11 research outputs found

    Multistage Vertex Cover

    Get PDF
    Covering all edges of a graph by a small number of vertices, this is the NP-hard Vertex Cover problem, is among the most fundamental algorithmic tasks. Following a recent trend in studying dynamic and temporal graphs, we initiate the study of Multistage Vertex Cover. Herein, having a series of graphs with same vertex set but over time changing edge sets (known as temporal graph consisting of time layers), the goal is to find for each layer of the temporal graph a small vertex cover and to guarantee that the two vertex cover sets between two subsequent layers differ not too much (specified by a given parameter). We show that, different from classic Vertex Cover and some other dynamic or temporal variants of it, Multistage Vertex Cover is computationally hard even in fairly restricted settings. On the positive side, however, we also spot several fixed-parameter tractability results based on some of the most natural parameterizations

    Parameterized Algorithms for Diverse Multistage Problems

    Get PDF
    The world is rarely static - many problems need not only be solved once but repeatedly, under changing conditions. This setting is addressed by the multistage view on computational problems. We study the diverse multistage variant, where consecutive solutions of large variety are preferable to similar ones, e.g. for reasons of fairness or wear minimization. While some aspects of this model have been tackled before, we introduce a framework allowing us to prove that a number of diverse multistage problems are fixed-parameter tractable by diversity, namely Perfect Matching, s-t Path, Matroid Independent Set, and Plurality Voting. This is achieved by first solving special, colored variants of these problems, which might also be of independent interest

    Multistage Committee Election

    Full text link
    Electing a single committee of a small size is a classical and well-understood voting situation. Being interested in a sequence of committees, we introduce and study two time-dependent multistage models based on simple Plurality voting. Therein, we are given a sequence of voting profiles (stages) over the same set of agents and candidates, and our task is to find a small committee for each stage of high score. In the conservative model we additionally require that any two consecutive committees have a small symmetric difference. Analogously, in the revolutionary model we require large symmetric differences. We prove both models to be NP-hard even for a constant number of agents, and, based on this, initiate a parameterized complexity analysis for the most natural parameters and combinations thereof. Among other results, we prove both models to be in XP yet W[1]-hard regarding the number of stages, and that being revolutionary seems to be "easier" than being conservative: If the (upper- resp. lower-) bound on the size of symmetric differences is constant, the conservative model remains NP-hard while the revolutionary model becomes polynomial-time solvable
    corecore