7,973 research outputs found
Some field experience with subsynchronous vibration of centrifugal compressors
A lot of large chemical fertilizer plants producing 1000 ton NH3/day and 1700 ton urea/day were constructed in the 1970's in China. During operation, subsynchronous vibration takes place occasionally in some of the large turbine-compressor sets and has resulted in heavy economic losses. Two cases of subsynchronous vibration are described: Self-excited vibration of the low-pressure (LP) cylinder of one kind of N2-H2 multistage compressor; and Forced subsynchronous vibration of the high-pressure (HP) cylinder of the CO2 compressor
Instability of multistage compressor K1501
The K1501 compressor, driven by a steam turbine, is used to transport synthetic gas in fertilizer plants of 1000 tons daily production. The turbo-compressor set, which had been in operation since 1982, vibrated rather intensely, and its maximum load was only about 95 percent of the normal value. Damaging vibration to pads and gas-sealing labyrinths occurred three times from 1982 to 1983 and resulted in considerable economic loss. From the characteristics of the vibration, we suspected its cause to be rotor instability due to labyrinth-seal excitation. But, for lack of experience, the problem was not addressed for two years. Finally, we determined that the instability was indeed produced by labyrinth-seal excitation and corrected this problem by injecting gas into the middle-diaphragm labyrinths. This paper primarily discusses the failure and the remedy described above
A preliminary assessment of the initial compression power requirement in CO2 pipeline “Carbon Capture and Storage (CCS) technologies"
CO2 captured from fossil-fueled power generation plants is said to be economically transported via pipelines over long distances. The CO2 must be compressed to pipeline specifications using compressors and pumps that are driven by gas turbine (GT) or other prime movers. This paper presents the evaluation of actual work transfer or required prime power by modeling the governing equations of compression using the Peng–Robinson equation of state (PR-EOS). A computer code was developed to carry out the modeling and subsequent simulation of the compression power requirement. The simulation of prime mover power was carried out for different technology (head per stage) of the compressor ranging from 10-staged compression to double stage compression. The results show that the current technology of the centrifugal compressor could require as much as 23MW of prime mover power to compress 1.5 million tonnes per year of CO2—a projected equivalent CO2 released from a 530MW combined cycle gas turbine (CCGT) power generation plant
Users manual for updated computer code for axial-flow compressor conceptual design
An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included
Analysis of fully stalled compressor
An analysis yields a model for energy transfer in compressor stages operating in the closed-throttle condition. The derivation indicates that three geometry parameters (hub/tip ration, aspect ration, and rotor blade setting angle) influence the values of pressure coefficient when the compressor flow is close to zero
Temporally and spatially resolved flow in a two-stage axial compressor. Part 2: Computational assessment
Fluid dynamics of turbomachines are complicated due to aerodynamic interactions between rotors and stators. It is necessary to understand the aerodynamics associated with these interactions in order to design turbomachines that are both light and compact as well as reliable and efficient. The current study uses an unsteady, thin-layer Navier-Stokes zonal approach to investigate the unsteady aerodynamics of a multi-stage compressor. Relative motion between rotors and stators is made possible by use of systems of patched and overlaid grids. Results have been computed for a 2 1/2-stage compressor configuration. The numerical data compares well with experimental data for surface pressures and wake data. In addition, the effect of grid refinement on the solution is studied
Computations of unsteady multistage compressor flows in a workstation environment
High-end graphics workstations are becoming a necessary tool in the computational fluid dynamics environment. In addition to their graphic capabilities, workstations of the latest generation have powerful floating-point-operation capabilities. As workstations become common, they could provide valuable computing time for such applications as turbomachinery flow calculations. This report discusses the issues involved in implementing an unsteady, viscous multistage-turbomachinery code (STAGE-2) on workstations. It then describes work in which the workstation version of STAGE-2 was used to study the effects of axial-gap spacing on the time-averaged and unsteady flow within a 2 1/2-stage compressor. The results included time-averaged surface pressures, time-averaged pressure contours, standard deviation of pressure contours, pressure amplitudes, and force polar plots
The WINCOF-I code: Detailed description
The performance of an axial-flow fan-compressor unit is basically unsteady when there is ingestion of water along with the gas phase. The gas phase is a mixture of air and water vapor in the case of a bypass fan engine that provides thrust power to an aircraft. The liquid water may be in the form of droplets and film at entry to the fan. The unsteadiness is then associated with the relative motion between the gas phase and water, at entry and within the machine, while the water undergoes impact on material surfaces, centrifuging, heat and mass transfer processes, and reingestion in blade wakes, following peal off from blade surfaces. The unsteadiness may be caused by changes in atmospheric conditions and at entry into and exit from rain storms while the aircraft is in flight. In a multi-stage machine, with an uneven distribution of blade tip clearance, the combined effect of various processes in the presence of steady or time-dependent ingestion is such as to make the performance of a fan and a compressor unit time-dependent from the start of ingestion up to a short time following termination of ingestion. The original WINCOF code was developed without accounting for the relative motion between gas and liquid phases in the ingested fluid. A modification of the WINCOF code was developed and named WINCOF-1. The WINCOF-1 code can provide the transient performance of a fan-compressor unit under a variety of input conditions
Shot peening for Ti-6Al-4V alloy compressor blades
A text program was conducted to determine the effects of certain shot-peening parameters on the fatigue life of the Ti-6Al-4V alloys as well as the effect of a demarcation line on a test specimen. This demarcation line, caused by an abrupt change from untreated surface to shot-peened surface, was thought to have caused the failure of several blades in a multistage compressor at the NASA Lewis Research Center. The demarcation line had no detrimental effect upon bending fatigue specimens tested at room temperature. Procedures for shot peening Ti-6Al-4V compressor blades are recommended for future applications
Preliminary compressor design study for an advanced multistage axial flow compressor
An optimum, axial flow, high pressure ratio compressor for a turbofan engine was defined for commercial subsonic transport service starting in the late 1980's. Projected 1985 technologies were used and applied to compressors with an 18:1 pressure ratio having 6 to 12 stages. A matrix of 49 compressors was developed by statistical techniques. The compressors were evaluated by means of computer programs in terms of various airline economic figures of merit such as return on investment and direct-operating cost. The optimum configuration was determined to be a high speed, 8-stage compressor with an average blading aspect ratio of 1.15
- …
