468 research outputs found

    Video object tracking using region split and merge and a Kalman filter tracking algorithm

    Get PDF

    Motion compensation and very low bit rate video coding

    Get PDF
    Recently, many activities of the International Telecommunication Union (ITU) and the International Standard Organization (ISO) are leading to define new standards for very low bit-rate video coding, such as H.263 and MPEG-4 after successful applications of the international standards H.261 and MPEG-1/2 for video coding above 64kbps. However, at very low bit-rate the classic block matching based DCT video coding scheme suffers seriously from blocking artifacts which degrade the quality of reconstructed video frames considerably. To solve this problem, a new technique in which motion compensation is based on dense motion field is presented in this dissertation. Four efficient new video coding algorithms based on this new technique for very low bit-rate are proposed. (1) After studying model-based video coding algorithms, we propose an optical flow based video coding algorithm with thresh-olding techniques. A statistic model is established for distribution of intensity difference between two successive frames, and four thresholds are used to control the bit-rate and the quality of reconstructed frames. It outperforms the typical model-based techniques in terms of complexity and quality of reconstructed frames. (2) An efficient algorithm using DCT coded optical flow. It is found that dense motion fields can be modeled as the first order auto-regressive model, and efficiently compressed with DCT technique, hence achieving very low bit-rate and higher visual quality than the H.263/TMN5. (3) A region-based discrete wavelet transform video coding algorithm. This algorithm implements dense motion field and regions are segmented according to their content significance. The DWT is applied to residual images region by region, and bits are adaptively allocated to regions. It improves the visual quality and PSNR of significant regions while maintaining low bit-rate. (4) A segmentation-based video coding algorithm for stereo sequence. A correlation-feedback algorithm with Kalman filter is utilized to improve the accuracy of optical flow fields. Three criteria, which are associated with 3-D information, 2-D connectivity and motion vector fields, respectively, are defined for object segmentation. A chain code is utilized to code the shapes of the segmented objects. it can achieve very high compression ratio up to several thousands

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Motion representation using composite energy features

    Get PDF
    This work tackles the segmentation of apparent-motion from a bottom-up perspective. When no information is available to build prior high-level models, the only alternative are bottom-up techniques. Hence, the whole segmentation process relies on the suitability of the low-level features selected to describe motion. A wide variety of low-level spatio-temporal features have been proposed so far. However, all of them suffer from diverse drawbacks. Here, we propose the use of composite energy features in bottom-up motion segmentation to solve several of these problems. Composite energy features are clusters of energy filters—pairs of band-pass filters in quadrature—each one sensitive to a different set of scale, orientation, direction of motion and speed. They are grouped in order to reconstruct independent motion patterns in a video sequence. A composite energy feature, this is, the response of one of these clusters of filters, can be built as a combination of the responses of the individual filters. Therefore, it inherits the desirable properties of energy filters but providing a more complete representation of motion patterns. In this paper, we will present our approach for integration of composite features based on the concept of Phase Congruence. We will show some results that illustrate the capabilities of this low-level motion representation and its usefulness in bottom-up motion segmentation and tracking.This work has been financially supported by the Ministry of Education and Science of the Spanish Government, through the Research Project TIN2006-08447.S

    Morphological image pyramids for automatic target recognition

    Get PDF

    Three-Dimensional Motion Estimation of Objects for Video Coding

    Get PDF
    Three-dimensional (3-D) motion estimation is applied to the problem of motion compensation for video coding. We suppose that the video sequence consists of the perspective projections of a collection of rigid bodies which undergo a rototranslational motion. Motion compensation can be performed on the sequence once the shape of the objects and the motion parameters are determined. We show that the motion equations of a rigid body can be formulated as a nonlinear dynamic system whose state is represented by the motion parameters and by the scaled depths of the object feature points. An extended Kalman filter is used to estimate both the motion and the object shape parameters simultaneously. The inclusion of the shape parameters in the estimation procedure adds a set of constraints to the filter equations that appear to be essential for reliable motion estimation. Our experiments show that the proposed approach gives two advantages. First, the filter can give more reliable estimates in the presence of measurement noise in comparison with other motion estimators that separately compute motion and structure. Second, the filter can efficiently track abrupt motion changes. Moreover, the structure imposed by the model implies that the reconstructed motion is very natural as opposed to more common block-based schemes. Also, the parameterization of the model allows for a very efficient coding of the motion informatio
    • …
    corecore