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aSchool of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China4
bThe School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK5

Abstract6

In many Bayesian inverse problems the goal is to recover a spatially varying random field. Such problems are often

computationally challenging especially when the forward model is governed by complex partial differential equations

(PDEs). The challenge is particularly severe when the spatial domain is large and the unknown random field needs

to be represented by a high-dimensional parameter. In this paper, we present a domain-decomposed method to attack

the dimensionality issue and the method decomposes the spatial domain and the parameter domain simultaneously.

On each subdomain, a local Karhunen-Loève (KL) expansion is constructed, and a local inversion problem is solved

independently in a parallel manner, and more importantly, in a lower-dimensional space. After local posterior samples

are generated through conducting Markov chain Monte Carlo (MCMC) simulations on subdomains, a novel projection

procedure is developed to effectively reconstruct the global field. In addition, the domain decomposition interface

conditions are dealt with an adaptive Gaussian process-based fitting strategy. Numerical examples are provided to

demonstrate the performance of the proposed method.

Keywords: Bayesian inference, Markov chain Monte Carlo, domain decomposition, local KL expansions.7

1. Introduction8

Many real world inverse problems involve forward models governed by partial differential equations (PDEs), and9

in these problems often the primary task is to recover spatially varying unknown parameters from noisy and incomplete10

observations. Such problems are ubiquitous in various scientific areas, including geosciences [1], climate prediction11

[2], seismic inversion [3] and remote sensing [4]. The Bayesian inference [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] has become12

an important tool for solving such problems, largely due to its ability to quantify the uncertainty in the solutions13

obtained.14

While the Bayesian methods are conceptually straightforward, their applications to the aforementioned PDE-15

involved inverse problems can be extremely challenging, where a major difficulty lies in the computational aspect.16

As is well known, in most practical problems, the posterior distributions are analytically intractable, and are often17

computed with sampling methods. One of the most popular methods in this context is the Markov chain Monte Carlo18

(MCMC) simulation [15]. The major limitation associated with MCMC as well as other sampling methods is that19

they typically require a very large number of evaluations of the forward model, which can be prohibitively costly for20

our problems, as the PDE-involved forward model is computationally intensive. While considerable efforts have been21
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devoted to reducing the computational cost, e.g., [12, 16, 17, 18, 19], many challenges remain in applying the Bayesian22

methods for the PDE-involved inverse problems. Among them, the dimensionality issue is one of the most frequently23

encountered difficulties in these problems.24

To conduct Bayesian inference, one first needs to parametrize the spatially varying unknown parameter (in Bayesian25

inference it is typically modelled as a random field) as a finite-dimensional parameter. Existing methods for doing so26

include the Karhunen-Loève (KL) expansion [20, 21], wavelet-based parameterization [22], and parameterization tech-27

niques based on deep generative models (DGM) [23]. In this paper, we focus on the KL expansion since it is optimal in28

the mean squared error sense with respect to the number of random variables in the representation. In many practical29

problems, especially those with large spatial domains, often a large number of KL modes are needed to represent the30

unknown field, leading to a very high-dimensional inference problem. The primary goal of this work is to address31

this issue and reduce the dimensionality of the inverse problems using a domain decomposition (DD) approach. In32

particular, we perform domain decomposition over the spatial domain and the parameter space simultaneously. The33

resulting method enables parallelization and thus facilitates efficient sampling in a much lower dimensional parameter34

space.35

In general, domain decomposition for uncertainty quantification and inverse problems gains a lot of interests, and36

related methods are actively developed. In [24], local polynomial chaos expansions based on domain decomposition37

are proposed for solving PDEs with high dimensional random inputs. In [25], we provide a domain-decomposed38

uncertainty quantification approach based on importance sampling. Efficient methods to compute dominant KL terms39

through domain decomposition and the corresponding accelerated Monte Carlo sampling procedures are presented in40

[26, 27]. Domain decomposition methods for solving nonlinear transient inverse heat conduction problems are studied41

in [28]. In [29, 30, 31], domain decomposition methods with physics-informed neural networks are addressed for42

forward and inverse problems.43

In this work, we focus on domain decomposition for Bayesian inversion, and the main contributions of this work44

are as follows. The first is effective local representation for priors. It is known that when the unknown fields have45

complex structures, the corresponding global priors need to have short correlation lengths to give effective infer-46

ence results, which requires high-dimensional global parameterization. In the method proposed in this work, relative47

correlation lengths are increased along with decomposing a global spatial domain into small subdomains, such that48

low-dimensional parameters can approximate complex priors well. The second is efficient forward model evalua-49

tion procedures. As discussed above, main computational costs of sampling based inference methods are caused by50

repetitively evaluating expensive forward models, especially for models governed by PDEs. High-fidelity numerical51

schemes can give accurate predictions for the outputs of these PDEs, e.g., the finite element methods with a posteriori52

error bounds [32, 33], but they can be expensive, as they require a large number of degrees of freedom when the53

underlying model is complex. As the global spatial domain is decomposed in our setting, the finite element degrees54

of freedom on local subdomains are significantly smaller than those for the global domain, and therefore evaluating55

each local model is clearly cheaper than evaluating the global model. The third is a new reconstruction approach for56

the global unknown field. Once local inversions are conducted, directly stitching local fields to approximate global57
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unknown fields can give misleading information on domain decomposition interfaces. For this purpose, our new ap-58

proach conducts projection of the local inference results over the space spanned by the global KL modes, which gives59

an effective approximation for the global true field. Lastly, to give proper interface conditions, Gaussian process (GP)60

models for interface treatments are built with an active learning procedure.61

The rest of this paper is organized as follows. Section 2 sets the problem, where the standard MCMC procedure62

and the KL expansion are reviewed. In Section 3, we discuss the KL expansion on local subdomains, and give63

our reconstruction procedure for the global input fields. In Section 4, our Gaussian process interface treatments are64

discussed, and our overall domain-decomposed Markov chain Monte Carlo (DD-MCMC) algorithm is presented.65

Numerical results are discussed in Section 5. Section 6 concludes the paper.66

2. Problem setup67

In this section, we briefly review the general description of Bayesian formulation for inference and detailed settings68

for KL expansion parameterization for PDEs with random inputs.69

2.1. Bayesian inverse problem70

Letting ξ denote a Nξ-dimensional parameter of interest and dobs ∈ R
n(n ≪ Nξ) denote n-dimensional observed71

data, we want to estimate ξ from dobs. We assume that there exists a forward model F that maps the unknown parameter72

ξ to the data dobs:73

dobs = F(ξ) + ϵobs , (1)

where ϵobs ∈ R
n denotes the random observation noise and its probability density function is denoted by πϵobs (ϵobs).74

Then, the likelihood function which characterizes the relationship between observations and the forward model can be75

defined as76

L(dobs|ξ) = πϵobs (dobs − F(ξ)) . (2)

In this paper, the noise ϵobs is assumed to be Gaussian with zero mean and a diagonal covariance matrix σ2
obsIn, where77

σobs > 0 is the standard deviation and In is the identity matrix with size n × n. The likelihood function is then78

proportional to the data-misfit functional η(ξ; dobs) := 1
2σ2

obs
∥dobs − F(ξ)∥22 where ∥ · ∥2 denotes the Euclidean norm, i.e.,79

L(dobs|ξ) ∝ exp(−η(ξ; dobs)).

Given a prior distribution π0(ξ) of ξ which reflects the knowledge of the parameter before any measurements, based80

on the Bayes’ rule, the posterior distribution of ξ can be written as81

π(ξ|dobs) =

likelihood︷    ︸︸    ︷
L(dobs|ξ)

prior︷︸︸︷
π0(ξ)

π(dobs)︸ ︷︷ ︸
evidence

∝ L(dobs|ξ)π0(ξ) , (3)

where the evidence π(dobs) in (3) is usually viewed as a normalization constant for a well-defined probability distribu-82

tion. The posterior distribution is usually analytically intractable, and therefore sampling methods including Markov83
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chain Monte Carlo methods (MCMC) [15] are widely used. A Markov chain is a sequence of samples where the next84

state only depends on the previous state, which is known as the Markov property, and the move from the current state85

towards the next state is defined through some transition operator. The MCMC method constructs a Markov chain, of86

which the equilibrium distribution (also known as the stationary distribution) is set to the target distribution. In the87

context of Bayesian inversion, the target distribution is the posterior distribution. To ensure the convergence towards88

the target distribution, the detailed balance condition has to be satisfied. To generate samples of the posterior distri-89

bution, we consider the standard Metropolis-Hastings (MH) [34, 35] algorithm, which proceeds as follows. Starting90

from a randomly chosen initial state, for the s-th state ξs, a candidate state ξ⋆ is drawn from some proposal distribution91

Q(·|ξs), and then the candidate state is accepted with the probability of an acceptance rate denoted by α(ξ⋆, ξs). The92

proposal distribution and the acceptance probability define the transition operator, i.e., h(ξ⋆, ξs) = Q(ξ⋆|ξs)α(ξ⋆, ξs).93

The detailed balance condition is given through the transition operator,94

π(ξs|dobs)h(ξs, ξ⋆) = π(ξ⋆|dobs)h(ξ⋆, ξs) .

To guarantee that the detailed balance condition is satisfied, the acceptance probability can be defined as95

α(ξ⋆, ξs) = min
{

1,
Q(ξs|ξ⋆)L(dobs|ξ

⋆)π0(ξ⋆)
Q(ξ⋆|ξs)L(dobs|ξs)π0(ξs)

}
.

Details of the MH approach is summarized in Algorithm 1, where N is a given number of posterior samples to generate.96

Algorithm 1 The standard MH algorithm
Input: Forward model F(ξ), observation data dobs.

1: Generate an initial state ξ1.

2: for s = 1, . . . ,N − 1 do

3: Draw ξ⋆ from a proposal distribution Q(·|ξs).

4: Compute the acceptance ratio

α = min
{

1,
Q(ξs|ξ⋆)L(dobs|ξ

⋆)π0(ξ⋆)
Q(ξ⋆|ξs)L(dobs|ξs)π0(ξs)

}
where π0 is a given prior distribution and the likelihood L defined in (2) requires the forward model (1).

5: Draw ρ from a uniform distribution ρ ∼ U[0, 1].

6: if ρ < α then

7: Accept the proposal state, i.e., let ξs+1 = ξ⋆.

8: else

9: Reject the proposal state, i.e., let ξs+1 = ξs.

10: end if

11: end for

Output: Posterior samples {ξs}Ns=1.
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2.2. PDEs with random inputs and parameterization97

This section presents the detailed settings of the forward model considered in the paper. Let P = (Ω,ΣΩ, µΩ) be98

a probability space, where Ω is the set of events, ΣΩ is a sigma-algebra over Ω and µΩ is a probability measure. We99

denote the expectation operator for a function F (·) as100

E[F ] =
∫
Ω

F (ω) dµΩ(ω) ,

and denote L2(Ω) the space of second-order random variables, i.e., L2(Ω) := {F |E[F 2] < +∞}. Moreover, D ⊂ RND101

(ND = 1, 2, 3) denotes a physical domain which is bounded, connected and with a polygonal boundary ∂D, and x ∈ D102

denotes a spatial variable. The space of square integrable functions is defined as L2(D) := {F |
∫
D
F 2 < +∞}, and the103

corresponding inner product is defined as ⟨F (x),G(x)⟩D :=
∫
D
F (x)G(x) dx for any F and G belonging to L2(D). For104

any F ∈ L2(D), the norm induced by the inner product is defined by105

∥F ∥2D = ⟨F ,F ⟩D =

∫
D

F (x)2 dx.

The physics of problems considered are governed by a PDE over the spatial domain D and boundary conditions on106

the boundary ∂D, which are stated as: find v(x, ω) mappingD×Ω to R, such that107

L(x, v; κ(x, ω)) = f (x) , x ∈ D , (4a)

B(x, v; κ(x, ω)) = h(x) , x ∈ ∂D , (4b)

where L is a differential operator and B is a boundary condition operator, both of which are dependent on a random108

field κ(x, ω). Here f is the source term and h specifies the boundary condition.109

Generally, the random field κ(x, ω) is infinite-dimensional and needs to be parameterized. As the truncated110

Karhunen-Loève (KL) expansion is an optimal representation of random processes in the mean squared error sense,111

we focus on this expansion. Letting a0(x) be the mean function of κ(x, ω), the covariance function C(x, y) : D×D → R112

is defined as113

C(x, y) = E[(κ(x, ω) − a0(x))(κ(y, ω) − a0(y))] , x, y ∈ D .

We can express the covariance function as C(x, y) = σ(x)σ(y)ρ(x, y), where σ : D → R is the standard deviation114

function of the random field and ρ : D ×D → [−1, 1] is its autocorrelation coefficient function. Let {λr, ψr(x)}∞r=1 be115

the eigenvalues and the associated orthonormal eigenfunctions of the covariance function, that is, they satisfy116 ∫
D

C(x, y)ψr(x) dx = λrψr(y) , r = 1, 2, . . . , x, y ∈ D , (5)

and117 ∫
D

ψr(x)ψt(x) dx = δrt , (6)

where δrt denotes the Kronecker delta, and here we assume that the eigenvalues are ordered in decreasing magnitude.118

By Mercer’s Theorem, the covariance function has the following spectral decomposition,119

C(x, y) =
∞∑

r=1

λrψr(x)ψr(y) .
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According to the decomposition, it can be seen that
∑∞

r=1 λr =
∫
D

C(x, x) dx . Based on the eigen-decomposition of the120

covariance function, the KL expansion provides a representation in terms of infinite number of random variables,121

κ(x, ω) = a0(x) +
∞∑

r=1

√
λrψr(x)ξr(ω) , x ∈ D , (7)

where {ξr(ω)}∞r=1 are uncorrelated random variables which control the randomness of the filed. For a given random122

field κ(x, ω), the corresponding random variables can be given via the orthonormality of eigenfunctions,123

ξr(ω) =
1
√
λr

∫
D

[κ(x, ω)) − a0(x)]ψr(x) dx , r = 1, 2, . . . ,

and satisfy E[ξr] = 0 and E[ξrξt] = δrt. For practical implementations, (7) can be truncated with a finite number of124

terms such that the leading-order terms are maintained,125

κ(x, ω) ≈ a(x, ξ(ω)) = a0(x) +
d∑

r=1

√
λrψr(x)ξr(ω) , x ∈ D , (8)

where ξ(ω) := [ξ1(ω), . . . , ξd(ω)]T . In this paper, we refer to a(x, ξ(ω)) − a0(x) as the centralized random field of126

a(x, ξ(ω)). The truncation level d depends on the decay rate of eigenvalues which is related to the correlation length127

of the random field. Usually, we select d such that at least δKL (a given threshold) of the total variance is captured, i.e.,128  d∑
r=1

λr

 /(|D|σ2) > δKL, (9)

where |D| denotes the area of the domain D. The prior distribution of ξ is denoted by π0(ξ), of which the support is129

denoted by Iξ ⊂ Rd. For a continuous covariance function, the truncated KL expansion converges in the mean square130

sense uniformly [36] onD, i.e.,131

lim
d→∞

sup
x∈D
E

κ(x, ω) − a0(x) −
d∑

r=1

√
λrψr(x)ξr(ω)


2

= 0 .

After the above parameterization procedure over the random field, the original governing equation (4) is then132

transformed into the following finite-dimensional parameterized PDE system: find u(x, ξ) mapping D × Iξ to R such133

that134

L(x, u; a(x, ξ)) = f (x) , x ∈ D , (10a)

B(x, u; a(x, ξ)) = h(x) , x ∈ ∂D . (10b)

Through specifying an observation operator c, e.g., taking solution values at several grid points, we write the overall135

forward model as F(a(x, ξ)) := c(u(x, ξ)).136

As discussed in detail in [24], for a given random field with correlation length La, the decay rate of the eigenvalues137

(see (5)) depends on the relative correlation length, i.e., La,D := La/LD, where LD is the diameter of the physical138

domain D. It is shown that long correlation lengths lead to fast decay of eigenvalues, and vice versa. So, when the139

correlation length of the global field κ(x, ω) is small, its parameterization over the global domain D can be high-140

dimensional (i.e., d in (8) is large). To result in a low-dimensional parameterization, we next decompose the physical141

domain into small subdomains, and the relative correlation length then becomes larger.142
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3. Domain-decomposed Parameterization143

In this section, we first discuss settings for domain decomposed local problems with KL expansion parameteriza-144

tion posed on subdomains. After that, based on realizations of local KL expansions, a new procedure to reconstruct145

global permeability fields is presented. These reconstructed global fields are called the assembled fields, and they are146

shown to be the projections of local fields to the space spanned by global eigenfunctions in KL expansion.147

3.1. Local KL expansion parameterization148

Our physical domain D can be represented by a finite number, M, of subdomains, i.e., D = ∪M
i=1D

(i), where A149

denotes the closure of the subset A. We consider the case where the intersection of two subdomains can only be a150

connected interface with a positive (ND − 1)-dimensional measure or an empty set. For a subdomain D(i), the set151

of its boundaries is denoted by ∂D(i), and the set of its neighboring subdomain indices is denoted by N(i) := { j| j ∈152

{1, . . . ,M}, j , i and ∂D(i) ∩ ∂D( j) , ∅}. The boundary set ∂D(i) can be split into two parts: external boundaries153

∂D(i) ∩ ∂D, and interfaces τ(i, j) := ∂D(i) ∩ ∂D( j) for j ∈ N(i). Grouping all interface indices associated with all154

subdomains {D(i)}Mi=1, we define N := {(i, j)|i ∈ {1, 2, . . . ,M} and j ∈ N(i)}.155

We introduce decomposed local operators {L(i) := L|D(i) }Mi=1, {B(i) := B|D(i) }Mi=1 and local functions { f (i) := f |D(i) }Mi=1,156

{h(i) := h|D(i) }Mi=1, which are global operators and functions restricted to each subdomain D(i). The restriction of the157

field κ(x, ω) to each subdomain is denoted by κ(i)(x, ω) := κ(x, ω)|D(i) . For each i = 1, . . . ,M and j ∈ N(i), h(i, j) denotes158

an interface function defined on the interface τ(i, j), and in this work, the interface function is defined to be the global159

solution restricted to each interface, i.e., h(i, j)(x, ω) := v(x, ω)|τ(i, j) , where v(x, ω) is the solution of the global problem160

(4). We emphasize that the interface function h(i, j), being the restriction of the global solution on the interface, is161

dependent on the random inputω. Each local problem is then defined as: for i = 1, . . . ,M, find v(i)(x, ω) : D(i)×Ω→ R162

such that163

L(i)(x, v(i); κ(i)(x, ω)) = f (i)(x) , x ∈ D(i) , (11a)

B(i)(x, v(i); κ(i)(x, ω)) = h(i)(x) , x ∈ ∂D(i) ∩ ∂D , (11b)

B(i, j)(x, v(i); κ(i)(x, ω)) = h(i, j)(x, ω) , x ∈ τ(i, j) , j ∈ N(i) . (11c)

Eq. (11c) defines the boundary conditions on interfaces and B(i, j) is an appropriate boundary operator posed on the164

interface τ(i, j). With our definition for interface functions, the local problems are consistent with the global problem,165

i.e.,166

v(x, ω) =


v(1)(x, ω) , x ∈ D

(1)
,

...

v(M)(x, ω) , x ∈ D
(M)

.

Cf. [25, 37, 24] for detailed discussions for interface functions and boundary conditions for the interfaces.167

For each local random field κ(i)(x, ω) for i = 1, . . . ,M, its mean function is denoted by a(i)
0 (x) = a0(x)|D(i) , where168

a0(x) is the mean function of the global field (see (7)). The eigenvalues and the associated orthonormal eigenfunctions169
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of the covariance function posed on each subdomainD(i) are denoted by {λ(i)
r , ψ

(i)
r }
∞
r=1 with λ(i)

1 ≥ λ
(i)
2 ≥ . . ., such that170 ∫

D(i)
C(x, y)ψ(i)

r (x) dx = λ(i)
r ψ

(i)
r (y) , x, y ∈ D(i) , (12)

and
∫
D(i) ψ

(i)
r (x)ψ( j)

t (x) dx = δrt. The KL expansion of κ(i)(x, ω) can then be written as171

κ(i)(x, ω) = a(i)
0 (x) +

∞∑
r=1

√
λ(i)

r ψ
(i)
r (x)ξ(i)

r (ω) , (13)

where {ξ(i)
r (ω)}∞r=1 are uncorrelated random variables. Note that the superscript (i) in ξ(i)

r (ω) is to indicate different172

random variables but not to denote the restricting operation. Each local random field can be approximated by the173

truncated KL expansion,174

κ(i)(x, ω) ≈ a(i)(x, ξ(i)(ω)) = a(i)
0 (x) +

d(i)∑
r=1

√
λ(i)

r ψ
(i)
r (x)ξ(i)

r (ω) , x ∈ D(i) , (14)

where d(i) is the number of KL modes retained and ξ(i)(ω) := [ξ(i)
1 (ω), . . . , ξ(i)

d(i) (ω)]T whose element is defined as175

ξ(i)
r (ω) :=

1√
λ(i)

r

∫
D(i)

(a(i)(x, ξ(i)(ω)) − a(i)
0 (x))ψ(i)

r dx. (15)

The error of the truncation depends on the amount of total variance captured, δi :=
∑d(i)

r=1 λ
(i)
r /(|D(i)|σ2), and d(i) needs176

to be large enough such that δi is larger than some given threshold δKL.177

For i = 1, . . . ,M, the prior distribution of ξ(i) is denoted by π0(ξ(i)) with support Iξ(i) ⊂ Rd(i)
. For each i = 1, . . . ,M178

and j ∈ N(i), the corresponding interface function is defined to be g(i, j)(x, ξ) := u(x, ξ)|τ(i, j) , where u(x, ξ) is the solution179

of the parameterized global problem (10). The original local problem (11) is rewritten as: find u(i)(x, ξ(i)) mapping180

D(i) × Iξ(i) to R such that181

L(i)(x, u(i); a(i)(x, ξ(i))) = f (i)(x) , x ∈ D(i) , (16a)

B(i)(x, u(i); a(i)(x, ξ(i))) = h(i)(x) , x ∈ ∂D(i) ∩ ∂D , (16b)

B(i, j)(x, u(i); a(i)(x, ξ(i))) = g(i, j)(x, ξ) , x ∈ τ(i, j) and j ∈ N(i) . (16c)

Defining the observation operator posed on each local subdomain as c(i) := c|D(i) , we denote the local forward model as182

F(i)(a(i)(x, ξ(i))) := c(i)(u(i)(x, ξ(i))) and the local observation d(i)
obs ∈ R

n(i)
is defined as d(i)

obs = F(i)(a(i)(x, ξ(i)))+ ϵ(i), where183

the local observation noise ϵ(i) ∼ N(0, σ2
obsIn(i) ). Note that when the global domain is decomposed into subdomains, the184

sizes of local subdomains should be set properly such that each local subdomain can contain sufficient observations.185

For extreme situations where a large part of the spatial domain has no observations or very sparse observations, the186

inverse problem then becomes very ill-posed, and a possible solution for these situations is studied in [38].187

In this work, the inference procedures to generate samples of the posterior distribution of each local input ξ(i) are188

independent for different subdomains, but the local forward models are not independent, as the interface boundary189

conditions should be properly specified. Details of our method to efficiently solve the inverse problem posed on each190

subdomain and to specify the interface boundary conditions are discussed in Section 4. The following part of this191

section is to discuss the procedure of reconstructing the global field κ(x, ω) with given realizations of local inputs ξ(i)
192

for i = 1, . . . ,M.193
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3.2. Reconstructed fields194

Letting (D(i))c := D \ D(i) for i = 1, . . . ,M, extensions of local mean functions and local eigenfunctions to the195

global domainD are defined as196

ã(i)
0 (x) :=


a(i)(x) , x ∈ D(i) ,

0 , x ∈ (D(i))c ,

(17)

ψ̃(i)
r (x) :=


ψ(i)

r (x) , x ∈ D(i) ,

0 , x ∈ (D(i))c .

(18)

For given realizations of the local inputs, two kinds of reconstructed global fields are introduced in this section, which197

are called the stitched field and the assembled field respectively in the following.198

Definition 1 (The stitched field). When a realization is given for each local input ξ(i) where i = 1, . . . ,M, the stitched199

field ă(x, ξ) where ξT := [(ξ(1))T , . . . , (ξ(M))T ] and x ∈ D, is defined through directly collecting the corresponding local200

fields, i.e.,201

ă(x, ξ) :=
M∑

i=1

ã(i)(x, ξ(i)),

where ã(i) is defined as202

ã(i)(x, ξ(i)) := ã(i)
0 (x) +

d(i)∑
r=1

√
λ(i)

r ψ̃
(i)
r (x)ξ(i)

r . (19)

In (19), ξ(i) = [ξ(i)
1 , . . . , ξ

(i)
d(i) ]T , ã(i)

0 (x) and ψ̃(i)
r (x) are defined in (17)–(18), and λ(i)

r is defined in (12).203

Note that the interface boundary condition (16c) is a constraint for the local solution fields {u(i)}Mi=1 to ensure their204

continuity across interfaces, which is not a constraint for the input fields {a(i)(x, ξ(i))}Mi=1. So, directly collecting local205

fields (the stitched field) can lead to discontinuities on interfaces, and the corresponding inference results can be206

misleading. To result in an efficient representation of the global field, we define the following assembled field.207

Definition 2 (The assembled field). When a realization is given for each local input ξ(i) where i = 1, . . . ,M, the208

assembled field â(x, ξ̂) where x ∈ D is defined as209

â(x, ξ̂) := a0(x) +
d∑

t=1

√
λtψt(x)̂ξt , (20)

where ξ̂ := [̂ξ1, . . . , ξ̂d]T , the mean function a0(x) and the eigenpairs {λt, ψt(x)}dt=1 follow the same settings in (7), and210

{̂ξt}
d
t=1 are defined as211

ξ̂t =
1
√
λt

M∑
i=1

d(i)∑
r=1

√
λ(i)

r ξ
(i)
r

∫
D(i)

ψ̃(i)
r (x)ψt(x) dx , t = 1, . . . , d . (21)

It can be seen that, the assembled field is represented by the global eigenfunctions, which avoids extra discontinu-212

ities on interfaces introduced by the stitched field. In addition, the following theorem shows that the assembled field213
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is the projection of the stitched field over the space spanned by the global eigenfunctions. Therefore, if the truth field214

is in the space spanned by the global eigenfunctions, the assembled field can typically give a better approximation to215

the truth field than the stitched field.216

Theorem 1. Let V1 denote the space spanned by global eigenfunctions {ψr(x)}dr=1 of (5). The centralized assembled217

field â(x, ξ̂) − a0(x) is the projection of the centralized stitched field ă(x, ξ) − a0(x) over V1.218

Proof. For i = 1, . . . ,M, letting L2(D(i)) denote the space of square integrable functions overD(i), the inner product of219

any F and G belonging to L2(D(i)) is denoted by ⟨F ,G⟩D(i) :=
∫
D(i) F (x)G(x) dx. Denoting V2 := span{ψ̃(i)

r (x), for i =220

1, . . . ,M, r = 1, . . . , d(i)}, it can be seen that â(x, ξ̂) − a0(x) ∈ V1 and ă(x, ξ) − a0(x) ∈ V2. From (20)–(21), the221

centralized assembled field can be written as222

â(x, ξ̂) − a0(x) =
d∑

t=1

√
λtψt(x)̂ξt =

d∑
t=1

√
λtψt(x)

1
√
λt

M∑
i=1

d(i)∑
r=1

√
λ(i)

r ξ
(i)
r (ω)

∫
D(i)

ψ̃(i)
r (x)ψt(x) dx

=

d∑
t=1

M∑
i=1

d(i)∑
r=1

√
λ(i)

r ξ
(i)
r ⟨ψ̃

(i)
r , ψt⟩D(i)ψt(x) =

d∑
t=1

〈 M∑
i=1

[̃a(i)(x, ξ(i)) − ã(i)
0 (x)], ψt(x)

〉
D

ψt(x)

=

d∑
t=1

〈
ă(x, ξ) − a0(x), ψt(x)

〉
D ψt(x). (22)

It can be seen from (22) that the centralized assembled field is the projection of the stitched field [ă(x, ξ) − a0(x)] over223

V1. □224

For a global field a(x, ξ), i.e., (8) with a given realization of ξ, we have that a(x, ξ) − â(x, ξ̂) ∈ V1. For each basis225

function ψr(x) of V1 (for r = 1, . . . , d), Theorem 1 gives that,226

⟨̂a(x, ξ̂) − ă(x, ξ), ψr⟩D =

〈 d∑
t=1

⟨ă(x, ξ) − a0(x), ψt⟩Dψt + a0(x) − ă(x, ξ), ψr

〉
D

=

d∑
t=1

⟨ă(x, ξ) − a0(x), ψt⟩D⟨ψt, ψr⟩D − ⟨ă(x, ξ) − a0(x), ψr⟩D = 0 .

So, ⟨̂a(x, ξ̂) − ă(x, ξ), a(x, ξ) − â(x, ξ̂)⟩D = 0. Then,227

∥a(x, ξ) − ă(x, ξ)∥2D = ∥a(x, ξ) − â(x, ξ̂) + â(x, ξ̂) − ă(x, ξ)∥2D

= ∥a(x, ξ) − â(x, ξ̂)∥2D + 2⟨̂a(x, ξ̂) − ă(x, ξ), a(x, ξ) − â(x, ξ̂)⟩D + ∥̂a(x, ξ̂) − ă(x, ξ)∥2D

= ∥a(x, ξ) − â(x, ξ̂)∥2D + ∥̂a(x, ξ̂) − ă(x, ξ)∥2D.

Thus, ∥a(x, ξ) − â(x, ξ̂)∥D ≤ ∥a(x, ξ) − ă(x, ξ)∥D, which implies that, if the given field a(x, ξ) is the truth field of our228

inverse problem, the approximation â(x, ξ̂) is typically more accurate than ă(x, ξ).229

4. Domain-Decomposed Markov chain Monte Carlo (DD-MCMC)230

Our goal is to efficiently generate samples of the posterior distribution of the unknown field a(x, ξ) in the global231

problem (10) through solving local problems (16). In this section, we first propose a new adaptive Gaussian process232

(GP) interface model for each local problem, and then present our overall DD-MCMC algorithm.233

10



4.1. Adaptive Gaussian process for interface treatments234

To include measurement locations, the set consisting of observed data is denoted by S := {(xs, ds
obs)}

n
s=1, where235

xs is the location of the s-th sensor and ds
obs ∈ R is the observation collected at xs. The set consisting of all sensor236

locations is defined by xobs := {x|(x, dobs) ∈ S }, and the observed data are collected as dobs = [d1
obs, . . . , d

n
obs]

T . For each237

subdomain D(i) (for i = 1, . . . ,M), the set consisting of local observed data is defined as S (i) := {(x, dobs)|(x, dobs) ∈238

S and x ∈ D(i) ∪ ∂D(i)}, of which the size is denoted by n(i), and d(i)
obs ∈ R

n(i)
collects observed data contained in S (i).239

In each local problem (16), proper interface functions need to be specified. Based on observed data, we build240

a Gaussian process (GP) model to approximate each interface function, which is a widely used tool to approximate241

unknown function [39]. From Section 3.1, the interface functions to be specified can be considered as the restrictions242

of the solution of the global problem associated with the unknown truth sample of the global parameter ξ. That is, for243

each interface τ(i, j) where (i, j) ∈ N, an unknown target function is defined as g̃(i, j)(x) := g(i, j)(x, ξ). For each target244

function, its training set is denoted byΛ(i, j) = {(xs, ds
obs)}

n(i, j)

s=1 whose size is denoted by n(i, j) := |Λ(i, j)|. The set consisting245

of the sensor locations in Λ(i, j) is denoted by x(i, j)
obs := {x|(x, dobs) ∈ Λ(i, j)}, and d(i, j)

obs ∈ R
n(i, j)

collects all observations in246

Λ(i, j). Details for constructing the training set and the GP model for the target functions are presented as follows.247

A Gaussian process is a collection of random variables, and any finite combinations of these random variables248

are joint Gaussian distributions. In our setting, for each of x, g̃(i, j)(x) is considered to be a random variable in a249

Gaussian process. Each of the prior GP models is denoted by g̃(i, j)(x) ∼ GP(µ(x), k(x, x′)) where µ(·) is the mean250

function and k(·, ·) is the kernel of the Gaussian process. The Gaussian process is specified by its mean function and251

kernel function [39]. In this work, we use the Gaussian kernel, i.e., k(x, y) = σ2
f exp(−∥x − y∥22/(2l2f ), where the signal252

variance σ f and the length-scale l f are both hyper-parameters of the kernel function. Denoting γ = [σ f , l f ]T , for a253

given training data set Λ(i, j), the hyper-parameters can be determined through minimizing the negative log marginal254

likelihoodM(γ):255

M(γ) : = − log p(Λ(i, j)|γ) (23)

=
1
2

log det(Kn(i, j) ) +
1
2

(d(i, j)
obs )T K−1

n(i, j) d(i, j)
obs +

n(i, j)

2
log(2π) ,

where Kn(i, j) is the covariance matrix with entries [Kn(i, j) ]sr = k(xs, xr) for xs, xr ∈ x(i, j)
obs and s, r = 1, . . . , n(i, j). Minimiz-256

ingM(γ) is a non-convex optimization problem and we use the Gaussian processes for machine learning toolbox [40]257

to solve it.258

Once the hyper-parameters are determined, the conditional predictive distribution for any x ∈ τ(i, j) is given as259

g̃(i, j)(x)|Λ(i, j), γ ∼ N(µn(i, j) (x), σn(i, j) (x)). (24)

In (24), N is a Gaussian distribution with mean µn(i, j) (x) and variance σn(i, j) (x) defined as260

µn(i, j) (x) = kT
⋆(Kn(i, j) + σ2

obsIn(i, j) )−1d(i, j)
obs , (25a)

σn(i, j) (x) = k(x, x) − kT
⋆(Kn(i, j) + σ2

obsIn(i, j) )−1k⋆ , (25b)

where k⋆ ∈ Rn(i, j)
and its entries are defined as (k⋆)s = k(x, xs) for xs ∈ x(i, j)

obs and s = 1, . . . , n(i, j) (see [39]).261
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It is clear that the GP interface model (24) is determined by the data set Λ(i, j). The observations S are fixed for262

the overall problem. Conducting predictions using GP models requires computing the inverse of (dense) covariance263

matrices (see (25a)–(25b)), of which the size equals the number of the training data set |Λ(i, j)|. However, when the264

global domain is large, and there are a large number of observations. Using all observations to build the GP models is265

then nonoptimal. To result in an effective data set for each interface GP model, an active training method is developed266

as follows. First, the set Λ(i, j) is initialized with an arbitrary element in S (i) or S ( j), a test set ∆(i, j) ⊂ τ(i, j) is constructed,267

and an initial GP model (24) using Λ(i, j) is constructed. Second, variances of the current GP model are computed for268

each test point x ∈ ∆(i, j) using (25b), and the test point with the largest variance is denoted by269

x := arg max
x∈∆(i, j)

σn(i, j) (x) . (26)

Third, letting ∥·∥2 denote the standard Euclidean norm, the location of the observation which is closest to x is identified270

as271

x⋆ := arg min
x∈xobs

∥x − x∥2,

and the data pair (x⋆, d⋆obs) is then selected to augment the training data setΛ(i, j). Note that as xobs collects the locations272

of all sensors, the chosen data pair (x⋆, d⋆obs) is ensured to be an element of S . The second and third steps are repeated273

until the maximum posterior variance σmax
∆(i, j) := maxx∈∆(i, j) σn(i, j) (x) is less than a given threshold δtol. This active learning274

procedure is included in our main algorithm in the next section.275

It is clear that the above active learning procedure is trying to find useful observations for the GP models, and276

it typically chooses the observations near (or on) the interfaces. When conducting physical domain decomposition,277

the interfaces should be set properly, such that there are sufficient observation data surrounding or lying on them.278

Moreover, when the complexity of the interface function is low (e.g., it is smooth), the GP models can typically279

approximate the unknown interface functions well using a small number of observations. However, in cases that280

the complexity of the interface function is high, the corresponding GP model typically requires a large number of281

observations, which is a limitation of this work. In addition, we assume that there are sufficient observation data to282

construct the GP models.283

While the obtained GP interface models (24)–(25) are stochastic functions, we approximate each interface function284

g(i, j)(x) in (16c) with the mean function of the GP interface model (25a). Then the local problem discussed in section285

3.1 is reformulated as: find u(i)
GP(x, ξ(i)) : D(i) × Iξ(i) → R such that286

L(i)(x, u(i)
GP; a(i)(x, ξ(i))) = f (x) , x ∈ D(i) , (27a)

B(i)(x, u(i)
GP; a(i)(x, ξ(i))) = h(i)(x) , x ∈ ∂D(i) ∩ ∂D , (27b)

B(i, j)(x, u(i)
GP; a(i)(x, ξ(i))) = µn(i, j) (x) , x ∈ τ(i, j), (27c)

where j ∈ N(i). Up to now, the local forward model based on (27) is denoted by F(i)
GP(a(i)(x, ξ(i))) := c(i)(u(i)

GP(x, ξ(i)))287

where c(i) is the local observation operator as discussed in section 3.1.288
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4.2. DD-MCMC Algorithm289

To begin with, we compute the global KL expansion (8) of the prior field κ(x, ω) introduced in our original problem290

(4), where the corresponding eigenvalues and eigenfunctions {λr, ψr}
d
r=1 are defined through (5)–(6), and divide the291

global domainD into M non-overlapping local domains {D(i)}Mi=1. Then our domain-decomposed Markov chain Monte292

Carlo (DD-MCMC) approach has the following steps to generate posterior samples for each local problem. The293

first step is to set up local problems for each subdomain D(i). This includes computing local KL expansions (14),294

where the corresponding eigenvalues and eigenfunctions {λ(i)
r , ψ

(i)
r }

d(i)

r=1 are defined through (12), and constructing local295

observation data sets S (i) := {(x, dobs)|(x, dobs) ∈ S and x ∈ D(i) ∪ ∂D(i)}, where S is the set of all observed data pairs296

in D. The second step is to construct interface conditions for local problems using the adaptive Gaussian process297

model developed in section 4.1. Through this step, the GP models (24) for inference functions are built with essential298

observation data, and the variance indicator (26) guarantees the accuracy of the interface condition. In the third299

step, for each local subdomain D(i), local posterior samples {ξ(i),s
r , s = 1, . . . ,N, r = 1, . . . , d(i)} are generated using300

Algorithm 1 with local forward models F̃(i)
GP (see (27)) and local observational data d(i)

obs.301

With samples {ξ(i),s
r , s = 1, . . . ,N, r = 1, . . . , d(i)} for each local problem i = 1, . . . ,M, posterior samples of the302

global input field a(x, ξ) (see (10)) can be constructed using Definition 2, and each posterior sample is given as303

â
(
x, ξ̂s

)
= a0(x) +

d∑
t=1

√
λtψt(x)̂ξs

t , (28)

where each ξ̂s
t is defined through (21):304

ξ̂s
t =

1
√
λt

M∑
i=1

d(i)∑
r=1

√
λ(i)

r ξ
(i),s
r

∫
D(i)

ψ̃(i)
r (x)ψt(x) dx. (29)

Details of our DD-MCMC strategy are summarized in Algorithm 2. Here, ∆(i, j) ⊂ τ(i, j) is a given test set and δtol is a305

given threshold for the variance of GP interface models. As discussed in Section 3.1, the number of KL modes retained306

depends on the relative correlation length. As the relative correlation length posed on subdomains is clearly larger than307

that for the global domain, the input parameters of local problems (ξ(i) in (14)) has lower dimensionalities than the308

original input parameter (ξ in (8)). So, the local posterior samples can be efficiently generated in DD-MCMC. With309

the local samples, Definition 2 gives the assembled fields, and Theorem 1 guarantees that each centralized assembled310

field is the projection of the corresponding direct centralized stitched field (see Definition 1) over the space spanned311

by the global eigenfunctions.312

5. Numerical study313

In this section, numerical experiments are conducted to illustrate the effectiveness of our domain-decomposed314

Markov chain Monte Carlo (DD-MCMC) approach. Four test problems are studied—the first three test problems315

consider the situation of three subdomains where there are observation sensors on interfaces, and the fourth test316

problem considers the situation of four subdomains where no observation sensor is located on interfaces. For the first317

three test problems, their setups are described in Section 5.1, effects of the Gaussian process (GP) interface treatments318
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Algorithm 2 Domain-Decomposed MCMC (DD-MCMC) method
Input: Observed data S = {(xs, ds

obs)}
n
s=1, global domainD, the mean function and the covaraince function C(x, y) of

a prior field.

1: Compute the global KL eigenpairs {λr, ψr}
d
r=1 using (5)–(6).

2: Partition the global domainD into M non-overlapping local domains {D(i)}Mi=1 with interfaces τ(i, j) for j ∈ N(i) (see

the settings in Section 3.1 for details).

3: Compute the local KL eigenpairs {λ(i)
r , ψ

(i)
r }

d(i)

r=1 for i = 1, . . . ,M using (12).

4: Divide the data set S into {S (i)}Mi=1 where S (i) := {(x, dobs)|x ∈ xobs and x ∈ D(i)∪∂D(i)} and xobs := {x|(x, dobs) ∈ S }

is the set of all sensor locations.

5: for each interface τ(i, j) where (i, j) ∈ N do

6: Initialize the training set Λ(i, j) with an arbitrary data point in S (i) ∪ S ( j).

7: Construct a finite test set ∆(i, j) ⊂ τ(i, j).

8: Build a GP interface model g̃(i, j)(x)|Λ(i, j), γ ∼ N(µn(i, j) (x), σn(i, j) (x)) (see (23)–(24)).

9: Obtain the maximum posterior variance σmax
∆(i, j) := maxx∈∆(i, j) σn(i, j) (x).

10: while σmax
∆(i, j) ≥ δtol do

11: Find x := arg maxx∈∆(i, j) σn(i, j) (x) using (26).

12: Find x⋆ := arg minx∈xobs
∥x − x∥.

13: Update the training set: Λ(i, j) = Λ(i, j) ∪ {(x⋆, d⋆obs)}, where d⋆obs is the observation collected at x⋆.

14: Go back to line 8.

15: end while

16: end for

17: Construct the local forward models F̃(i)
GP for i = 1, . . . ,M (see (27)).

18: for i = 1, . . . ,M do

19: Obtain local posterior samples
{
ξ(i),s

r , for s = 1, . . . ,N, r = 1, . . . , d(i)
}

using Algorithm 1 with local model F̃(i)
GP

and local observation data d(i)
obs.

20: end for

21: Construct samples of the assembled field
{̂
a(x, ξ̂s)

}N

s=1
using (28)–(29).

Output: Posterior samples
{̂
a(x, ξ̂s)

}N

s=1
.

are discussed in Section 5.2, and the overall inference results of DD-MCMC are discussed in Section 5.3. The setup319

and the results of the fourth test problem are presented in Section 5.4.320

5.1. Setup for test problems with three subdomains (test problem one, test problem two and test problem three)321

The numerical examples considered are steady flows in porous media. Letting a(x, ξ) denote an unknown perme-322

ability field and u(x, ξ) the pressure head, we consider the following diffusion equation,323

−∇ · (a(x, ξ)∇u(x, ξ)) = f (x) , x ∈ D . (30)
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In this paper, we first consider D = (0, 3) × (0, 1) ⊂ R2. The homogeneous Dirichlet boundary condition is specified324

on the left and right boundaries and the homogeneous Neumann boundary condition is specified on the top and bottom325

boundaries. WhenD = (0, 3) × (0, 1) ⊂ R2, the boundary conditions are326

u(x, ξ) = 0 , x ∈ {0} × [0, 1]

u(x, ξ) = 0 , x ∈ {3} × [0, 1] ,

a(x, ξ)∇u(x, ξ) · n(x) = 0 , x ∈ {(0, 3) × {0}} ∪ {(0, 3) × {1}} ,

where n(x) is the unit normal vector to the boundary. The source term is specified as327

f (x) = 3 exp
(
−∥xsr − x∥22

)
,

where xsr = [xsr
1 , x

sr
2 ]T denotes the center of contaminant and it is set to xsr = [1.5, 0.5]T .328

Given a realization of ξ, the bilinear finite element method [33, 41] is applied to solve this diffusion equation. A329

uniform 97 × 33 grid (the number of degrees of freedom is 3201) is used. Our deterministic global forward model330

F(ξ) is defined to be a set collecting solution values corresponding to measurement sensors. The sensors are uniformly331

located in the tensor product {xi
1} ⊗ {x

j
2} of the one-dimensional grids: xi

1 = 0.125i, i = 1, . . . , 23, x j
2 = 0.125 j, j =332

1, . . . , 7, where 161 sensors in total are included. The measurement noises are set to independent and identically333

distributed Gaussian distributions with mean zero, and the standard deviation is set to 1% of the mean observed value.334

Note that we set the observations in structured grids here for simplicity. As shown in Algorithm 2 (line 5 to line 16),335

the observations are not required to be on the interfaces. If the sensors are randomly positioned, we should properly336

conduct the spatial domain decomposition such that the interfaces have a relatively large number of observations337

surrounding them.338

In (30), we set the permeability field a(x, ξ) to a truncated KL expansion of a random field with mean function339

a0(x), standard deviation σ and covariance function340

C(x, y) = σ2 exp
(
−
|x1 − y1|

L
−
|x2 − y2|

L

)
, (31)

where L is the correlation length, and set a0(x) = 1 and σ = 0.25 in the following numerical studies. The prior341

distributions of {ξr}
d
r=1 (see (8)) are set to be independent uniform distributions with range I = [−1, 1], and the support342

of ξ is then Iξ = Id. As usual, we set d large enough, such that δKL = 95% (see (9)) of the total variance of the343

covariance function are captured. Three test problems are considered in this section, which are associated with three344

different values of the correlation length L: 2, 1 and 0.5, and the number of global KL terms retrained are d = 27,345

d = 87 and d = 307 respectively. Figure 1, Figure 2 and Figure 3 show the truth permeability fields and sensor346

locations with the corresponding pressure fields for the three test problems respectively.347

The global domain is decomposed into three subdomains, D(1) = (0, 1) × (0, 1), D(2) = (1, 2) × (0, 1) and D(3) =348

(2, 3) × (0, 1). The interfaces are τ(1,2) = {1} × (0, 1) and τ(2,3) = {2} × (0, 1). For each subdomain D(i) (i = 1, 2, 3),349

the local KL expansion is computed (see (14)). To capture 95% of the total variance for each subdomain, the number350

of local KL modes retained is 11 for L = 2, that is 33 for L = 1 and that is 109 for L = 0.5 (as the subdomains have351
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Figure 1: Test problem one setup (L = 2 with three subdomains).
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Figure 2: Test problem two setup (L = 1 with three subdomains).
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Figure 3: Test problem three setup (L = 0.5 with three subdomains).
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the same dimensionality, the numbers of their corresponding KL modes retained are the same for a given correlation352

length). The prior distributions of the local parameters {ξ(i)
r }

d(i)

r=1 (see (13)) for i = 1, 2, 3 are set to be independent353

uniform distributions with range I = [−1, 1], and the support of ξ(i) is then Iξ(i) = Id(i)
. For each local subdomain,354

the local problem (27) is discretized with the bilinear finite element method with a uniform 33 × 33 grid (the number355

of degrees of freedom is 1089). All results of this paper are obtained in MATLAB on a workstation with 2.20 GHz356

Intel(R) Xeon(R) E5-2630 CPU. As solving the linear system associated with the global model (10) takes around357

6.256 × 10−2 seconds and solving that associated with the local model (27) is around 3.845 × 10−3 seconds, we define358

the computational cost to conduct a local forward model evaluation as one cost unit, and consider the cost for each359

global model evaluation to be 16.25 cost units.360

For comparison, the standard MCMC method (Algorithm 1) is applied with the global forward model (10), which is361

referred to as the global MCMC (G-MCMC) in the following. For both G-MCMC and our DD-MCMC (Algorithm 2),362

the proposal distribution (line 3 of Algorithm 1) is set to the symmetric Gaussian distribution, i.e., Q(ξ⋆|ξs) = N(ξs, βI)363

where I is an identity matrix and β is the stepsize, which is specified for each test problem in Section 5.3. For test364

problem one (L = 2), the number of posterior samples N generated by DD-MCMC is set to 1 × 104 (see line 19 of365

Algorithm 2); for test problem two (L = 1), that is set to 2 × 104; for test problem three (L = 0.5), that is set to366

4 × 104. For a fair comparison, the number of posterior samples generated by G-MCMC is set to 1 × 103, 2 × 103 and367

4 × 103 for test problem one, test problem two and test problem three respectively, such that the costs of DD-MCMC368

and G-MCMC are approximately equal.369

5.2. Results for the interface treatment370

To construct GP models for the interface functions (discussed in Section 4.1), the test sets ∆(1,2) and ∆(2,3) (see line371

7 of Algorithm 2) are set to the grid points on the interfaces, where each interface has 33 grid points, and the threshold372

δtol for the maximum posterior variance (see line 10 of Algorithm 2) is set to 10−7. The maximum numbers of training373

data points required for the active learning procedure (i.e., |Λ(i, j)| for the last iteration step in line 13 of Algorithm 2)374

are shown in Table 1, where it can be seen that these numbers are small—at most five training data points are required375

to reach the desired threshold for the three test problems.376

To assess accuracy of the interface treatment, we compute the difference between the GP interface models and the377

exact interface functions associated with the truth permeability fields of the three test problems. For each interface378

τ(i, j), the relative interface error is computed through379

ϵ
(i, j)
int := ∥g(i, j)(x, ξ) − µn(i, j) (x)∥2/∥g(i, j)(x, ξ)∥2. (32)

Note that the functions considered in (32) are deterministic—µn(i, j) (x) (see (25a)) is the mean function of the trained380

GP interface model obtained in line 8 of Algorithm 2, g(i, j)(x, ξ) is the exact interface function defined as g(i, j)(x, ξ) :=381

u(x, ξ)|τ(i, j) , where the parameter value ξ is associated with each of the deterministic truth fields shown in Figure 1(a),382

Figure 2(a) and Figure 3(a). Moreover, for each local subdomain D(i) (i = 1, 2, 3), the relative state errors of local383

solutions obtained with the GP interface models are also assessed, which are computed through384

ϵ(i)
state := ∥u(i)

GP(x, ξ(i)) − u(i)(x, ξ(i))∥2/∥u(i)(x, ξ(i))∥2 , (33)
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where u(i)
GP(x, ξ(i)) is the local solution defined in (27), u(i)(x, ξ(i)) is the exact local solution which is defined in (16),385

and ξ(i) is the local KL random variable (see (15)) associated with ξ. Table 2 shows the relative interface errors and386

state errors, where it can be seen that these errors are all very small.387

Table 1: Maximum number of training data points

L 2 1 0.5

|Λ(1,2)| 4 4 4

|Λ(2,3)| 4 4 5

Table 2: Relative errors for different interfaces

L 2 1 0.5

ϵint
τ(1,2) 3.112 × 10−3 3.825 × 10−3 4.628 × 10−3

τ(2,3) 1.580 × 10−3 1.925 × 10−3 2.345 × 10−3

ϵstate
D(1) 1.631 × 10−3 1.728 × 10−3 2.385 × 10−3

D(2) 2.743 × 10−4 3.056 × 10−4 4.455 × 10−4

D(3) 8.375 × 10−5 1.083 × 10−4 1.344 × 10−4

5.3. Performance of DD-MCMC388

For the three test problems, values of the stepsize (β is introduced in Section 5.1) are set as follows, such that the389

acceptance rate of DD-MCMC and G-MCMC is appropriate, which is defined by the number of accepted samples390

(line 7 of Algorithm 1) divided by the total sample size. For test problem one (L = 2), the stepsize for DD-MCMC is391

set to β = 0.05, and that for G-MCMC is set to β = 0.07. For test problem two (L = 1), that is set to β = 0.05 for both392

DD-MCMC and G-MCMC. For test problem three (L = 0.5), that is set to β = 0.05 for DD-MCMC and β = 0.04 for393

G-MCMC. Acceptance rates for the three test problems are shown in Table 3, which are consistent with the settings394

discussed in [42].395

Table 3: Acceptance rates for the three test problems.

L
DD-MCMC

G-MCMC
D(1) D(2) D(3)

2 48.73% 16.63% 15.97% 17.80%

1 42.10% 24.68% 12.51% 15.00%

0.5 47.73% 23.79% 19.37% 12.60%

Once samples of the posterior distributions are obtained, we compute the mean and variance estimates of the per-396

meability fields as follows. While the prior mean field of a(x, ξ) is a0(x) in (8), the posterior distribution of a(x, ξ) is not397

given, and the corresponding statistical metrics need to be estimated using samples. For our DD-MCMC (Algorithm398
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2), the outputs are denoted by {̂a(x, ξ̂s)}Ns=1 which are the posterior assembled fields (see (28)–(29)) to approximate the399

unknown permeability field. The corresponding mean and variance estimates are computed through400

Ě
[̂
a(x, ξ̂)

]
:=

1
N

N∑
s=1

[̂
a(x, ξ̂s)

]
, (34)

V̌
[̂
a(x, ξ̂)

]
:=

1
N

N∑
s=1

[̂
a(x, ξ̂s) − Ě[̂a(x, ξ̂)]

]2
. (35)

For the local posterior samples {ξ(i),s, s = 1, . . . ,N} for i = 1, . . . ,M (corresponding to line 19 of Algorithm 2), the401

mean estimate of the local permeability field is obtained by putting samples of each local field (i.e. {a(i)(x, ξ(i),s), s =402

1, . . . ,N} defined in (14)) into (34). Denoting the posterior samples of the stitched field as ă(x, ξs) :=
∑M

i=1 ã(i)(x, ξ(i),s),403

where ã(i)(x, ξ(i),s) is the extension of the local field a(i)(x, ξ(i),s) following (17)–(18). The global mean and variance404

estimates based on the stitched field, denoted by Ě
[
ă(x, ξ)

]
and V̌

[
ă(x, ξ)

]
respectively, are obtained by putting the405

samples {̃a(i)(x, ξ(i),s), s = 1, . . . ,N} into (34)–(35). Moreover, for samples {ξs, s = 1, . . . ,N} generated by G-MCMC,406

the corresponding samples of the global permeability field are denoted by {a(x, ξs), s = 1, . . . ,N} (see (8)). The407

global mean and variance estimates, denoted by Ě
[
a(x, ξ)

]
and V̌

[
a(x, ξ)

]
respectively, are assessed through putting408

{a(x, ξs), s = 1, . . . ,N} into (34)–(35).409

For the three test problems, Figure 4, Figure 5 and Figure 6 show the mean fields estimated using the samples410

obtained from DD-MCMC and G-MCMC. From Figure 4(a), Figure 5(a) and Figure 6(a), it is clear that the estimated411

field using the DD-MCMC outputs (the assembled fields {̂a(x, ξ̂s)}Ns=1) are very similar to the truth permeability fields412

shown in Figure 1, Figure 2 and Figure 3. For test problem one where its truth permeability field is relatively smooth,413

although the sample mean of the assembled fields gives an accurate estimate (see Figure 4(a)), the sample mean of the414

stitched fields (i.e. {ă(x, ξs), s = 1, . . . ,N}) gives misleading information on the interfaces (see Figure 4(b)). This is415

consistent with our analysis in Section 3.2, and confirms that our reconstruction procedure (line 21 of Algorithm 2)416

is necessary. The results associated with the stitched fields for test problem two and three are shown Figure 5(b) and417

Figure 6(b). It can be seen that as the truth permeability field of the underlying problem becomes less smooth, the418

effect of interface becomes less significant. However, it is still clear that the assembled fields give more accuracy mean419

estimates than the stitched fields. The results of G-MCMC are shown in Figure 4(c), Figure 5(c) and Figure 6(c), where420

it is clear that for a comparable computational cost, the estimated mean field from G-MCMC is less accurate than that421

of DD-MCMC (with the assembled fields). In addition, the estimated variance fields using the samples obtained from422

DD-MCMC and G-MCMC are shown in Figure 7, Figure 8 and Figure 9, where it can be seen that the variances are423

small.424

To assess the accuracy of the estimated posterior mean permeability, we introduce the following quantities of errors425

ϵ := ∥Ě[a(x, ξ)] − atruth∥2/∥atruth∥2, (36)

ϵ̆ := ∥Ě[ă(x, ξ)] − atruth∥2/∥atruth∥2, (37)

ϵ̂ := ∥Ě[̂a(x, ξ̂)] − atruth∥2/∥atruth∥2, (38)

where atruth is the truth permeability, Ě[a(x, ξ)] is the mean estimate using the samples obtained from G-MCMC,426
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Figure 4: Estimated mean fields for test problem one (L = 2 with three subdomains).
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Figure 5: Estimated mean fields for test problem two (L = 1 with three subdomains).
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Figure 6: Estimated mean fields for test problem three (L = 0.5 with three subdomains).
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Figure 7: Estimated variance fields for test problem one (L = 2 with three subdomains).
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Figure 8: Estimated variance fields for test problem two (L = 1 with three subdomains).
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Figure 9: Estimated variance fields for test problem three (L = 0.5 with three subdomains).
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Ě[ă(x, ξ)] is the mean estimate using the stitched fields obtained in DD-MCMC, and Ě[̂a(x, ξ̂)] is the mean estimate427

using the assembled fields obtained in DD-MCMC. Table 4 shows these errors in the mean estimates for the three test428

problems. It is clear that the errors of our DD-MCMC (for both Ě[̂a(x, ξ̂)] and Ě[ă(x, ξ)]) are smaller than the errors429

of G-MCMC for the three test problems. In addition, the error for the stitched field (Ě[ă(x, ξ)]) is slightly larger than430

that for the assembled field (Ě[̂a(x, ξ̂)]), which is consistent with our analysis discussed in Theorem 1.431

Table 4: Errors in mean estimates for the three test problems.

L 2 1 0.5

ϵ̂ 5.241 × 10−2 7.928 × 10−2 1.083 × 10−1

ϵ̆ 5.261 × 10−2 8.571 × 10−2 1.088 × 10−1

ϵ 1.340 × 10−1 2.141 × 10−1 1.805 × 10−1

In addition, the probability density functions of the posterior distribution are considered. Figure 10 shows the432

one- and two-dimensional marginal densities of the posterior distribution for ξ(1)
1 , ξ(3)

1 , ξ(5)
1 and ξ(7)

1 in test problem433

one. As the number of local KL modes retained for test problem one is 11, we only show the marginal densities of434

ξ(1)
1 , ξ(3)

1 , ξ(5)
1 and ξ(7)

1 (parts of the inputs for the subdomain D(1)) for simplicity. In Figure 10, the marginal densities435

of the posterior distribution are obtained using kernel density estimation ( the MATLAB function ksdensity is used)436

with local posterior samples generated by DD-MCMC (line 19 of Algorithm 2), and each Gaussian approximation is a437

Gaussian distribution with the mean and the covariance (or the variance) estimated using the local posterior samples.438

It can be seen that the posterior distribution is not necessarily Gaussian. Especially, the one-dimensional marginal439

density of ξ(7)
1 , and the two-dimensional marginal density of ξ(5)

1 and ξ(7)
1 are clearly not Gaussian.440

5.4. A test problem with four subdomains (test problem four)441

In this test problem, while the governing equation considered is again the diffusion equation (30), the global442

domain is set toD = (0, 4) × (0, 1), and the boundary conditions are443

u(x, ξ) = 0 , x ∈ {0} × [0, 1]

u(x, ξ) = 0 , x ∈ {4} × [0, 1] ,

a(x, ξ)∇u(x, ξ) · n(x) = 0 , x ∈ {(0, 4) × {0}} ∪ {(0, 4) × {1}} .

The source term in (30) is specified as f (x) = 10 exp
(
−∥xsr − x∥22

)
, where the center of contaminant is set to xsr =444

[2, 0.5]T . The spatial domain is discretized with a uniform 129 × 33 grid (the number of degrees of freedom is 4257)445

and the bilinear finite element method is applied to solve the deterministic version of the diffusion equation. The446

deterministic global forward model F(ξ) is defined to be a set collecting solution values corresponding to measurement447

sensors, which are uniformly located in the tensor product {xi
1} ⊗ {x

j
2} of the one-dimensional grids: xi

1 =
3
32 i, i =448

1, . . . , 42, x j
2 =

3
32 j, j = 1, . . . , 10, where 420 sensors in total are included. The setting for the measurement noises449

is the same as that in Section 5.1. The permeability field a(x, ξ) in (30) is again set to a truncated KL expansion of a450

random field with covariance function (31), mean function a0(x) = 1 and standard deviation σ = 0.25. The correlation451
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Figure 10: One- and two-dimensional marginal densities of the posterior distribution (blue) and their Gaussian approximations (red) for test problem

one.

length in (31) is set to L = 2, and to capture 95% total variance of the covariance function, the number of global KL452

terms retained is d = 35. Figure 11 shows the truth permeability field for this test problem.453

The global domain is decomposed into four subdomains: D(1) = (0, 1) × (0, 1), D(2) = (1, 2) × (0, 1), D(3) =454

(2, 3)× (0, 1) andD(4) = (3, 4)× (0, 1). The interfaces are τ(1,2) = {1}× (0, 1), τ(2,3) = {2}× (0, 1) and τ(3,4) = {3}× (0, 1).455

For each subdomainD(i)(i = 1, 2, 3, 4), the local KL expansion is computed (see (12)), the number of local KL modes456

retained is 11 to capture 95% total variance. The prior distributions of the local parameters {ξ(i)
r }

d(i)

r=1 for i = 1, 2, 3, 4 are457

set to be independent uniform distributions with range I = [−1, 1]. For each local subdomain, the local problem (27)458

is discretized with a uniform 33 × 33 grid (the number of degrees of freedom is 1089). As solving the linear system459

associated with the global model (10) takes around 8 × 10−2 seconds and solving that associated with the local model460

(27) is around 3.845 × 10−3 seconds, we define the computational cost to conduct a local forward evaluation to be461

one cost unit, and consider the cost for each global model evaluation to be 20 cost units. For a fair comparison, the462

number of posterior samples N generated by DD-MCMC is set to 1× 104, and that generated by G-MCMC is then set463

to 5 × 102, such that the costs for DD-MCMC and G-MCMC are approximately equal.464

The test sets ∆(1,2), ∆(2,3) and ∆(3,4) (see line 7 of Algorithm 2) are set to the grid points on the interfaces, and the465

threshold δtol (see line 10 of Algorithm 2) is set to 10−7. The maximum numbers of training data points required in466
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the active learning procedure (i.e., |∆(i, j)| for the last iteration in line 13 of Algorithm 2) are 3, 3 and 4 for interfaces467

τ(1,2), τ(2,3) and τ(3,4) respectively. Note that the sensors in this test problem are not located on the interfaces, and468

the active learning procedure automatically finds observations close to the interfaces to construct the GP interface469

models. Relative interface errors (ϵint is defined in (32)) for τ(1,2), τ(2,3) and τ(3,4) are 2.8320 × 10−3, 3.5207 × 10−3 and470

6.4407×10−4 respectively. Relative state errors ( ϵstate is defined in (33)) forD(1),D(2),D(3) andD(4) are 6.3281×10−3,471

1.3912 × 10−3, 8.1535 × 10−4 and 1.5001 × 10−4 respectively. It can be seen that the errors introduced by the interface472

models are small.473

The values of the stepsize β (introduced in Section 5.1) are tuned such that the acceptance rates of DD-MCMC474

and G-MCMC are appropriate. In this test problem, the stepsizes for D(1), D(2), D(3) and D(4) for DD-MCMC are475

set to β = 0.1, 0.03, 0.03, 0.03 respectively, and that for G-MCMC is set to β = 0.03. The acceptance rates for DD-476

MCMC associated with subdomainsD(1),D(2),D(3) andD(4) are 44.63%, 49.15%, 40.13% and 42.21%, respectively,477

and the acceptance rate for G-MCMC is 31.20%, which are consistent with the settings discussed in [42]. Figure 12478

shows the posterior mean fields estimated using the samples obtained from DD-MCMC and G-MCMC. Figure 12(b)479

shows that the mean estimate based on the stitched field (discussed in Section 5.3) has seams on the interfaces. The480

estimated mean field using the DD-MCMC outputs (the assembled field shown in Figure 12(a)) are very similar to the481

truth permeability field (Figure 11(a)). From Figure 11(c), it can be seen that the mean field estimated by the samples482

obtained from G-MCMC is inconsistent with the truth permeability field. Figure 13 shows the variance fields using483

the samples obtained from DD-MCMC and G-MCMC, where it can be seen that the variances are small. In addition,484

the relative errors of the estimated mean fields are assessed, and they are ϵ̂ = 7.9014 × 10−2, ϵ̆ = 7.9593 × 10−2 and485

ϵ = 2.275 × 10−1, where ϵ̂ (for DD-MCMC (assembled)), ϵ̆ (for DD-MCMC (stitched)) and ϵ (for G-MCMC) are486

defined in (36)–(38). It is clear that the mean estimate obtained by the samples of DD-MCMC (Algorithm 2) is more487

accurate than that of G-MCMC.488
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Figure 11: The truth permeability for test problem four.

6. Conclusion489

The divide and conquer principle is one of the fundamental concepts to solve high-dimensional Bayesian inverse490

problems involving forward models governed by PDEs. With a focus on Karhunen-Loève (KL) expansion based pri-491

ors, this paper proposes a domain-decomposed Markov chain Monte Carlo (DD-MCMC) algorithm. In DD-MCMC,492

difficulties caused by global prior fields with short correlation lengths are curbed through decomposing global spatial493
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Figure 12: Estimated mean fields for test problem four (L = 2 with four subdomains).
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Figure 13: Estimated variance fields for test problem four (L = 2 with four subdomains).
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domains into small local subdomains, where correlation lengths become relatively large. On each subdomain, local494

KL expansion is conducted to result in relatively low-dimensional parameterization, and effective Gaussian process495

(GP) interface models are built with an active learning procedure. The global high-dimensional Bayesian inverse496

problem is then decomposed into a series of local low dimensional-problems, where the corresponding local forward497

PDE models are also significantly cheaper than the global forward PDE model. After that, MCMC is applied for local498

problems to generate posterior samples of the local input fields. With posterior samples of the local problems, a novel499

projection procedure is developed to reconstruct samples of the global input field, which are referred to as the assem-500

bled fields. Numerical results demonstrate the overall efficiency of the proposed DD-MCMC algorithm. Although501

domain decomposition can significantly reduce the computational costs for the inference procedure, properly defining502

the interface boundary conditions for local forward models in DD-MCMC still remains an open challenging problem.503

In this work, the GP interface model gives approximation to the exact interface functions, but it can also introduce504

extra errors for the overall inference results. These errors can hardly be quantified, which limits the application of505

DD-MCMC to complex problems with rough interface functions. A possible solution to overcome this limitation is to506

introduce new effective interface boundary conditions without using observation data, but exchanging information of507

observations between subdomains then becomes another difficulty. Implementing such strategies and overcoming the508

difficulties will be the focus of our future work.509
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