222 research outputs found

    A general construction for monoid-based knapsack protocols

    Full text link
    We present a generalized version of the knapsack protocol proposed by D. Naccache and J. Stern at the Proceedings of Eurocrypt (1997). Our new framework will allow the construction of other knapsack protocols having similar security features. We will outline a very concrete example of a new protocol using extension fields of a finite field of small characteristic instead of the prime field Z/pZ, but more efficient in terms of computational costs for asymptotically equal information rate and similar key size.Comment: 18 pages, to appear on Advances in Mathematics of Communication

    An Implementation of the Chor-Rivest Knapsack Type Public Key Cryptosystem

    Get PDF
    The Chor-Rivest cryptosystem is a public key cryptosystem first proposed by MIT cryptographers Ben Zion Chor and Ronald Rivest [Chor84]. More recently Chor has imple mented the cryptosystem as part of his doctoral thesis [Chor85]. Derived from the knapsack problem, this cryptosystem differs from earlier knapsack public key systems in that computa tions to create the knapsack are done over finite algebraic fields. An interesting result of Bose and Chowla supplies a method of constructing higher densities than previously attain able [Bose62]. Not only does an increased information rate arise, but the new system so far is immune to the low density attacks levied against its predecessors, notably those of Lagarias- Odlyzko and Radziszowski-Kreher [Laga85, Radz86]. An implementation of this cryptosystem is really an instance of the general scheme, dis tinguished by fixing a pair of parameters, p and h , at the outset. These parameters then remain constant throughout the life of the implementation (which supports a community of users). Chor has implemented one such instance of his cryptosystem, where p =197 and h =24. This thesis aspires to extend Chor\u27s work by admitting p and h as variable inputs at run time. In so doing, a cryptanalyst is afforded the means to mimic the action of arbitrary implementations. A high degree of success has been achieved with respect to this goal. There are only a few restrictions on the choice of parameters that may be selected. Unfortunately this general ity incurs a high cost in efficiency; up to thirty hours of (VAX1 1-780) processor time are needed to generate a single key pair in the desired range (p = 243 and h =18)

    Product Subset Problem : Applications to number theory and cryptography

    Full text link
    We consider applications of Subset Product Problem (SPP) in number theory and cryptography. We obtain a probabilistic algorithm that attack SPP and we analyze it with respect time/space complexity and success probability. In fact we provide an application to the problem of finding Carmichael numbers and an attack to Naccache-Stern knapsack cryptosystem, where we update previous results.Comment: 17 pages, 2 figures, LaTeX; references added, typos corrected, a new figure was inserted, sections 2.1, 2.2 improve

    An Analysis of Modern Cryptosystems

    Get PDF
    Since the ancient Egyptian empire, man has searched for ways to protect information from getting into the wrong hands. Julius Caesar used a simple substitution cipher to protect secrets. During World War II, the Allies and the Axis had codes that they used to protect information. Now that we have computers at our disposal, the methods used to protect data in the past are ineffective. More recently, computer scientists and mathematicians have been working diligently to develop cryptosystems which will provide absolute security in a computing environment. The three major cryptosystems in use today are DES, RSA, and the Knapsack Cryptosystem. These cryptosystems have been reviewed and the positive and negative aspects of each is discussed. A newcomer to the field of cryptology is the Random Spline Cryptosystem which is discussed in detail

    An Elliptic Curve Based Homomorphic Remote Voting System

    Get PDF
    A remote voting system allows participants to cast their ballots through the Internet. Remote voting systems based on the use of homomorphic public key cryptography have proven to be a good option for carrying out simple elections with a reduced amount of candidates. In this paper, we present a new system that makes use of the additive homomorphic capabilities of the Elliptic Curve ElGamal (EC-ElGamal) cryptosystem. All the stages of the system are described together with an experimental analysis section which provides an assessment on the type of election our system would be suitable for.Research of the authors was supported in part by grants MTM2010-21580-C02-01 (Spanish Ministerio de Ciencia e Innovación), 2014SGR-1666 (Generalitat de Catalunya) and IPT-2012-0603-430000 (Spanish Ministerio de Economía y Competitividad)
    corecore