6 research outputs found

    Evaluation of Multistage SIMO-Model-Based Blind Source Separation Combining Frequency-Domain ICA and Time-Domain ICA

    Get PDF
    ICA2004: the 5th International Symposium on Independent Component Analysis and Blind Signal Separation, September 22-24, 2004, Granada, Spain.In this paper, single-input multiple-output (SIMO)-model-based blind source separation (BSS) is addressed, where unknown mixed source signals are detected at the microphones, and these signals can be separated, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at the microphones. This technique is highly applicable to high-fidelity signal processing such as binaural signal processing. First, we provide an experimental comparison between two kinds of the SIMO-model-based BSS methods, namely, traditional frequency-domain ICA with projection-back processing(FDICA-PB), and SIMO-ICA recently proposed by the authors. Secondly, we propose a new combination technique of the FDICA-PB and SIMO-ICA, which can achieve a more higher separation performance in comparison to two methods. The experimental results reveal that the accuracy of the separated SIMO signals in the simple SIMO-ICA is inferior to that of FDICA-PB, but the proposed combination technique can outperform both simple FDICA-PB and SIMO-ICA

    Real Time Blind Source Separation in Reverberant Environments

    No full text
    An online convolutive blind source separation solution has been developed for use in reverberant environments with stationary sources. Results are presented for simulation and real world data. The system achieves a separation SINR of 16.8 dB when operating on a two source mixture, with a total acoustic delay was 270 ms. This is on par with, and in many respects outperforms various published algorithms [1],[2]. A number of instantaneous blind source separation algorithms have been developed, including a block wise and recursive ICA algorithm, and a clustering based algorithm, able to obtain up to 110 dB SIR performance. The system has been realised in both Matlab and C, and is modular, allowing for easy update of the ICA algorithm that is the core of the unmixing process
    corecore