while maintaining a high SINR performance. To improve the bit error performance of CS-CDMA-DL in Rayleigh fading conditions, Collaborative Space-time Spreading (C-STS) technique is proposed by combining the collaborative coding multiple access and space-time coding principles. A new scheme for uplink of CDMA using the ‘User Collaboration’ approach, referred to as CS-CDMA-UL is presented next. When users’ channels are independent (uncorrelated), significantly higher user capacity can be achieved by grouping multiple users to share the same spreading sequence and performing MUD on per group basis followed by a low complexity ML decoding at the receiver. This approach has shown to support much higher number of users than the available sequences while also maintaining the low receiver complexity. For improved performance under highly correlated channel conditions, T-user collaborative coding is also investigated within the CS-CDMA-UL system

    Interference characterization and suppression for multiuser direct-sequence spread-spectrum system

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 175-184).In this thesis we investigate efficient modulation and detection techniques for the uplink (i.e. transmission from mobile to base station) of a DS-CDMA network. Specifically, the thesis contains three parts. In the first part, we focus on the mobile transmitter. In particular, we evaluate and compare the spectral efficiency of two promising variable rate DS-CDMA transmission techniques, multicode (MCD) and variable-spreading-gain (VSG), under the presence of multiple-access (user-to-user) interferences (MAI) and multipath interferences. The uniqueness of our study is that in bit-error-rate evaluation, instead of approximating the interference as Gaussian noise (which has been done in most of the previous studies), we incorporate both power and distribution of interferences into consideration. We show where the Gaussian assumption may give misleading answers and how our results in these cases are different from those obtained in the past. In part two and three of the thesis, we focus on the base station receiver. Specifically, we present effective joint detection techniques that have good performance-complexity tradeoff. Part two of the thesis introduces a class of novel multistage parallel interference cancellation algorithms based on stage-by-stage minimum mean-squared error (MMSE) optimization. We show that this scheme is capable of achieving significantly better performance than other algorithms with similar complexity. Part three of the thesis presents a low-complexity dual-mode multiuser detector that dynamically switches its detection mode between the matched-filter receiver and the decorrelator. We show that this detector is capable of achieving the performance of a decorrelator but with significant savings in processing power and complexity.by Mingxi Fan.Ph.D

    Blind source separation for interference cancellation in CDMA systems

    Get PDF
    Communication is the science of "reliable" transfer of information between two parties, in the sense that the information reaches the intended party with as few errors as possible. Modern wireless systems have many interfering sources that hinder reliable communication. The performance of receivers severely deteriorates in the presence of unknown or unaccounted interference. The goal of a receiver is then to combat these sources of interference in a robust manner while trying to optimize the trade-off between gain and computational complexity. Conventional methods mitigate these sources of interference by taking into account all available information and at times seeking additional information e.g., channel characteristics, direction of arrival, etc. This usually costs bandwidth. This thesis examines the issue of developing mitigating algorithms that utilize as little as possible or no prior information about the nature of the interference. These methods are either semi-blind, in the former case, or blind in the latter case. Blind source separation (BSS) involves solving a source separation problem with very little prior information. A popular framework for solving the BSS problem is independent component analysis (ICA). This thesis combines techniques of ICA with conventional signal detection to cancel out unaccounted sources of interference. Combining an ICA element to standard techniques enables a robust and computationally efficient structure. This thesis proposes switching techniques based on BSS/ICA effectively to combat interference. Additionally, a structure based on a generalized framework termed as denoising source separation (DSS) is presented. In cases where more information is known about the nature of interference, it is natural to incorporate this knowledge in the separation process, so finally this thesis looks at the issue of using some prior knowledge in these techniques. In the simple case, the advantage of using priors should at least lead to faster algorithms.reviewe

    Méthode de détection à usagers multiples pour les systÚmes de communication DS-CDMA

    Get PDF

    Blind iterative multiuser detection for error coded CDMA systems.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2005.Mobile communications have developed since the radio communications that were in use 50 years ago. With the advent of GSM, mobile communications was brought to the average citizen. More recently, COMA technology has provided the user with higher data rates and more reliable service, and it is apparent that it is the future of wireless communication. With the introduction of 3G technology in South Africa, it is becoming clear that it is the solution to the country's wireless communication requirements. The 3G and next-generation technologies could provide reliable communications to areas where it has proven difficult to operate and maintain communications effectively, such as rural locations. It is therefore important that the se technologies continue to be researched in order to enhance their capabilities to provide a solution to the wireless needs of the local and global community. Whilst COMA is proving to be a reliable communications technology, it is still susceptible to the effects of the near-far problem and multiple-access interference. A number of multiuser detectors have been proposed in literature that attempt to mitigate the effects of multiple-access interference. A notable detector is the blind MOE detector, which requires only the desired user 's spreading sequence , and it exhibits performance approximating that of other linear multiuser detectors. Another promising class of multiuser detector operate using an iterative principle and have a joint multiuser detection and error-correcting coding scheme. The aim of this research is to develop a blind iterative detector with FEC coding as a potential solution to the need for a detector that can mitigate the effects of interfering users operating on the channel. The proposed detector has the benefits of both the blind and iterative schemes: it only requires the knowledge of the desired user ' s signature, and it has integrated error-correcting abilities. The simulation results presented in this dissertation show that the proposed detector exhibits superior performance over the blind MOE detector for various channel conditions. An overview of spread-spectrum technologies is presented, and the operation of OS-COMA is described in more detail. A history and overview of existing COMA standards is also given . The need for multiuser detection is explained, and a description and comparison of various detection methods that have appeared in literature is given. An introduction to error coding is given , with convolutional code s, the turbo coding concept and method s of iterative detection are described in more detail and compared, as iterat ive decoding is fundamental to the operation of an iterative COMA detector. An overview of iterative multiuser detection is given , and selected iterative methods are described in more detail. A blind iterative detector is proposed and analysed. Simulation results for the propo sed detector, and a comparison to the blind MOE detector is presented, showing performance characteristics and the effects of various channel parameters on performance. From these results it can be seen that the proposed detector exhibits a superior performance compared to that of the blind MOE detector for various channel conditions. The dissertation is concluded, and possible future directions of research are given

    Collaborative modulation multiple access for single hop and multihop networks

    Get PDF
    While the bandwidth available for wireless networks is limited, the world has seen an unprecedented growth in the number of mobile subscribers and an ever increasing demand for high data rates. Therefore efficient utilisation of bandwidth to maximise link spectral efficiency and number of users that can be served simultaneously are primary goals in the design of wireless systems. To achieve these goals, in this thesis, a new non-orthogonal uplink multiple access scheme which combines the functionalities of adaptive modulation and multiple access called collaborative modulation multiple access (CMMA) is proposed. CMMA enables multiple users to access the network simultaneously and share the same bandwidth even when only a single receive antenna is available and in the presence of high channel correlation. Instead of competing for resources, users in CMMA share resources collaboratively by employing unique modulation sets (UMS) that differ in phase, power, and/or mapping structure. These UMS are designed to insure that the received signal formed from the superposition of all users’ signals belongs to a composite QAM constellation (CC) with a rate equal to the sum rate of all users. The CC and its constituent UMSs are designed centrally at the BS to remove ambiguity, maximize the minimum Euclidian distance (dmin) of the CC and insure a minimum BER performance is maintained. Users collaboratively precode their transmitted signal by performing truncated channel inversion and phase rotation using channel state information (CSI ) obtained from a periodic common pilot to insure that their combined signal at the BS belongs to the CC known at the BS which in turn performs a simple joint maximum likelihood detection without the need for CSI. The coherent addition of users’ power enables CMMA to achieve high link spectral efficiency at any time without extra power or bandwidth but on the expense of graceful degradation in BER performance. To improve the BER performance of CMMA while preserving its precoding and detection structure and without the need for pilot-aided channel estimation, a new selective diversity combining scheme called SC-CMMA is proposed. SC-CMMA optimises the overall group performance providing fairness and diversity gain for various users with different transmit powers and channel conditions by selecting a single antenna out of a group of L available antennas that minimises the total transmit power required for precoding at any one time. A detailed study of capacity and BER performance of CMMA and SC-CMMA is carried out under different level of channel correlations which shows that both offer high capacity gain and resilience to channel correlation. SC-CMMA capacity even increase with high channel correlation between users’ channels. CMMA provides a practical solution for implementing the multiple access adder channel (MAAC) in fading environments hence a hybrid approach combining both collaborative coding and modulation referred to as H-CMMA is investigated. H-CMMA divides users into a number of subgroups where users within a subgroup are assigned the same modulation set and different multiple access codes. H-CMMA adjusts the dmin of the received CC by varying the number of subgroups which in turn varies the number of unique constellation points for the same number of users and average total power. Therefore H-CMMA can accommodate many users with different rates while flexibly managing the complexity, rate and BER performance depending on the SNR. Next a new scheme combining CMMA with opportunistic scheduling using only partial CSI at the receiver called CMMA-OS is proposed to combine both the power gain of CMMA and the multiuser diversity gain that arises from users’ channel independence. To avoid the complexity and excessive feedback associated with the dynamic update of the CC, the BS takes into account the independence of users’ channels in the design of the CC and its constituent UMSs but both remain unchanged thereafter. However UMS are no longer associated with users, instead channel gain’s probability density function is divided into regions with identical probability and each UMS is associated with a specific region. This will simplify scheduling as users can initially chose their UMS based on their CSI and the BS will only need to resolve any collision when the channels of two or more users are located at the same region. Finally a high rate cooperative communication scheme, called cooperative modulation (CM) is proposed for cooperative multiuser systems. CM combines the reliability of the cooperative diversity with the high spectral efficiency and multiple access capabilities of CMMA. CM maintains low feedback and high spectral efficiency by restricting relaying to a single route with the best overall channel. Two possible variations of CM are proposed depending on whether CSI available only at the users or just at the BS and the selected relay. The first is referred to Precode, Amplify, and Forward (PAF) while the second one is called Decode, Remap, and Forward (DMF). A new route selection algorithm for DMF based on maximising dmin of random CC is also proposed using a novel fast low-complexity multi-stage sphere based algorithm to calculate the dmin at the relay of random CC that is used for both relay selection and detection

    Multiuser detection employing recurrent neural networks for DS-CDMA systems.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2006.Over the last decade, access to personal wireless communication networks has evolved to a point of necessity. Attached to the phenomenal growth of the telecommunications industry in recent times is an escalating demand for higher data rates and efficient spectrum utilization. This demand is fuelling the advancement of third generation (3G), as well as future, wireless networks. Current 3G technologies are adding a dimension of mobility to services that have become an integral part of modem everyday life. Wideband code division multiple access (WCDMA) is the standardized multiple access scheme for 3G Universal Mobile Telecommunication System (UMTS). As an air interface solution, CDMA has received considerable interest over the past two decades and a great deal of current research is concerned with improving the application of CDMA in 3G systems. A factoring component of CDMA is multiuser detection (MUD), which is aimed at enhancing system capacity and performance, by optimally demodulating multiple interfering signals that overlap in time and frequency. This is a major research problem in multipoint-to-point communications. Due to the complexity associated with optimal maximum likelihood detection, many different sub-optimal solutions have been proposed. This focus of this dissertation is the application of neural networks for MUD, in a direct sequence CDMA (DS-CDMA) system. Specifically, it explores how the Hopfield recurrent neural network (RNN) can be employed to give yet another suboptimal solution to the optimization problem of MUD. There is great scope for neural networks in fields encompassing communications. This is primarily attributed to their non-linearity, adaptivity and key function as data classifiers. In the context of optimum multiuser detection, neural networks have been successfully employed to solve similar combinatorial optimization problems. The concepts of CDMA and MUD are discussed. The use of a vector-valued transmission model for DS-CDMA is illustrated, and common linear sub-optimal MUD schemes, as well as the maximum likelihood criterion, are reviewed. The performance of these sub-optimal MUD schemes is demonstrated. The Hopfield neural network (HNN) for combinatorial optimization is discussed. Basic concepts and techniques related to the field of statistical mechanics are introduced and it is shown how they may be employed to analyze neural classification. Stochastic techniques are considered in the context of improving the performance of the HNN. A neural-based receiver, which employs a stochastic HNN and a simulated annealing technique, is proposed. Its performance is analyzed in a communication channel that is affected by additive white Gaussian noise (AWGN) by way of simulation. The performance of the proposed scheme is compared to that of the single-user matched filter, linear decorrelating and minimum mean-square error detectors, as well as the classical HNN and the stochastic Hopfield network (SHN) detectors. Concluding, the feasibility of neural networks (in this case the HNN) for MUD in a DS-CDMA system is explored by quantifying the relative performance of the proposed model using simulation results and in view of implementation issues

    Journal of Telecommunications and Information Technology, 2006, nr 1

    Get PDF
    kwartalni

    Dynamic length equaliser and its application to the DS-CDMA systems

    Get PDF
    corecore