7 research outputs found

    Efficient Bayesian inference using physics-informed invertible neural networks for inverse problems

    Full text link
    In the paper, we propose a novel approach for solving Bayesian inverse problems with physics-informed invertible neural networks (PI-INN). The architecture of PI-INN consists of two sub-networks: an invertible neural network (INN) and a neural basis network (NB-Net). The invertible map between the parametric input and the INN output with the aid of NB-Net is constructed to provide a tractable estimation of the posterior distribution, which enables efficient sampling and accurate density evaluation. Furthermore, the loss function of PI-INN includes two components: a residual-based physics-informed loss term and a new independence loss term. The presented independence loss term can Gaussianize the random latent variables and ensure statistical independence between two parts of INN output by effectively utilizing the estimated density function. Several numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed PI-INN, including inverse kinematics, inverse problems of the 1-d and 2-d diffusion equations, and seismic traveltime tomography

    Domain-decomposed Bayesian inversion based on local Karhunen-Lo\`{e}ve expansions

    Full text link
    In many Bayesian inverse problems the goal is to recover a spatially varying random field. Such problems are often computationally challenging especially when the forward model is governed by complex partial differential equations (PDEs). The challenge is particularly severe when the spatial domain is large and the unknown random field needs to be represented by a high-dimensional parameter. In this paper, we present a domain-decomposed method to attack the dimensionality issue and the method decomposes the spatial domain and the parameter domain simultaneously. On each subdomain, a local Karhunen-Lo`eve (KL) expansion is constructed, and a local inversion problem is solved independently in a parallel manner, and more importantly, in a lower-dimensional space. After local posterior samples are generated through conducting Markov chain Monte Carlo (MCMC) simulations on subdomains, a novel projection procedure is developed to effectively reconstruct the global field. In addition, the domain decomposition interface conditions are dealt with an adaptive Gaussian process-based fitting strategy. Numerical examples are provided to demonstrate the performance of the proposed method

    Domain-decomposed Bayesian inversion based on local Karhunen-Loève expansions

    Get PDF
    In many Bayesian inverse problems the goal is to recover a spatially varying random field. Such problems are often computationally challenging especially when the forward model is governed by complex partial differential equations (PDEs). The challenge is particularly severe when the spatial domain is large and the unknown random field needs to be represented by a high-dimensional parameter. In this paper, we present a domain-decomposed method to attack the dimensionality issue and the method decomposes the spatial domain and the parameter domain simultaneously. On each subdomain, a local Karhunen-Loève (KL) expansion is constructed, and a local inversion problem is solved independently in a parallel manner, and more importantly, in a lower-dimensional space. After local posterior samples are generated through conducting Markov chain Monte Carlo (MCMC) simulations on subdomains, a novel projection procedure is developed to effectively reconstruct the global field. In addition, the domain decomposition interface conditions are dealt with an adaptive Gaussian process-based fitting strategy. Numerical examples are provided to demonstrate the performance of the proposed method
    corecore