1,186 research outputs found

    Application of Image Processing and Three-Dimensional Data Reconstruction Algorithm Based on Traffic Video in Vehicle Component Detection

    Get PDF
    Vehicle detection is one of the important technologies in intelligent video surveillance systems. Owing to the perspective projection imaging principle of cameras, traditional two-dimensional (2D) images usually distort the size and shape of vehicles. In order to solve these problems, the traffic scene calibration and inverse projection construction methods are used to project the three-dimensional (3D) information onto the 2D images. In addition, a vehicle target can be characterized by several components, and thus vehicle detection can be fulfilled based on the combination of these components. The key characteristics of vehicle targets are distinct during a single day; for example, the headlight brightness is more significant at night, while the vehicle taillight and license plate color are much more prominent in the daytime. In this paper, by using the background subtraction method and Gaussian mixture model, we can realize the accurate detection of target lights at night. In the daytime, however, the detection of the license plate and taillight of a vehicle can be fulfilled by exploiting the background subtraction method and the Markov random field, based on the spatial geometry relation between the corresponding components. Further, by utilizing Kalman filters to follow the vehicle tracks, detection accuracy can be further improved. Finally, experiment results demonstrate the effectiveness of the proposed methods

    A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    Get PDF
    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system

    Domain Adaptation For Vehicle Detection In Traffic Surveillance Images From Daytime To Nighttime

    Get PDF
    Vehicle detection in traffic surveillance images is an important approach to obtain vehicle data and rich traffic flow parameters. Recently, deep learning based methods have been widely used in vehicle detection with high accuracy and efficiency. However, deep learning based methods require a large number of manually labeled ground truths (bounding box of each vehicle in each image) to train the Convolutional Neural Networks (CNN). In the modern urban surveillance cameras, there are already many manually labeled ground truths in daytime images for training CNN, while there are little or much less manually labeled ground truths in nighttime images. In this paper, we focus on the research to make maximum usage of labeled daytime images (Source Domain) to help the vehicle detection in unlabeled nighttime images (Target Domain). For this purpose, we propose a new method based on Faster R-CNN with Domain Adaptation (DA) to improve the vehicle detection at nighttime. With the assistance of DA, the domain distribution discrepancy of Source and Target Domains is reduced. We collected a new dataset of 2,200 traffic images (1,200 for daytime and 1,000 for nighttime) of 57,059 vehicles for training and testing CNN. In the experiment, only using the manually labeled ground truths of daytime data, Faster R- CNN obtained 82.84% as F-measure on the nighttime vehicle detection, while the proposed method (Faster R-CNN+DA) achieved 86.39% as F-measure on the nighttime vehicle detection

    Driving in the Rain: A Survey toward Visibility Estimation through Windshields

    Get PDF
    Rain can significantly impair the driver’s sight and affect his performance when driving in wet conditions. Evaluation of driver visibility in harsh weather, such as rain, has garnered considerable research since the advent of autonomous vehicles and the emergence of intelligent transportation systems. In recent years, advances in computer vision and machine learning led to a significant number of new approaches to address this challenge. However, the literature is fragmented and should be reorganised and analysed to progress in this field. There is still no comprehensive survey article that summarises driver visibility methodologies, including classic and recent data-driven/model-driven approaches on the windshield in rainy conditions, and compares their generalisation performance fairly. Most ADAS and AD systems are based on object detection. Thus, rain visibility plays a key role in the efficiency of ADAS/AD functions used in semi- or fully autonomous driving. This study fills this gap by reviewing current state-of-the-art solutions in rain visibility estimation used to reconstruct the driver’s view for object detection-based autonomous driving. These solutions are classified as rain visibility estimation systems that work on (1) the perception components of the ADAS/AD function, (2) the control and other hardware components of the ADAS/AD function, and (3) the visualisation and other software components of the ADAS/AD function. Limitations and unsolved challenges are also highlighted for further research

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Integration of a stereo vision system into an autonomous underwater vehicle for pipe manipulation tasks

    Get PDF
    Underwater object detection and recognition using computer vision are challenging tasks due to the poor light condition of submerged environments. For intervention missions requiring grasping and manipulation of submerged objects, a vision system must provide an Autonomous Underwater Vehicles (AUV) with object detection, localization and tracking capabilities. In this paper, we describe the integration of a vision system in the MARIS intervention AUV and its configuration for detecting cylindrical pipes, a typical artifact of interest in underwater operations. Pipe edges are tracked using an alpha-beta filter to achieve robustness and return a reliable pose estimation even in case of partial pipe visibility. Experiments in an outdoor water pool in different light conditions show that the adopted algorithmic approach allows detection of target pipes and provides a sufficiently accurate estimation of their pose even when they become partially visible, thereby supporting the AUV in several successful pipe grasping operations

    Human-Like Guide Robot that Proactively Explains Exhibits

    Get PDF
    We developed an autonomous human-like guide robot for a science museum. Its identifies individuals, estimates the exhibits at which visitors are looking, and proactively approaches them to provide explanations with gaze autonomously, using our new approach called speak-and-retreat interaction. The robot also performs such relation-building behaviors as greeting visitors by their names and expressing a friendlier attitude to repeat visitors. We conducted a field study in a science museum at which our system basically operated autonomously and the visitors responded quite positively. First-time visitors on average interacted with the robot for about 9 min, and 94.74% expressed a desire to interact with it again in the future. Repeat visitors noticed its relation-building capability and perceived a closer relationship with it
    corecore