4,018 research outputs found

    MORA: an Energy-Aware Slack Reclamation Scheme for Scheduling Sporadic Real-Time Tasks upon Multiprocessor Platforms

    Full text link
    In this paper, we address the global and preemptive energy-aware scheduling problem of sporadic constrained-deadline tasks on DVFS-identical multiprocessor platforms. We propose an online slack reclamation scheme which profits from the discrepancy between the worst- and actual-case execution time of the tasks by slowing down the speed of the processors in order to save energy. Our algorithm called MORA takes into account the application-specific consumption profile of the tasks. We demonstrate that MORA does not jeopardize the system schedulability and we show by performing simulations that it can save up to 32% of energy (in average) compared to execution without using any energy-aware algorithm.Comment: 11 page

    Multiprocessor Global Scheduling on Frame-Based DVFS Systems

    Full text link
    In this ongoing work, we are interested in multiprocessor energy efficient systems, where task durations are not known in advance, but are know stochastically. More precisely, we consider global scheduling algorithms for frame-based multiprocessor stochastic DVFS (Dynamic Voltage and Frequency Scaling) systems. Moreover, we consider processors with a discrete set of available frequencies

    3E: Energy-Efficient Elastic Scheduling for Independent Tasks in Heterogeneous Computing Systems

    Get PDF
    Reducing energy consumption is a major design constraint for modern heterogeneous computing systems to minimize electricity cost, improve system reliability and protect environment. Conventional energy-efficient scheduling strategies developed on these systems do not sufficiently exploit the system elasticity and adaptability for maximum energy savings, and do not simultaneously take account of user expected finish time. In this paper, we develop a novel scheduling strategy named energy-efficient elastic (3E) scheduling for aperiodic, independent and non-real-time tasks with user expected finish times on DVFS-enabled heterogeneous computing systems. The 3E strategy adjusts processors’ supply voltages and frequencies according to the system workload, and makes trade-offs between energy consumption and user expected finish times. Compared with other energy-efficient strategies, 3E significantly improves the scheduling quality and effectively enhances the system elasticity

    Simulation of Efficient Real-Time Scheduling and Power Optimisation

    Get PDF
    International audienceSophisticated applications turn out to be executed upon more than one CPU for practical and economic reasons. Due to advances in circuit technology and performance limitation, multi-core technology has become the mainstream in CPU designs. However, the most serious limitation of these devices is the battery lifetime since battery technology is not keeping up with the rest of the power-hungry processors and peripherals used in today's mobile devices. As a solution, many investigations have turned toward the algorithms of power management combined with some scheduling policies. They can make significant energy saving while preserving the temporal constraints of these embedded systems. Reducing energy, especially, affect not only the battery lifetime, but also aim to reduce the heat generated by real-time embedded controller in various products or even to decrease the conditions of cooling and the costs, in the large scale, of giant multiprocessor computers. To assess the behavior and performance of the strategy of scheduling a flexible multiprocessor scheduling simulation and evaluation platform is needed. This paper puts forth the claim that the STORM simulator improves application quality both in terms of execution time and energy consumption for a high performance mobile computing embedded system design

    Power-Aware Real-Time Scheduling upon Identical Multiprocessor Platforms

    Get PDF
    In this paper, we address the power-aware scheduling of sporadic constrained-deadline hard real-time tasks using dynamic voltage scaling upon multiprocessor platforms. We propose two distinct algorithms. Our first algorithm is an off-line speed determination mechanism which provides an identical speed for each processor. That speed guarantees that all deadlines are met if the jobs are scheduled using EDF. The second algorithm is an on-line and adaptive speed adjustment mechanism which reduces the energy consumption while the system is running.Comment: The manuscript corresponds to the final version of SUTC 2008 conferenc
    • …
    corecore