155 research outputs found

    Systems biology of platelet-vessel wall interactions

    Get PDF
    Platelets are small, anucleated cells that participate in primary hemostasis by forming a hemostatic plug at the site of a blood vessel's breach, preventing blood loss. However, hemostatic events can lead to excessive thrombosis, resulting in life-threatening strokes, emboli, or infarction. Development of multi-scale models coupling processes at several scales and running predictive model simulations on powerful computer clusters can help interdisciplinary groups of researchers to suggest and test new patient-specific treatment strategies

    Multiscale Modelling Of Platelet Aggregation

    Get PDF
    During clotting under flow, platelets bind and activate on collagen and release autocrinic factors such ADP and thromboxane, while tissue factor (TF) on the damaged wall leads to localized thrombin generation. Toward patient-specific simulation of thrombosis, a multiscale approach was developed to account for: platelet signaling (neural network trained by pairwise agonist scanning, PAS-NN), platelet positions (lattice kinetic Monte Carlo, LKMC), wall-generated thrombin and platelet-released ADP/thromboxane convection-diffusion (PDE), and flow over a growing clot (lattice Boltzmann). LKMC included shear-driven platelet aggregate restructuring. The PDEs for thrombin, ADP, and thromboxane were solved by finite element method using cell activation-driven adaptive triangular meshing. At all times, intracellular calcium was known for each platelet by PAS-NN in response to its unique exposure to local collagen, ADP, thromboxane, and thrombin. The model accurately predicted clot morphology and growth with time on collagen/TF surface as compared to microfluidic blood perfusion experiments. The model also predicted the complete occlusion of the blood channel under pressure relief settings. Prior to occlusion, intrathrombus concentrations reached 50 nM thrombin, ~1 ÎŒM thromboxane, and ~10 ÎŒM ADP, while the wall shear rate on the rough clot peaked at ~1000-2000 sec-1. Additionally, clotting on TF/collagen was accurately simulated for modulators of platelet cyclooxygenase-1, P2Y1, and IP-receptor. The model was then extended to a rectangular channel with symmetric Gaussian obstacles representative of a coronary artery with severe stenosis. The upgraded stenosis model was able to predict platelet deposition dynamics at the post-stenotic segment corresponding to development of artery thrombosis prior to severe myocardial infarction. The presence of stenosis conditions alters the hemodynamics of normal hemostasis, showing a different thrombus growth mechanism. The model was able to recreate the platelet aggregation process under the complex recirculating flow features and make reasonable prediction on the clot morphology with flow separation. The model also detected recirculating transport dynamics for diffusible species in response to vortex features, posing interesting questions on the interplay between biological signaling and prevailing hemodynamics. In future work, the model will be extended to clot growth with a patient cardio-vasculature under pulsatile flow conditions

    Progress in particle-based multiscale and hybrid methods for flow applications

    Get PDF
    This work focuses on the review of particle-based multiscale and hybrid methods that have surfaced in the field of fluid mechanics over the last 20 years. We consider five established particle methods: molecular dynamics, direct simulation Monte Carlo, lattice Boltzmann method, dissipative particle dynamics and smoothed-particle hydrodynamics. A general description is given on each particle method in conjunction with multiscale and hybrid applications. An analysis on the length scale separation revealed that current multiscale methods only bridge across scales which are of the order of O(102)−O(103) and that further work on complex geometries and parallel code optimisation is needed to increase the separation. Similarities between methods are highlighted and combinations discussed. Advantages, disadvantages and applications of each particle method have been tabulated as a reference

    Overcoming conventional modeling limitations using image- driven lattice-boltzmann method simulations for biophysical applications

    Get PDF
    The challenges involved in modeling biological systems are significant and push the boundaries of conventional modeling. This is because biological systems are distinctly complex, and their emergent properties are results of the interplay of numerous components/processes. Unfortunately, conventional modeling approaches are often limited by their inability to capture all these complexities. By using in vivo data derived from biomedical imaging, image-based modeling is able to overcome this limitation. In this work, a combination of imaging data with the Lattice-Boltzmann Method for computational fluid dynamics (CFD) is applied to tissue engineering and thrombogenesis. Using this approach, some of the unanswered questions in both application areas are resolved. In the first application, numerical differences between two types of boundary conditions: “wall boundary condition” (WBC) and “periodic boundary condition” (PBC), which are commonly utilized for approximating shear stresses in tissue engineering scaffold simulations is investigated. Surface stresses in 3D scaffold reconstructions, obtained from high resolution microcomputed tomography images are calculated for both boundary condition types and compared with the actual whole scaffold values via image-based CFD simulations. It is found that, both boundary conditions follow the same spatial surface stress patterns as the whole scaffold simulations. However, they under-predict the absolute stress values approximately by a factor of two. Moreover, it is found that the error grows with higher scaffold porosity. Additionally, it is found that the PBC always resulted in a lower error than the WBC. In a second tissue engineering study, the dependence of culture time on the distribution and magnitude of fluid shear in tissue scaffolds cultured under flow perfusion is investigated. In the study, constructs are destructively evaluated with assays for cellularity and calcium deposition, imaged using ”CT and reconstructed for CFD simulations. It is found that both the shear stress distributions within scaffolds consistently increase with culture time and correlate with increasing levels of mineralized tissues within the scaffold constructs as seen in calcium deposition data and ”CT reconstructions. In the thrombogenesis application, detailed analysis of time lapse microscopy images showing yielding of thrombi in live mouse microvasculature is performed. Using these images, image-based CFD modeling is performed to calculate the fluid-induced shear stresses imposed on the thrombi’s surfaces by the surrounding blood flow. From the results, estimates of the yield stress (A critical parameter for quantifying the extent to which thrombi material can resist deformation and breakage) are obtained for different blood vessels. Further, it is shown that the yielding observed in thrombi occurs mostly in the outer shell region while the inner core remains intact. This suggests that the core material is different from the shell. To that end, we propose an alternative mechanism of thrombogenesis which could help explain this difference. Overall, the findings from this work reveal that image-based modeling is a versatile approach which can be applied to different biomedical application areas while overcoming the difficulties associated with conventional modeling

    Unraveling the vascular fate of deformable circulating tumor cells via a hierarchical computational model

    Get PDF
    Distant spreading of primary lesions is modulated by the vascular dynamics of circulating tumor cells (CTCs) and their ability to establish metastatic niches. While the mechanisms regulating CTC homing in specific tissues are yet to be elucidated, it is well documented that CTCs possess different size, biological properties and deformability. A computational model is presented to predict the vascular transport and adhesion of CTCs in whole blood. A Lattice-Boltzmann method, which is employed to solve the Navier-Stokes equation for the plasma flow, is coupled with an Immersed Boundary Method. The vascular dynamics of a CTC is assessed in large and small microcapillaries. The CTC shear modulus k ctc is varied returning CTCs that are stiffer, softer and equally deformable as compared to RBCs. In large microcapillaries, soft CTCs behave similarly to RBCs and move away from the vessel walls; whereas rigid CTCs are pushed laterally by the fast moving RBCs and interact with the vessel walls. Three adhesion behaviors are observed, firm adhesion, rolling and crawling over the vessel walls, depending on the CTC stiffness. On the contrary, in small microcapillaries, rigid CTCs are pushed downstream by a compact train of RBCs and cannot establish any firm interaction with the vessel walls; whereas soft CTCs are squeezed between the vessel wall and the RBC train and rapidly establish firm adhesion. These findings document the relevance of cell deformability in CTC vascular adhesion and provide insights on the mechanisms regulating metastasis formation in different vascular districts
    • 

    corecore