759 research outputs found

    Event Representations with Tensor-based Compositions

    Full text link
    Robust and flexible event representations are important to many core areas in language understanding. Scripts were proposed early on as a way of representing sequences of events for such understanding, and has recently attracted renewed attention. However, obtaining effective representations for modeling script-like event sequences is challenging. It requires representations that can capture event-level and scenario-level semantics. We propose a new tensor-based composition method for creating event representations. The method captures more subtle semantic interactions between an event and its entities and yields representations that are effective at multiple event-related tasks. With the continuous representations, we also devise a simple schema generation method which produces better schemas compared to a prior discrete representation based method. Our analysis shows that the tensors capture distinct usages of a predicate even when there are only subtle differences in their surface realizations.Comment: Accepted at AAAI 201

    Conditional Random Field Autoencoders for Unsupervised Structured Prediction

    Full text link
    We introduce a framework for unsupervised learning of structured predictors with overlapping, global features. Each input's latent representation is predicted conditional on the observable data using a feature-rich conditional random field. Then a reconstruction of the input is (re)generated, conditional on the latent structure, using models for which maximum likelihood estimation has a closed-form. Our autoencoder formulation enables efficient learning without making unrealistic independence assumptions or restricting the kinds of features that can be used. We illustrate insightful connections to traditional autoencoders, posterior regularization and multi-view learning. We show competitive results with instantiations of the model for two canonical NLP tasks: part-of-speech induction and bitext word alignment, and show that training our model can be substantially more efficient than comparable feature-rich baselines

    Investigating the Role of Prior Disambiguation in Deep-learning Compositional Models of Meaning

    Full text link
    This paper aims to explore the effect of prior disambiguation on neural network- based compositional models, with the hope that better semantic representations for text compounds can be produced. We disambiguate the input word vectors before they are fed into a compositional deep net. A series of evaluations shows the positive effect of prior disambiguation for such deep models.Comment: NIPS 201

    Compositional Distributional Semantics with Compact Closed Categories and Frobenius Algebras

    Full text link
    This thesis contributes to ongoing research related to the categorical compositional model for natural language of Coecke, Sadrzadeh and Clark in three ways: Firstly, I propose a concrete instantiation of the abstract framework based on Frobenius algebras (joint work with Sadrzadeh). The theory improves shortcomings of previous proposals, extends the coverage of the language, and is supported by experimental work that improves existing results. The proposed framework describes a new class of compositional models that find intuitive interpretations for a number of linguistic phenomena. Secondly, I propose and evaluate in practice a new compositional methodology which explicitly deals with the different levels of lexical ambiguity (joint work with Pulman). A concrete algorithm is presented, based on the separation of vector disambiguation from composition in an explicit prior step. Extensive experimental work shows that the proposed methodology indeed results in more accurate composite representations for the framework of Coecke et al. in particular and every other class of compositional models in general. As a last contribution, I formalize the explicit treatment of lexical ambiguity in the context of the categorical framework by resorting to categorical quantum mechanics (joint work with Coecke). In the proposed extension, the concept of a distributional vector is replaced with that of a density matrix, which compactly represents a probability distribution over the potential different meanings of the specific word. Composition takes the form of quantum measurements, leading to interesting analogies between quantum physics and linguistics.Comment: Ph.D. Dissertation, University of Oxfor
    • …
    corecore