3 research outputs found

    Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: A review

    Get PDF
    The surface electromyography (sEMG) records the electrical activity of muscle fibers during contraction: one of its uses is to assess changes taking place within muscles in the course of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based methods have been tentatively applied to the sEMG signal to better individuate the MMF onset during sustained contractions. In this review, after describing concisely the traditional linear methods employed to assess MMF we present the complexity methods used for sEMG analysis based on an extensive literature search. We show that some of these indices, like those derived from recurrence plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more work remains to be done to compare the complexity indices in terms of reliability and sensibility; to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing the phase space; and to elucidate the relationship between complexity estimators and the physiologic phenomena underlying the onset of MMF in exercising muscles

    Multiscale feature based analysis of surface EMG signals under fatigue and non-fatigue conditions

    No full text

    Uso de redes recorrentes para identificação automática de contaminantes e para a estimação de um sensor virtual de eletromiografia no contexto de um sistema tolerante a falhas

    Get PDF
    O desenvolvimento de sistemas inteligentes controlados por eletromiografia que possam se adaptar a possíveis contaminações extrínsecas e intrínsecas, que afetem a taxa de acerto do classificador de movimentos, leva a dispositivos mais robustos e seguros, vistos que evitariam acionamentos indevidos e inesperados. Esse trabalho apresenta uma solução para contaminações por Artefato de Movimento, Ruído de Linha Elétrica, Ruído Branco Aditivo e ECG em 9 diferentes níveis de SNR, de -40dB a 40dB, utilizando Redes Neurais Recorrentes (RNR) com unidades LSTM nas duas etapas deste trabalho. A primeira etapa é o sistema de identificação da contaminação, que traz como inovação a identificação do contaminante diretamente do sinal bruto de sEMG, deixando para a rede a extração das características temporais, onde os resultados apontaram uma taxa de mais de 90% de acerto do tipo de contaminante para SNR = -30dB. A segunda etapa é a geração de um Sensor Virtual a partir de 7 estudos de caso em falhas de eletrodos, que traz como inovação a regressão do sinal retificado e suavizado por um filtro AVT. A geração do sensor virtual é realizada a partir dos canais não contaminados também utilizando uma RNR - LSTM com o objetivo de recuperar a taxa de acerto em 18 classes de um classificador Extreme Learning Machine (ELM), aplicado nas bases NinaPro e IEE. Os resultados indicaram que foi possível recuperar a taxa média de acerto para 2 canais contaminados com ruído branco aditivo em -30dB, de um total de 12 canais, de 7,28% para 68,34% em 4 indivíduos não amputados e de 15,07% para 43,67% em 9 indivíduos amputados.The development of electromyographic controlled systems adaptable to possibles extrinsic and intrisec contaminations, affecting the movement classification hit rate, lead to more robust and secure devices avoiding unexpected situations. This work presents a solution for Movement Artifact, Electrical Noise, White Gaussian Noise and ECG in nine SNR levels, ranging from -40dB to 40dB in 10dB steps, using Recurrent Neural Networks with LSTM units in the two stages of this work. The first stage is an automatic contamination detector, that has the contaminant identification made direct from the raw sEMG signal as a novelty, where the the tests point to 90% correct identification for SNR = -30dB. The second stage is the development of a virtual sensor, that generates the corrupted channel using the non-corrupted ones using a RNR-LSTM with the objective to recover the 18 movement class classification hit rate for an Extreme Learning Machine (ELM). The results shows that was possible to recovery the classification hit rate for 2 contaminated channels from 7.28% to 63.34% in 4 non-amputee subjects and from 15,07% to 43.67% in 9 amputee subjects
    corecore