5 research outputs found

    Long-Term Activity-Dependent Plasticity of Action Potential Propagation Delay and Amplitude in Cortical Networks

    Get PDF
    Background: The precise temporal control of neuronal action potentials is essential for regulating many brain functions. From the viewpoint of a neuron, the specific timings of afferent input from the action potentials of its synaptic partners determines whether or not and when that neuron will fire its own action potential. Tuning such input would provide a powerful mechanism to adjust neuron function and in turn, that of the brain. However, axonal plasticity of action potential timing is counter to conventional notions of stable propagation and to the dominant theories of activity-dependent plasticity focusing on synaptic efficacies. Methodology/Principal Findings: Here we show the occurrence of activity-dependent plasticity of action potentia

    Emergence and combinatorial accumulation of jittering regimes in spiking oscillators with delayed feedback

    Get PDF
    Interaction via pulses is common in many natural systems, especially neuronal. In this article we study one of the simplest possible systems with pulse interaction: a phase oscillator with delayed pulsatile feedback. When the oscillator reaches a specific state, it emits a pulse, which returns after propagating through a delay line. The impact of an incoming pulse is described by the oscillator's phase reset curve (PRC). In such a system we discover an unexpected phenomenon: for a sufficiently steep slope of the PRC, a periodic regular spiking solution bifurcates with several multipliers crossing the unit circle at the same parameter value. The number of such critical multipliers increases linearly with the delay and thus may be arbitrary large. This bifurcation is accompanied by the emergence of numerous "jittering" regimes with non-equal interspike intervals (ISIs). Each of these regimes corresponds to a periodic solution of the system with a period roughly proportional to the delay. The number of different "jittering" solutions emerging at the bifurcation point increases exponentially with the delay. We describe the combinatorial mechanism that underlies the emergence of such a variety of solutions. In particular, we show how a periodic solution exhibiting several distinct ISIs can imply the existence of multiple other solutions obtained by rearranging of these ISIs. We show that the theoretical results for phase oscillators accurately predict the behavior of an experimentally implemented electronic oscillator with pulsatile feedback

    Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics

    Get PDF
    Abstract Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena

    Clustering behaviour in networks with time delayed all-to-all coupling

    Get PDF
    Networks of coupled oscillators arise in a variety of areas. Clustering is a type of oscillatory network behavior where elements of a network segregate into groups. Elements within a group oscillate synchronously, while elements in different groups oscillate with a fixed phase difference. In this thesis, we study networks of N identical oscillators with time delayed, global circulant coupling with two approaches. We first use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We then perform stability and bifurcation analysis to the original system of delay differential equations with symmetry. We first study the existence of Hopf bifurcations induced by coupling time delay, and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to two specfi c examples: a network of FitzHugh-Nagumo neurons with diffusive coupling and a network of Morris-Lecar neurons with synaptic coupling. In the case studies, we show how time delays in the coupling between neurons can give rise to switching between different stable cluster solutions, coexistence of multiple stable cluster solutions and solutions with multiple frequencies
    corecore