1,820 research outputs found

    Multiscale continuum modeling of protein dynamics

    Get PDF
    Two multiscale continuum models for simulating protein dynamics are developed which allow for resolution of protein peptide planes in a beam-like finite element. A curvature and strain based finite element formulation is utilized. This formulation is advantageous in simulating proteins since amino acid chains may be described by a single element, even when the protein segment considered exhibits large curvature and twist such as the alpha-helical shapes prominent in many proteins. Specifically, concurrent and hierarchical multiscale models are developed for the curvature and strain based beam formulation. The hierarchical multiscale continuum model utilizes a novel shooting method to calculate the deformed configuration of the protein. An optimization algorithm determines the requisite stiffness parameters by varying the beam stiffness used in the shooting method until deformed configurations of test cases correspond to those produced by the LAMMPS molecular dynamics software. Additionally, a concurrent multiscale method is detailed for evaluating protein inter-atomic potential parameters from the curvature and strain degrees of freedom employed in the model. This allows internal forces and moments to be calculated using nonlinear protein potentials. Proof of concept testing and model verification for both models includes comparing the multiscale techniques to all-atom molecular dynamics solutions. Specifically, the models are verified by simulating a polypeptide in a vacuum and comparing the predicted results to those computed using LAMMPS.MSCommittee Chair: Leamy, Michael; Committee Member: Ferri, Aldo; Committee Member: Lipkin, Harve

    Image Feature Information Extraction for Interest Point Detection: A Comprehensive Review

    Full text link
    Interest point detection is one of the most fundamental and critical problems in computer vision and image processing. In this paper, we carry out a comprehensive review on image feature information (IFI) extraction techniques for interest point detection. To systematically introduce how the existing interest point detection methods extract IFI from an input image, we propose a taxonomy of the IFI extraction techniques for interest point detection. According to this taxonomy, we discuss different types of IFI extraction techniques for interest point detection. Furthermore, we identify the main unresolved issues related to the existing IFI extraction techniques for interest point detection and any interest point detection methods that have not been discussed before. The existing popular datasets and evaluation standards are provided and the performances for eighteen state-of-the-art approaches are evaluated and discussed. Moreover, future research directions on IFI extraction techniques for interest point detection are elaborated

    Coarse-grained modelling of blood cell mechanics

    Get PDF
    This thesis concerns development of mechanically realistic in silico representations of human blood cells using coarse-grained molecular dynamics (CGMD), ultimately building a new model for a lymphocyte-class white blood cell (WBC). This development is approached successively, evaluated through simulation of experimental testing methods common to past in vitro studies on blood cell mechanics. Considering both their biophysical simplicity and the extensive associated literature, the red blood cell (RBC) is first considered. As a foundation, I thus used the CGMD RBC model of Fu et al. [Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS, Fu et al., Comput. Phys. Commun., 210, 193-203 (2017)]. Chapter 3 establishes implementation of this model, and in silico implementations of the three chosen testing methods. In doing so, the first quantitative assessment of the "miniature cell" approach is conducted - being the down-scaling of the physical cell size to make feasible simulation times, as was done in the original article presenting the model. The RBC model is then used as a foundation from which to develop a new whole-cell WBC lymphocyte model. This is approached sequentially. Firstly (Chapter 4), the morphology and mechanics relevant to the existing RBC model are adapted to those of a lymphocyte. As such, a quasi-spherical morphology is induced, and elastic membrane-associated parameters brought in line with the literature on isolated lymphocytes in vitro. A semi-rigid nucleus is then added to the cell interior, again parameterised to produce elastic properties consistent with the literature. These developments produce a cell having macroscopic mechanical properties much more consistent with a WBC, with an "optimal" parameterisation established. After the membrane and nucleus, the entity most influential to the mechanics of nucleated cells (such as WBC) is their complex intracellular actin-based cytoskeleton (CSK). Therefore, Chapter 5 attempts to represent such a system within our new lymphocyte model. This is approached in three successive stages, assessed against recognised CSK mechanical properties, in particular those also common to soft glassy materials. As such, a novel CSK representation is developed, inspired as a discretisation of soft glassy rheology (SGR). It is proposed that the resulting system has characteristics comparable to having undergone a glass-like transition, as relatable to a real CSK. Therefore, the resulting lymphocyte model may lay a foundation for future development towards mechanically accurate representations of other cells - in particular, a circulating tumour cell

    Anomalous compliance and early yielding of nanoporous gold

    Full text link
    We present a study of the elastic and plastic behavior of nanoporous gold in compression, focusing on molecular dynamics simulation and inspecting experimental data for verification. Both approaches agree on an anomalously high elastic compliance in the early stages of deformation, along with a quasi immediate onset of plastic yielding even at the smallest load. Already before the first loading, the material undergoes spontaneous plastic deformation under the action of the capillary forces, requiring no external load. Plastic deformation under compressive load is accompanied by dislocation storage and dislocation interaction, along with strong strain hardening. Dislocation-starvation scenarios are not supported by our results. The stiffness increases during deformation, but never approaches the prediction by the relevant Gibson-Ashby scaling law. Microstructural disorder affects the plastic deformation behavior and surface excess elasticity might modify elastic response, yet we relate the anomalous compliance and the immediate yield onset to an atomistic origin: the large surface-induced prestress induces elastic shear that brings some regions in the material close to the shear instability of the generalized stacking fault energy curve. These regions are elastically highly compliant and plastically weak
    • …
    corecore