7 research outputs found

    Multistable Phase Regulation for Robust Steady and Transitional Legged Gaits

    Get PDF
    We develop robust methods that allow specification, control, and transition of a multi-legged robot’s stepping pattern—its gait—during active locomotion over natural terrain. Resulting gaits emerge through the introduction of controllers that impose appropriately-placed repellors within the space of gaits, the torus of relative leg phases, thereby mitigating against dangerous patterns of leg timing. Moreover, these repellors are organized with respect to a natural cellular decomposition of gait space and result in limit cycles with associated basins that are well characterized by these cells, thus conferring a symbolic character upon the overall behavioral repertoire. These ideas are particularly applicable to four- and six-legged robots, for which a large variety of interesting and useful (and, in many cases, familiar) gaits exist, and whose tradeoffs between speed and reliability motivate the desire for transitioning between them during active locomotion. We provide an empirical instance of this gait regulation scheme by application to a climbing hexapod, whose “physical layer” sensor-feedback control requires adequate grasp of a climbing surface but whose closed loop control perturbs the robot from its desired gait. We document how the regulation scheme secures the desired gait and permits operator selection of different gaits as required during active climbing on challenging surfaces

    Limping following limb loss increases locomotor stability

    Get PDF
    Although many arthropods have the ability to voluntarily lose limbs, how these animals rapidly adapt to such an extreme perturbation remains poorly understood. It is thought that moving with certain gaits can enable efficient, stable locomotion; however, switching gaits requires complex information flow between and coordination of an animal's limbs. We show here that upon losing two legs, spiders can switch to a novel, more statically stable gait, or use temporal adjustments without a gait change. The resulting gaits have higher overall static stability than the gaits that would be imposed by limb loss. By decreasing the time spent in a low-stability configuration—effectively “limping” over less stable phases of the stride—spiders increased the overall stability of the less statically-stable gait with no observable reduction in speed, as compared to the intact condition. Our results shed light on how voluntary limb loss could have persisted evolutionarily among many animals, and provide bioinspired solutions for robots when they break or lose limbs

    Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems

    Full text link
    We show that, near periodic orbits, a class of hybrid models can be reduced to or approximated by smooth continuous-time dynamical systems. Specifically, near an exponentially stable periodic orbit undergoing isolated transitions in a hybrid dynamical system, nearby executions generically contract superexponentially to a constant-dimensional subsystem. Under a non-degeneracy condition on the rank deficiency of the associated Poincare map, the contraction occurs in finite time regardless of the stability properties of the orbit. Hybrid transitions may be removed from the resulting subsystem via a topological quotient that admits a smooth structure to yield an equivalent smooth dynamical system. We demonstrate reduction of a high-dimensional underactuated mechanical model for terrestrial locomotion, assess structural stability of deadbeat controllers for rhythmic locomotion and manipulation, and derive a normal form for the stability basin of a hybrid oscillator. These applications illustrate the utility of our theoretical results for synthesis and analysis of feedback control laws for rhythmic hybrid behavior

    Multistable phase regulation for robust steady and transitional legged gaits

    No full text
    https://repository.upenn.edu/ese_images/1038/thumbnail.jp

    Multistable phase regulation for robust steady and transitional legged gaits

    No full text
    https://repository.upenn.edu/ese_images/1038/thumbnail.jp
    corecore