6 research outputs found

    Empirical evaluation of segmentation algorithms for lung modelling

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Lung modelling has emerged as a useful method for diagnosing lung diseases. Image segmentation is an important part of lung modelling systems. The ill-defined nature of image segmentation makes automated lung modelling difficult. Also, low resolution of lung images further increases the difficulty of the lung image segmentation. It is therefore important to identify a suitable segmentation algorithm that can enhance lung modelling accuracies. This paper investigates six image segmentation algorithms, used in medical imaging, and also their application to lung modelling. The algorithms are: normalised cuts, graph, region growing, watershed, Markov random field, and mean shift. The performance of the six segmentation algorithms is determined through a set of experiments on realistic 2D CT lung images. An experimental procedure is devised to measure the performance of the tested algorithms. The measured segmentation accuracies as well as execution times of the six algorithms are then compared and discussed.S.L.A. Lee, A.Z. Kouzani, and E.J. H

    Gaussian Multiresolution Models: Exploiting Sparse Markov and Covariance Structure

    Get PDF
    In this paper, we consider the problem of learning Gaussian multiresolution (MR) models in which data are only available at the finest scale, and the coarser, hidden variables serve to capture long-distance dependencies. Tree-structured MR models have limited modeling capabilities, as variables at one scale are forced to be uncorrelated with each other conditioned on other scales. We propose a new class of Gaussian MR models in which variables at each scale have sparse conditional covariance structure conditioned on other scales. Our goal is to learn a tree-structured graphical model connecting variables across scales (which translates into sparsity in inverse covariance), while at the same time learning sparse structure for the conditional covariance (not its inverse) within each scale conditioned on other scales. This model leads to an efficient, new inference algorithm that is similar to multipole methods in computational physics. We demonstrate the modeling and inference advantages of our approach over methods that use MR tree models and single-scale approximation methods that do not use hidden variables

    AN INTEGRATED APPROACH TO CHARACTERIZING BYPASSED OIL IN HETEROGENEOUS AND FRACTURED RESERVOIRS USING PARTITIONING TRACERS

    Full text link

    Automatic visual recognition using parallel machines

    Get PDF
    Invariant features and quick matching algorithms are two major concerns in the area of automatic visual recognition. The former reduces the size of an established model database, and the latter shortens the computation time. This dissertation, will discussed both line invariants under perspective projection and parallel implementation of a dynamic programming technique for shape recognition. The feasibility of using parallel machines can be demonstrated through the dramatically reduced time complexity. In this dissertation, our algorithms are implemented on the AP1000 MIMD parallel machines. For processing an object with a features, the time complexity of the proposed parallel algorithm is O(n), while that of a uniprocessor is O(n2). The two applications, one for shape matching and the other for chain-code extraction, are used in order to demonstrate the usefulness of our methods. Invariants from four general lines under perspective projection are also discussed in here. In contrast to the approach which uses the epipolar geometry, we investigate the invariants under isotropy subgroups. Theoretically speaking, two independent invariants can be found for four general lines in 3D space. In practice, we show how to obtain these two invariants from the projective images of four general lines without the need of camera calibration. A projective invariant recognition system based on a hypothesis-generation-testing scheme is run on the hypercube parallel architecture. Object recognition is achieved by matching the scene projective invariants to the model projective invariants, called transfer. Then a hypothesis-generation-testing scheme is implemented on the hypercube parallel architecture

    Multiscale Gaussian graphical models and algorithms for large-scale inference

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 119-123).Graphical models provide a powerful framework for stochastic processes by representing dependencies among random variables compactly with graphs. In particular, multiscale tree-structured graphs have attracted much attention for their computational efficiency as well as their ability to capture long-range correlations. However, tree models have limited modeling power that may lead to blocky artifacts. Previous works on extending trees to pyramidal structures resorted to computationally expensive methods to get solutions due to the resulting model complexity. In this thesis, we propose a pyramidal graphical model with rich modeling power for Gaussian processes, and develop efficient inference algorithms to solve large-scale estimation problems. The pyramidal graph has statistical links between pairs of neighboring nodes within each scale as well as between adjacent scales. Although the graph has many cycles, its hierarchical structure enables us to develop a class of fast algorithms in the spirit of multipole methods. The algorithms operate by guiding far-apart nodes to communicate through coarser scales and considering only local interactions at finer scales. The consistent stochastic structure of the pyramidal graph provides great flexibilities in designing and analyzing inference algorithms. Based on emerging techniques for inference on Gaussian graphical models, we propose several different inference algorithms to compute not only the optimal estimates but also approximate error variances as well. In addition, we consider the problem of rapidly updating the estimates based on some new local information, and develop a re-estimation algorithm on the pyramidal graph. Simulation results show that this algorithm can be applied to reconstruct discontinuities blurred during the estimation process or to update the estimates to incorporate a new set of measurements introduced in a local region.by Myung Jin Choi.S.M

    Multiscale Methods in Image Modelling and Image Processing

    Get PDF
    The field of modelling and processing of 'images' has fairly recently become important, even crucial, to areas of science, medicine, and engineering. The inevitable explosion of imaging modalities and approaches stemming from this fact has become a rich source of mathematical applications. 'Imaging' is quite broad, and suffers somewhat from this broadness. The general question of 'what is an image?' or perhaps 'what is a natural image?' turns out to be difficult to address. To make real headway one may need to strongly constrain the class of images being considered, as will be done in part of this thesis. On the other hand there are general principles that can guide research in many areas. One such principle considered is the assertion that (classes of) images have multiscale relationships, whether at a pixel level, between features, or other variants. There are both practical (in terms of computational complexity) and more philosophical reasons (mimicking the human visual system, for example) that suggest looking at such methods. Looking at scaling relationships may also have the advantage of opening a problem up to many mathematical tools. This thesis will detail two investigations into multiscale relationships, in quite different areas. One will involve Iterated Function Systems (IFS), and the other a stochastic approach to reconstruction of binary images (binary phase descriptions of porous media). The use of IFS in this context, which has often been called 'fractal image coding', has been primarily viewed as an image compression technique. We will re-visit this approach, proposing it as a more general tool. Some study of the implications of that idea will be presented, along with applications inferred by the results. In the area of reconstruction of binary porous media, a novel, multiscale, hierarchical annealing approach is proposed and investigated
    corecore