1,028 research outputs found

    A Deep Representation for Invariance And Music Classification

    Get PDF
    Representations in the auditory cortex might be based on mechanisms similar to the visual ventral stream; modules for building invariance to transformations and multiple layers for compositionality and selectivity. In this paper we propose the use of such computational modules for extracting invariant and discriminative audio representations. Building on a theory of invariance in hierarchical architectures, we propose a novel, mid-level representation for acoustical signals, using the empirical distributions of projections on a set of templates and their transformations. Under the assumption that, by construction, this dictionary of templates is composed from similar classes, and samples the orbit of variance-inducing signal transformations (such as shift and scale), the resulting signature is theoretically guaranteed to be unique, invariant to transformations and stable to deformations. Modules of projection and pooling can then constitute layers of deep networks, for learning composite representations. We present the main theoretical and computational aspects of a framework for unsupervised learning of invariant audio representations, empirically evaluated on music genre classification.Comment: 5 pages, CBMM Memo No. 002, (to appear) IEEE 2014 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014

    Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds

    Full text link
    The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.Comment: 35 pages; 3 figures; 2 tables; v3: Revisions based on reviewer comment

    Multiscale approaches to music audio feature learning

    Get PDF
    Content-based music information retrieval tasks are typically solved with a two-stage approach: features are extracted from music audio signals, and are then used as input to a regressor or classifier. These features can be engineered or learned from data. Although the former approach was dominant in the past, feature learning has started to receive more attention from the MIR community in recent years. Recent results in feature learning indicate that simple algorithms such as K-means can be very effective, sometimes surpassing more complicated approaches based on restricted Boltzmann machines, autoencoders or sparse coding. Furthermore, there has been increased interest in multiscale representations of music audio recently. Such representations are more versatile because music audio exhibits structure on multiple timescales, which are relevant for different MIR tasks to varying degrees. We develop and compare three approaches to multiscale audio feature learning using the spherical K-means algorithm. We evaluate them in an automatic tagging task and a similarity metric learning task on the Magnatagatune dataset
    • …
    corecore