746 research outputs found

    Rtp and the datagram congestion control protocol

    Get PDF
    We describe how the new Datagram Congestion Control Protocol (DCCP) can be used as a bearer for the Real-time Transport Protocol (RTP) to provide a congestion controlled basis for networked multimedia applications. This is a step towards deployment of congestion control for such applications, necessary to ensure the future stability of the best-effort network if high-bandwidth streaming and IPTV services are to be deployed outside of closed QoS-managed networks

    Multi-layer virtual transport network management

    Full text link
    Nowadays there is an increasing need for a general paradigm which can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management architecture, which recurses the same VTN-based management mechanism for enterprise network management. Our experimental results show that our management architecture achieves better performance.National Science Foundation awards: CNS-0963974 and CNS-1346688

    Optimization of low-efficiency traffic in OpenFlow Software Defined Networks

    Full text link
    Abstract — This paper proposes a method for optimizing bandwidth usage in Software Defined Networks (SDNs) based on OpenFlow. Flows of small packets presenting a high overhead, as the ones generated by emerging services, can be identified by the SDN controller, in order to remove header fields that are common to any packet in the flow, only during their way through the SDN. At the same time, several packets can be multiplexed together in the same frame, thus reducing the number of sent frames. Four kinds of small-packet traffic flows are considered (VoIP, UDP and TCP-based online games, and ACKs from TCP flows). Both IPv4 and IPv6 are tested, and significant bandwidth savings (up to 68 % for IPv4 and 78 % for IPv6) can be obtained for the considered kinds of traffic

    Enterprise network convergence: path to cost optimization

    Get PDF
    During the past two decades, telecommunications has evolved a great deal. In the eighties, people were using television, radio and telephone as their communication systems. Eventually, the introduction of the Internet and the WWW immensely transformed the telecommunications industry. This internet revolution brought about a huge change in the way businesses communicated and operated. Enterprise networks now had an increasing demand for more bandwidth as they started to embrace newer technologies. The requirements of the enterprise networks grew as the applications and services that were used in the network expanded. This stipulation for fast and high performance communication systems has now led to the emergence of converged network solutions. Enterprises across the globe are investigating new ways to implement voice, video, and data over a single network for various reasons – to optimize network costs, to restructure their communication system, to extend next generation networking abilities, or to bridge the gap between their corporate network and the existing technological progress. To date, organizations had multiple network services to support a range of communication needs. Investing in this type of multiple communication infrastructures limits the networks ability to provide resourceful bandwidth optimization services throughout the system. Thus, as the requirements for the corporate networks to handle dynamic traffic grow day by day, the need for a more effective and efficient network arises. A converged network is the solution for enterprises aspiring to employ advanced applications and innovative services. This thesis will emphasize the importance of converging network infrastructure and prove that it leads to cost savings. It discusses the characteristics, architecture, and relevant protocols of the voice, data and video traffic over both traditional infrastructure and converged architecture. While IP-based networks present excellent quality for non real-time data networking, the network by itself is not capable of providing reliable, quality and secure services for real-time traffic. In order for IP networks to perform reliable and timely transmission of real-time data, additional mechanisms to reduce delay, jitter and packet loss are required. Therefore, this thesis will also discuss the important mechanisms for running real-time traffic like voice and video over an IP network. Lastly, it will also provide an example of an enterprise network specifications (voice, video and data), and present an in depth cost analysis of a typical network vs. a converged network to prove that converged infrastructures provide significant savings

    Small-Packet Flows in Software Defined Networks: Traffic Profile Optimization

    Get PDF
    This paper proposes a method for optimizing bandwidth usage in Software Defined Networks (SDNs) based on OpenFlow. Flows of small packets presenting a high overhead, as the ones generated by emerging services, can be identified by the SDN controller, in order to remove header fields that are common to any packet in the flow, only during their way through the SDN. At the same time, several packets can be multiplexed together in the same frame, thus reducing the overall number of frames. The method can be useful for providing QoS while the packets are traversing the SDN. Four kinds of small-packet traffic flows are considered (VoIP, UDP and TCP-based online games, and ACKs from TCP flows). Both IPv4 and IPv6 are studied, and significant bandwidth savings (up to 68 % for IPv4 and 78 % for IPv6) can be obtained for the considered kinds of traffic. The optimization method is also applied to different public Internet traffic traces, and significant reductions in terms of packets per second are achieved. Results show that bandwidth consumption is also reduced, especially in those traces where the percentage of small packets is high. Regarding the effect on QoS, the additional delay can be kept very low (below 1 millisecond) when the throughput is high, but it may become significant for low- throughput scenarios. Thus, a trade-off between bandwidth saving and additional delay appears in those cases

    Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    Get PDF
    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol

    Performance evaluation of AAL2 over IP in the UMTS access network Iub interface

    Get PDF
    Bibliography: leaves 84-86.In this study, we proposed to retain AAL2 and lay it over IP (AAL2IIP). The IP-based lub interface is therefore designed to tunnel AAL2 channels from the Node B to the RNC. Currently IP routes packets based on best-effort which does not guarantee QoS, To provide QoS, MPLS integrated with DiffServ is proposed to support different QoS levels to different classes of service and fast forward the IP packets within the lub interface. To evaluate the performance of AAL2!IP in the Iub interface, a test-bed was created

    Sending multiple RTP streams in a single RTP session

    Get PDF
    This memo expands and clarifies the behavior of Real-time Transport Protocol (RTP) endpoints that use multiple synchronization sources (SSRCs). This occurs, for example, when an endpoint sends multiple RTP streams in a single RTP session. This memo updates RFC 3550 with regard to handling multiple SSRCs per endpoint in RTP sessions, with a particular focus on RTP Control Protocol (RTCP) behavior. It also updates RFC 4585 to change and clarify the calculation of the timeout of SSRCs and the inclusion of feedback messages
    corecore