132,386 research outputs found
Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods
In this paper, we discuss a general multiscale model reduction framework
based on multiscale finite element methods. We give a brief overview of related
multiscale methods. Due to page limitations, the overview focuses on a few
related methods and is not intended to be comprehensive. We present a general
adaptive multiscale model reduction framework, the Generalized Multiscale
Finite Element Method. Besides the method's basic outline, we discuss some
important ingredients needed for the method's success. We also discuss several
applications. The proposed method allows performing local model reduction in
the presence of high contrast and no scale separation
Fluid Solver Independent Hybrid Methods for Multiscale Kinetic equations
In some recent works [G. Dimarco, L. Pareschi, Hybrid multiscale methods I.
Hyperbolic Relaxation Problems, Comm. Math. Sci., 1, (2006), pp. 155-177], [G.
Dimarco, L. Pareschi, Hybrid multiscale methods II. Kinetic equations, SIAM
Multiscale Modeling and Simulation Vol 6., No 4,pp. 1169-1197, (2008)] we
developed a general framework for the construction of hybrid algorithms which
are able to face efficiently the multiscale nature of some hyperbolic and
kinetic problems. Here, at variance with respect to the previous methods, we
construct a method form-fitting to any type of finite volume or finite
difference scheme for the reduced equilibrium system. Thanks to the coupling of
Monte Carlo techniques for the solution of the kinetic equations with
macroscopic methods for the limiting fluid equations, we show how it is
possible to solve multiscale fluid dynamic phenomena faster with respect to
traditional deterministic/stochastic methods for the full kinetic equations. In
addition, due to the hybrid nature of the schemes, the numerical solution is
affected by less fluctuations when compared to standard Monte Carlo schemes.
Applications to the Boltzmann-BGK equation are presented to show the
performance of the new methods in comparison with classical approaches used in
the simulation of kinetic equations.Comment: 31 page
Atomistic-continuum multiscale modelling of magnetisation dynamics at non-zero temperature
In this article, a few problems related to multiscale modelling of magnetic
materials at finite temperatures and possible ways of solving these problems
are discussed. The discussion is mainly centred around two established
multiscale concepts: the partitioned domain and the upscaling-based
methodologies. The major challenge for both multiscale methods is to capture
the correct value of magnetisation length accurately, which is affected by a
random temperature-dependent force. Moreover, general limitations of these
multiscale techniques in application to spin systems are discussed.Comment: 30 page
Numerical methods for multiscale inverse problems
We consider the inverse problem of determining the highly oscillatory
coefficient in partial differential equations of the form
from given
measurements of the solutions. Here, indicates the smallest
characteristic wavelength in the problem (). In addition to the
general difficulty of finding an inverse, the oscillatory nature of the forward
problem creates an additional challenge of multiscale modeling, which is hard
even for forward computations. The inverse problem in its full generality is
typically ill-posed and one common approach is to replace the original problem
with an effective parameter estimation problem. We will here include microscale
features directly in the inverse problem and avoid ill-posedness by assuming
that the microscale can be accurately represented by a low-dimensional
parametrization. The basis for our inversion will be a coupling of the
parametrization to analytic homogenization or a coupling to efficient
multiscale numerical methods when analytic homogenization is not available. We
will analyze the reduced problem, , by proving uniqueness of the inverse
in certain problem classes and by numerical examples and also include numerical
model examples for medical imaging, , and exploration seismology,
- âŠ