12 research outputs found

    Sparse Generalized Multiscale Finite Element Methods and their applications

    Full text link
    In a number of previous papers, local (coarse grid) multiscale model reduction techniques are developed using a Generalized Multiscale Finite Element Method. In these approaches, multiscale basis functions are constructed using local snapshot spaces, where a snapshot space is a large space that represents the solution behavior in a coarse block. In a number of applications (e.g., those discussed in the paper), one may have a sparsity in the snapshot space for an appropriate choice of a snapshot space. More precisely, the solution may only involve a portion of the snapshot space. In this case, one can use sparsity techniques to identify multiscale basis functions. In this paper, we consider two such sparse local multiscale model reduction approaches. In the first approach (which is used for parameter-dependent multiscale PDEs), we use local minimization techniques, such as sparse POD, to identify multiscale basis functions, which are sparse in the snapshot space. These minimization techniques use l1l_1 minimization to find local multiscale basis functions, which are further used for finding the solution. In the second approach (which is used for the Helmholtz equation), we directly apply l1l_1 minimization techniques to solve the underlying PDEs. This approach is more expensive as it involves a large snapshot space; however, in this example, we can not identify a local minimization principle, such as local generalized SVD

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation

    Non-stationary demand forecasting by cross-sectional aggregation

    Get PDF
    In this paper the relative effectiveness of top-down (TD) versus bottom-up (BU) approaches is compared for cross-sectionally forecasting aggregate and sub-aggregate demand. We assume that the sub-aggregate demand follows a non-stationary Integrated Moving Average (IMA) process of order one and a Single Exponential Smoothing (SES) procedure is used to extrapolate future requirements. Such demand processes are often encountered in practice and SES is one of the standard estimators used in industry (in addition to being the optimal estimator for an IMA process). Theoretical variances of forecast error are derived for the BU and TD approach in order to contrast the relevant forecasting performances. The theoretical analysis is supported by an extensive numerical investigation at both the aggregate and sub-aggregate level, in addition to empirically validating our findings on a real dataset from a European superstore. The results demonstrate the increased benefit resulting from cross-sectional forecasting in a non-stationary environment than in a stationary one. Valuable insights are offered to demand planners and the paper closes with an agenda for further research in this area. © 2015 Elsevier B.V. All rights reserved
    corecore