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Vehicle detection is one of the important technologies in intelligent video surveillance systems. Owing to the perspective projection
imaging principle of cameras, traditional two-dimensional (2D) images usually distort the size and shape of vehicles. In order
to solve these problems, the traffic scene calibration and inverse projection construction methods are used to project the three-
dimensional (3D) information onto the 2D images. In addition, a vehicle target can be characterized by several components, and
thus vehicle detection can be fulfilled based on the combination of these components. The key characteristics of vehicle targets are
distinct during a single day; for example, the headlight brightness is more significant at night, while the vehicle taillight and license
plate color are much more prominent in the daytime. In this paper, by using the background subtraction method and Gaussian
mixture model, we can realize the accurate detection of target lights at night. In the daytime, however, the detection of the license
plate and taillight of a vehicle can be fulfilled by exploiting the background subtraction method and the Markov random field,
based on the spatial geometry relation between the corresponding components. Further, by utilizing Kalman filters to follow the
vehicle tracks, detection accuracy can be further improved. Finally, experiment results demonstrate the effectiveness of the proposed

methods.

1. Introduction

With the rapid development of intelligent traffic control,
computer vision has attracted much attention from design-
ers of intelligent transportation systems (ITSs) [1], due to
its importance in information collection in the real-time
environment. Monitoring systems based on computer vision
technology have become very important in the development
of ITSs, and a detailed introduction to vehicle monitoring
methods and video monitoring system frameworks is avail-
able in [2].

At present, video-based vehicle monitoring systems can
be divided into two categories according to two different
kinds of vehicle features: vehicle appearance and vehicle
moving character. In the method based on vehicle appearance
[2, 3], a vehicle target is detected by means of geometric
structures, color information, and texture features of the

entire or part of the vehicle, such as the symmetry of the
vehicle structure, the outline of the vehicle, the local car lights,
and license plates. There are a variety of feature representation
operators to describe vehicle appearance, such as high-
order Godunov (HOG) features, Haar-like operators, scale-
invariant feature transform (SIFT) features, and speeded-up
robust features (SURFs). These feature descriptors are com-
bined with classification algorithms for vehicle monitoring
systems in ITSs, such as artificial neural networks, support
vector machines, AdaBoost, and sparse representation classi-
fication. In the method based on moving features [4, 5], the
entire or part of the vehicle is tracked, and the corresponding
tracking trajectories used to detect vehicle targets and analyze
vehicle behaviors are obtained.

The method based on a 3D vehicle model [6] comprises
building a 3D model of the vehicle target and then detecting
the vehicle target using the vehicle identification method.
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The difficulty of this method is in how to build a better
vehicle model. There are different vehicle sizes and shapes
among different vehicle models and types. It is not easy to put
forward a unified 3D model to include all kinds of vehicles in
real life. When the traffic situation is complex, the detection of
a 3D model is usually ineffective. Although 3D information of
the vehicle is useful, occlusion [7], adhesion, and other issues
still cannot be resolved.

The method based on features [8] is different from the
above methods. All types of vehicle detection methods view
vehicles as the smallest unit of target detection, but regarding
the vehicles themselves, they have many variable features
[9,10], such as headlights, taillights, license plates, and vehicle
symmetries. The organic combination of these features can
often represent vehicle targets. We can detect a vehicle’s local
characteristics instead of detecting vehicle targets. How to
detect a vehicle’s local characteristics is a key and challenging
aspect of this method. The images obtained by video cameras
distort the shape and size of the vehicle due to the perspective
relation, which makes it difficult to extract the local features
of the vehicle from the 2D image.

In this paper, we aim to solve how to (1) detect vehicle
local features or components, (2) avoid complex scenes
caused by occlusion and adhesion problems, and (3) establish
the relationship between a 2D image and a 3D scene, using
the local features or inherent properties of size and shape
components while avoiding image distortion caused by the
camera.

Under the conditions of normal light illumination and
the basic rules of the road, it is not a problem for a human
being to locate the target vehicle’s headlights and its color
information quickly. However, if a computer vision method
is utilized to design a robust algorithm to fulfill these tasks, it
becomes extremely challenging to detect vehicle headlights,
license plates, and taillights accurately.

2. Contributions of the Paper

In this paper, we mainly study the target recognition algo-
rithm in traffic monitoring systems. Based on the probabilis-
tic model of the spatial relation, the detection of the target
vehicle’s components is exploited instead of detection of the
entire vehicle.

There are two main innovations in our paper: on one
hand, the shape and size of the vehicle components are dis-
torted due to camera projection transformation. In this paper,
therefore, an inverse projection algorithm is proposed to
construct an inverse projection map. The inherent shape and
size of the vehicle can be obtained on the inverse projection
map, and the saliency components of the vehicle can be
detected using these inherent attributes. Details of this public
detection of vehicles during both day and night are presented
in Section 3.1. On the other hand, the target vehicle can be
replaced by detecting organic combinations of vehicle parts.
At night, headlights can be selected as detection object and
are first detected according to their geometric characteristics.
A Gaussian mixture model is established using the distance
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FIGURE 1: Main flow of proposed algorithm.

between the headlights and their height, and the resulting
probability model is used to achieve accurate detection.
Details of this process appear in Section 3.2. In the daytime,
the taillights and license plate are selected as the objects of
detection through use of a color model to detect them. Then,
by determining the geometric relationship between the parts,
a Markov random field is established to complete vehicle
detection. Details of this process appear in Section 3.3.

2.1. Summary of the Proposed Nighttime Algorithm. In the
evening, since sunlight is limited, only the headlight infor-
mation of the vehicles can be used. The target vehicle
components at night are detected by the following steps:

(1) Search the real data according to the car design
and manufacturing standard, and then establish a
Gaussian mixture model (GMM) model based on the
real data [11].

(2) Detect the dominant information of the vehicle com-
ponents by using the inverse projection map.

(3) Use the GMM model to train the dominant informa-
tion, and obtain the GMM stochastic value.

(4) Judge the stochastic value to achieve final vehicle
detection.

2.2. Summary of the Proposed Daytime Algorithm. During
the daytime, solar illumination is adequate, and thus the
color information of the vehicle’s parts can be utilized to
detect the vehicle license plate and taillights. In the daytime,
the detection of the vehicles license plate and taillight can
be realized by using background subtraction and a Markov
random field (MRF) along with the spatial geometry relation
between the corresponding components.

The main flow of the proposed algorithm is shown in
Figure 1. In this paper, we introduce discrete algorithms for
day and night.
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FIGURE 2: Schematic of inverse projection plane.

3. Vehicle Detection Algorithm
Based on Components

3.1. Inverse Projection Plane and Inverse Projection Map.
In this paper, an inverse projection plane is preliminarily
determined in the traffic scene that has been calibrated [12].
Once the position of the space inversion projection plane
is determined, the corresponding relationship between the
point in the reverse projection plane and the position of the
pixel in the projection image is also determined. Then, the
data of the projected image can be projected onto the inverse
projection plane to obtain an inverse projection map, which
copies the spatial information of the inverse projection plane.
The inverse projection [5] process consists of two parts: the
design of the inverse projection plane and the construction
of the inverse projection map.

The proposed method relies on the space information
with three dimensions; therefore, the calibration procedure
for traffic scenes is necessary, and there are many calibration
methods for traffic scenes. In this paper, the direct linear
transformation (DLT) as proposed by Abdel-Aziz and Karara
[12] is used for scene calibration.

3.1.1. Design of Inverse Projection Plane. The inverse projec-
tion plane [13] is designed according to the characteristics and
spatial position of the target to be detected. Depending on the
specific circumstances, it can be set to be parallel of the road,
perpendicular to the road, or at a certain angle to the road.
The number can be designed as 1 or more.

The part of the surface of the vehicle can be approximated
as a plane with some geometric features. If the vehicle in
three-dimensional (3D) space is regarded as a polyhedron,
when the characteristics of different faces of the vehicle body
are selected as the detection objects, the reverse projection
plane is attached to the corresponding plane of the vehicle
body, making the data after the construction of the inverse
projection able to effectively show some of the apparent
characteristics of the body (see Figure 2).

3.1.2. Construction of Inverse Projection Map. According to
the above-described method, an inverse projection plane that
can be fitted with a certain local surface of the target is
arranged in the space and divided into a grid with a certain
resolution (such as lcm X 1cm). The camera’s perspective
relation is that the information contained in the grid is
projected onto each pixel of the corresponding projection
area on the image, where the inverse projection relationship
from the image projection area to the reverse projection plane

is determined, that is, a small inverse of the inverse projection
plane in the space. The grid corresponds to a pixel on the
image.

The inverse projection map is a pixel representation
of the inverse projection plane, which means that a small
grid in the inverse projection plane is represented by a
pixel in the inverse projection map. The process of building
inverse projection map data is as follows: (1) the inverse
projection plane of each small grid information is copied to
the inverse projection map and (2) the inverse projection map
in each pixel then represents the information of the inverse
projection plane on each square of the grid information.

Suppose that m represents a small grid of the inverse
projection plane, p the images pixel of m projected onto
the map, and mp the grid m corresponding to the inverse
projection map of the pixel; the reverse projection process is
then mapping the image pixel m to the inverse projection map
pixel mp. The inverse projection map construction principle
is illustrated in Figure 3.

It can be seen from Figure 3 that an inverse projection
plane is provided on the spatial plane of the target surface. The
inverse projection after restoration of the data is the copy of
the target surface, which not only eliminates the perspective
of the camera (some of the shape features of the target surface
in the captured image are geometrically deformed) but well
reflects the true dimensions of the local features of the target
surface.

In this paper, the road traffic scene calibration during the
course of the experiment is designed as two inverse projection
planes, respectively, perpendicular to the road, as shown in
Figure 4. The former is placed in the world coordinate system
Y = 2m plane of size 2 x 3.75m and denoted inverse
projection plane 1; the latter is placed in the X = 6 m plane of
size 2 x 5m and denoted inverse projection plane 2. The red
border in the figure is the projection area of the two inverse
projection planes. After a target vehicle and the tail plane and
the side are completely fitted to the two inverse projection
planes, using the inverse perspective transform method,
the projection area data needed to construct the inverse
projection map are obtained. As the inverse projection map
shows, when just the vehicle tail plane is fitted to the inverse
projection plane, the characteristics of the vehicle tail plane
are recovered (blue boxes) and are not fitted to the still
deformed tail plane. When the inverse projection plane is
fitted to the vehicle side (blue box), the positive view of the
real space on the side of the vehicle is also constructed. In
the inverse projection map experiments, 1 pixel represents the
world coordinate system, 1 x 1 cm square.
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FIGURE 3: Imaging model of cameras and inverse projection transformation.

FIGURE 4: Original image: (a) inverse projection map I (tail) and (b)
inverse projection map 2 (side).

3.2. Algorithm for Nighttime Vehicle Detection. Nighttime
vehicle detection can use the center surround extreme as
in [10]. In this paper, we detect headlights on the inverse
projection map. Vehicle headlights as a significant feature of
a vehicle at night have an apparent brightness, and on the
inverse projection map targets have real structure character-
istics and are an approximation of the real vehicle lights. The
height of shadow on the projection plane is zero, and the
headlights have some characteristics of height information,
which can be used to remove the interference from headlight
shadows. The flow of the main detection algorithm flow is as
shown in Figure 5. In the evening, our method utilizes the
shape characteristics of the headlights, rather than the color
information, and thus grayscale video can be adopted.

3.2.1. Segmentation of the Headlights. The background dif-
ference method [14] is a commonly used foreground object
extraction method in static camera imaging. Its function
is based on the principle of using a background extraction
algorithm to obtain the video background, because the pixels’
gray values of foreground moving objects and those of
the background exhibit a certain difference; thus, we can
perform a differential operation between video pixel values
and the background pixel value of the same position. If the
difference is greater than the threshold, we can consider it the
foreground target.

The mathematical representation of the background sub-
traction method is as follows: the hypothetical image size is
H x W, the point in the current frame’s P(x, y) gray value is
F(x, ), and the gray value of the corresponding pixel in the
background image is B(x, y). The difference and binarization
after determining the foreground pixel gray value is D(x, y):

0 if |F(x,y)-B(x, <T
D(x,y) = if |F (x,y) - B(x, y)| o
255 if |F(x,y)=B(x, )| > T,

where T is the image of the preset threshold for binarization
processing.

The background extraction environment chosen for this
paper is nighttime traffic scenes, so the impact of weather
and shadows is relatively small, and it is used to reveal a
significant difference in the brightness of nighttime vehicle
headlights upon block segmentation of the background, so
the background extraction requirements are not too difficult
to meet. As shown in Figure 6, in this step the proposed
algorithm utilizes the gray information of the headlights
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FIGURE 5: Flowchart of nighttime vehicle target detection algorithm.

FIGURE 6: (a) Set inverse projection plane, (b) inverse projection map, (c) background extraction, and (d) foreground segmentation and

binarization.

rather than the color information, and thus either gray or
color video can be adopted.

3.2.2. Headlight Pairing. As the most obvious characteristic
of nighttime vehicle detection [15], headlights have some
geometrical features of their own, such as geometric features
of the area, circularity, and the similarity of the headlights, as
shown in Figure 7.

Calculating the foreground object block of these charac-
teristics can exclude the nonheadlights block. The mathemat-
ical definitions and expressions of these geometric features, as
well as the threshold values, are set as follows, which expresses
the computing method for area A:

a+w b+h

A=) ) flmn), @)

m=a p=p

where f(m,n) is the gray value of the pixel point (m,n)
located in the two-value image and A is the area of the
foreground object. The formula statistics, the number of
pixels of the foreground object within f(m,n) = 1, is also
the number of white pixels in the rectangle frame that is
connected to the foreground object. (a,b) are the lower left
vertex coordinates of the outer rectangle, h is the height of
the outer rectangle frame, and w is the width of the outer

rectangle frame. According to the vehicle manufacturer’s
production specifications, the headlights are of a size that is
in a certain range, because if the foreground object block is
too large or too small, it is not a headlight target. The upper
TA2 and the lower TA1 thresholds are determined by the
conversion ratio of the pixel to the size when the inverse
projection map is constructed. When the foreground object
blocks meet the condition TAl < A < TA2, the foreground
object block is marked as a kind of vehicle headlight block.
The method of computing the degree of circularity C is

C=—, 3)

where A is the area of the foreground object and L is the
contour perimeter of the foreground object. According to
the calculation, in a variety of geometries, the degree of
circularity of a circular object is the minimum, the degree for
square circularity is 16, the degree for rectangular circularity
is greater than 16, and as the ratio of length to width increases,
the degree of circularity also increases. A convex polygon’s
degree of circularity is smaller, but not smaller than that
of a circle’s circularity; that is, a concave polygon has a
greater degree of circularity. According to a priori knowledge
of headlight shape, usually headlight shape is circular or
rectangular, but the degree of rectangularity will not be
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FIGURE 7: Headlights of the foreground segmentation region and its geometric features.

too large. Owing to the light scattering effect, the shape of
headlight bright blocks will to some extent be close to circular,
indicating that the headlight circularity is not too large. In this
paper, the degree of circularity C threshold value is TC = 18.
When the foreground target block’s degree of circularity is
C > 18, it is not a headlight target block; otherwise, the
prospect target block will be marked as a headlight block.

The method of computing the geometric similarity of
headlights is

. A;
A_Ration = —,
A
c (4)
C_Ration = —i,
Ck

where i and k are the foreground object block labels, A; and
A represent the areas of the i and k object blocks, and C; and
C, represent the degree of circularity of the i and k foreground
object blocks. As shown, from the geometric features, the
vehicle is described in the inverse projection map. The two
headlights of a vehicle have obvious symmetry, which means
that the two headlights have the same area and geometry, and,
coupled with the proposed inverse projection diagram, we
can effectively restore the image of the target shape in order
to apply the area ratio and the circularity ratio of headlights
tending to 1 as the prior knowledge required to identify
possible headlights. In addition, this allows us to satisfy the
matching conditions of the foreground object block. In this
paper, the threshold settings are as follows: Ty p = T g =
0.65and Ty pr = Top = 1.6, when the area ratio and the
circularity ratio of the i and k object blocks are both satisfied
with Ty p < A_Ration < Ty p and T- < C_Ration < T g,
and i and k are possibly a pair of headlights.

Using the above judgment conditions to detect head-
lights, the rough matching results are shown in Figure 8. In
this step, our algorithm utilizes the shape characteristics of
the headlights rather than the color information, and thus
gray or color video can be adopted.

3.2.3. Modeling the Spatial Relation of the Headlights. At this
stage of the proposed method, rough matching of the vehicle
headlights has been completed. Now, using the headlight
parts and the spatial relation of the headlights for recognition
and positioning and for alternative vehicle identification and
localization is a very important part of the process. According
to the actual life of the spatial relationship features of the

FIGURE 8: Frame 567: left, inverse projection plane set; right top,
building the inverse projection map; right bottom, rough matching.

FIGURE 9: Schematic of the spatial relationship between parts of
vehicle headlights.

vehicle components, one can extend the spatial relationship
of the headlight features: it belongs to the center of gravity of
the vehicle if the same pair of target headlights is presented in
the same horizontal line and at the same vertical distance with
parameter dimensions for practical production of vehicles.
The spatial relationship is shown in Figure 9.

The mathematical expression of the spatial relationship
between the headlights is as follows:

X_Diff = |X; - X,
Y Dif = |Y; -}, )

. 1
Y High = > (Y, - Y;),
where X _Diff and Y_Diff denote two headlights in the X
direction and Y direction distance difference and Y_High
denotes the height of the headlights above the ground.
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TABLE 1: Values of variables of the spatial relationship of headlight
components.

X-Diff (cm) 126 148 136 141 128 139 110 133 132
YDiftm) 1 2 0 2 1 0 2 1 0
Y-High(cm) 51 73 58 64 70 80 79 62 52
X-Diff(cm) 133 149 212 198 147 146 157 145 215
Y-Diff(tm) 0 1 3 0 2 1 3 1 2
Y-High(cm) 79 80 8 97 51 52 70 67 91
X-Diff (cm) 160 142 134 154 135 144 133 146 223
YDiffcm) 3 2 2 1 0 3 2 1 4
Y-High (cm) 59 86 52 73 69 8 57 81 96
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FIGURE 10: Spatial relationship model of headlight components for
different types of vehicles.

In this paper, vehicle headlight distances of samples of
two headlights were statistically calculated in the X direction
and the Y direction differences, as were the ground height
values of headlights. The values of variables of the spatial
relationship of headlight components for a portion of the total
sample set of 500 vehicles are shown in Table 1.

From the table, we can see that the difference of headlights
on samples of the Y direction distance (i.e., Y _Diff) is close to
zero. Therefore, in this paper, the modeling of these samples
can be considered as Y_Diff = 0. As a result, we submit that
the other two values (i.e., X_Diff and Y_High) constitute the
probability distribution map and ignore the Y direction data.
It is thus easy to find a spatial relationship model between
the headlights. The results of using the GMM with these
samples are shown in Figure 10. A 2D GMM is established via
two attributes: the height of the headlights and the distance
between them.

3.3. Algorithm for Daytime Vehicle Detection. Using the
blue component of vehicle license plates and taillights,
respectively, we studied color detection of the target vehicle
components. In RGB color mode, the blue component of
the license plate background is larger than the red and

License plate
Inverse

location
projection map Tail light

detection

> MRE

Object
detection

FIGURE 11: Flowchart of daytime vehicle target detection.

green components, and the red and green components are
very small. The red weight of the rear lights is greater than
the blue and green component weights, and the blue and
green component weights are also small. Based on these
features, after processing, the target video sequence color
space conversion can locate the license plate and the taillights.
The detection flowchart is shown in Figure 11. In the daytime,
since our method depends on the color information of the
blue license plate and the red taillight, color video is utilized.

3.3.1. License Plate Detection

(1) Color Conversion Model. Considering the RGB color
pattern, we mainly used the background color of the license
plate to analyze the blue and white license plate components
and then obtain each component’s histogram. The results
are shown in Figure 12, in which it is obvious that in the
license plate background pixel value the blue component is
much larger than the other two component values, and both
component values are relatively small.

Therefore, by analyzing the apparent characteristics of the
license plate, we convert the video to a special color space:

C,, =B,,-min{R, .G, |, (6)

X,y = X,y

where C, , is converted after the color pixels, and R, , G, ,,
and B, , are the red, green, and blue components of the
pixel value, respectively. This transformation can enhance the
license plate region, while suppressing the non-license-plate
region. The conversion results are shown in Figure 13. From
the transformed image sequence, we can see that the gray
gradient of the license plate region is obviously enhanced,
and the gray gradient of the non-license-plate region is
significantly suppressed.

In this step, our algorithm utilizes the blue information of
the license plate, and thus color video is adopted (gray-level
video has no color information).

After transformation of the image sequence, a single
channel image is obtained, and the pixels of the license-
plate-region characteristics are quite obvious. The brightness
is prominent, but brightness also exists around the target
region. In order to exclude the interference of the surround-
ing pixel brightness, the histogram of the single channel
image can be used, as shown in Figure 14(a). In the figure,
one can see that the pixel value is greater than 50 and that the
peak is in the vicinity of the license plate area. After threshold
segmentation and further processing, the results shown in
Figure 14(c) were obtained.

(2) Gradient Extraction of License Plate Region. After color
conversion, the gray gradient [16] of the license plate region is
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FIGURE 12: Blue license plate RGB component histogram statistics.

(b) Inverse pro;ectlon map

(c) After color conversion

(a) Original image

F1GURE 13: Color conversion results.

enhanced, so it can be expressed by the pixel-value difference
of the pixels in the image sequence. The formula for the gray
gradient calculation is

Grad, , = max {Nbx’y} — min {Nbx,y} , (7)

where Grad, , is the gradient value of the pixel point (x, y)
in the converted video image sequence and Nb, , is the
neighborhood pixel value of the pixel (x, y). The gradient
extraction result is shown in Figure 15. A sliding window

is used to scan the gradient image, and then the average
gray gradient of the window region is calculated. Because
the image processing operation described in this paper is
based on a 3D inverse projection map, the size of the
license plate area and the actual size of license plate are in
a certain proportion. When the target vehicle coincides with
the inverse projection plane fitting, width and height of the
license plate in the image can be calculated and used to set
the width and height of the scanning window. The average
gray-level calculation is expressed as

x+pw/2 y+ph/2 Gradxr y’
Sy = _—, 8
e Z ) pw X ph ®
x'—x—pw/2 y'—y—ph/2

where S, , is the average gray gradient of the center (x, y)
of the license plate region and pw and ph are the width and
height of the scanning window.

(3) License Plate Location. Using the average gradient, we
used non-maxima suppression (NMS) [17] to find the local
maximum value of the current frame image average gradient:
ifalocal maximum value is larger than a preset threshold, the
region is a candidate region for a license plate.
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FIGURE 14: Threshold segmentation results.

FIGURE 15: Results of gradient extraction.

In the video image sequence, except for the license plate
area, there are still some similar license areas that also have
a gray gradient, but that can also match a color feature,
which may lead to a license plate detection error. Through
observation, it is found that the license plate region has not
only a significant gray gradient, but also a more uniform
distribution. Therefore, we further improve the validity of the
algorithm via the texture consistency of the vehicle license
plate region [18], the expression of which is

I-1
U= ZPZ (z:), )
=0
where U represents the consistency of the image, L the ash
step, and p(z;) the gray-level histogram. In this experiment,

the consistency of the license plate area is 0.7, and the license
plate location results are shown in Figure 16.

(a) Inverse projection map

b) Positioning results

FIGURE 16: License plate location results.

3.3.2. Taillight Detection. Taillights comprise a significant
feature of a vehicle, and note that it is obvious that the taillight
color is red in our experiment. We therefore use the red color
to detect taillight.

(1) Color Conversion Model. As with the license plate location,
taillight detection is based on the RGB color model, and
through the statistical histogram it can be found that the
red component is significantly greater than the other two
components, as shown in Figure 17.

After the calculation of the color conversion model, the
vehicle taillight area is enhanced, and the nontaillight area
is suppressed. As observed, in the RGB color mode the red
component of the vehicle taillight is greater than the blue and
green components, and the difference between the green and
blue components is small. Upon analyzing this feature, we



10

Mathematical Problems in Engineering

200

(=}

(a) RGB color pattern original image

100 200

(b) R component histogram

200

150

100

0

100 200

(c) G component histogram

200

150

100

0 100 200

(d) B component histogram

FIGURE 17: Taillight RGB component histogram statistics.
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F1GURE 18: Color conversion results.

obtained the color conversion model, as shown in Figure 18.
The conversion expression is

B

Cx)y = Rx,y — max {Gx,y, Xy

} —2x "Gx,y - Bx)y” » (10)

where C, ,, is converted after the color pixels, and R, ,,, G, ,,
and B, , are the red, green, and blue components of the pixel

value, respectively. In this step, our algorithm utilizes the red

information of the taillights, and thus color video is adopted
(gray-level video has no color information).

(2) Threshold Segmentation. The advantages and disadvan-
tages of target segmentation have a great influence on follow-
up target detection. Holes still exist in the target after thresh-
old segmentation. Considering the morphological operation
mentioned above, the closed image can fill the target image
hole and connect the adjacent target block. The boundary
of the target can be smoothed and the results of the closed
operation are shown in Figure 19.

3.3.3. Vehicle Detection Based on MRF. Considering the
space geometry relationship between the license plate and
headlight, the Markov random field (MRF) model was used
to detect the target.

(1) MRF Principle. Markov random fields [19] comprise a
class of stochastic processes originally based on the Markov
chain proposed by Russian mathematician Markov. In 1907,
A. A. Markov described the characteristics of the process:
under a given current state, the change of its future status
will not rely on the previous state. The Brownian motion of
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Closed operation

FIGURE 19: Extraction of taillight and closed operation.

particles in a liquid and a frog jumping in a lotus pond are
Markov processes. According to the time and the state of
being continuous or not, Markov processes can be divided
into four types: (a) time and state are continuous, (b) time is
continuous and state is discrete, (c) time is discrete and state
is continuous, and (d) time and state are discrete. Here, the
time and state are discrete Markov processes called a Markov
chain.

A MRF model mainly includes a Markov property and a
random field:

(1) A Markov property is a given sequence of random
variables arranged with time; the state of N + 1 time
of the sequence only has a relationship with the state
of N.

(2) In a random field, a value is assigned according to a
certain distribution of each phase location. It mainly
contains two elements: the location and phase space.

A 1D Markov stochastic process is a sequence of random
variables X, X,, ..., X,, where X, represents the variables’
state at the time #n, and the value of all variables is called
the “state space,” which can be expressed using a probability
distribution function:

P(Vn+1 =X I X():X])Xz,...,Xn)

(11)
=P(‘X;’Hl =X | Xn)’

where x represents a state in the stochastic process; note that
(11) is the most basic property of the MRF model.

(2) Relationship between MRF Model and an Image. An image
is a collection of points on a 2D plane and can also be regarded
as a 2D Markov random field [20]. We set S = {(i,j) | 1 <
i < M, 1 < j < N} to show the location of MN, that is,
the location of the airport. A = {1,2,..., L} represents the
state space, that is, the phase space of the random field. X =
{x, | s € S} represents a random field defined in Vs € S, X
is expressed in the random field X, and the state space is a
random variable of A.

In the application of image processing, for the conve-
nience of modeling, the MRF model introduces the concept
of a system and group in the field, which is used to define the

®

FIGURE 20: Field system.

relationship between a pixel and the surrounding pixels in the
image. Common areas of the system include the first-order
field system and the second-order system. The first-order
system is the current pixel of the upper and lower and left
and right four positions of pixels. In a second-order system,
except for a first-order system in four positions of pixels and
diagonal four pixels, as shown in Figure 20, a group is a subset
of the realm.

(3) Model Representation. In using the MRF model, the
concept of a tagisintroduced. If L represents the entire tag set,
P represents a frame of the image, p represents the image of an
element, and L and P are mapping relations: f : P — L; that
is, use every pixel p in the image to find the corresponding L
values. If there are » pixels in P and M kinds of values in L,
then f has Mn kinds of values.

We define the image of P of a set of random variables F =
{F|,F,,...,F,}, where F; represents a value of L in the label
set, and F; = f; denotes F; values for f; events. Events can be
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RR;

FIGURE 21: Relationship among graph nodes.

expressed as (F, = f,F, = f,,...,F, = f,), and supposing
that f = {f}, f5,..., f,,}, the joint event can be abbreviated as
F = f, the joint probability for P(f).

Figure 20 shows a data structure that consists of a
nonempty vertex set and multiple pairs of multiple relations.
In this paper, we use the concept of graphs to construct
the MRF model. We represent the vehicle license plate and
taillights as a graph node, and the relationship between the
graph nodes is shown in Figure 21. First, the license plate in
the current frame is used as a node of the graph, and then the
adjacent vehicle taillights are added as a candidate node.

G = {V,E} represents a vehicle component model,
V = {v,v,,...,v,} represents a vehicle license plate and
taillight, and E = {ej,e,,...,e,} represents the component
relationship between the license plate and the taillight. G is
a complete graph, and each pair of nodes has a side. Each
node in the graph corresponds to a random variable F;, which
makes the tag set f = {f}, f5 ..., f,}, the value of f; is
D = {0, 1,2, 3}, and there are four types of nodes in the MRF
diagram presented in this paper:

d = 1, vehicle license plate node.
d = 2, left taillight node.

d = 3, right taillight node.

d = 0, detecting the wrong node.

In this paper, we use the probability distribution expres-
sion of the MRF model:

P = S [Toe(5) = ;[T v (£ £)-

ceC ieV
(12)
z=Yle(f) [Tv(f)
F ieV (i,j€E)

where Z is the normalized function, w(f;) represents the
possibility of nodes, representing the detection confidence
of each node, and y(f;, f;) is the edge of the possibility of
representing the relationship between the two nodes.

3.4. Vehicle Tracking and Detection. Vehicle tracking can be
used to predict the position of the vehicle and to match the
video image of the vehicle, and the Kalman filter [21] (KF)
is suitable for vehicle tracking. For the daytime scene, we
selected the license plate center and the vehicle velocity as the

state vector; for the nighttime scene, we selected the midpoint
of the headlights and the vehicle velocity as the state vector:

x= [px, py,sx,sy]t , (13)

where p, and p, are the vehicle coordinates in the X and
Y directions, respectively, and s, and s, are the speeds of
the vehicle in the X and Y directions, respectively. Kalman
filtering can be divided into two steps:

(1) Prediction. Here, we predict the state vector x and the state
covariance matrix P of the current k time, as follows:

Xy = Fxyy
(14)
P, =FP_,F' + @,

where x;._, is the state vector at time k — 1 time, F is the state
transition matrix, x; is the state vector of the current time
k, P, and P,_, are the k moments and k — 1 moments of the
covariance matrix, and @ is the process noise matrix.

(2) Update. Here, we select the nearest vehicle in the forecast
position. If the predicted position and the current position of
the vehicle are less than the set threshold values, the observed
value is considered to be y;. If the observed value is not
accurate, then the update phase is skipped. The update phase
can be described by the Kalman gain K

-1

Ky = P.H' (HPH' +R) (15)

where H is the measurement matrix and R is the measure-
ment of the noise covariance matrix. We can then update the
state vector and covariance matrix, as follows:

X = Xg + Kk (yk - ka) (16)

Pk = (I—KkH) Pk' (17)

4. Experiment

4.1. Nighttime Vehicle Detection Algorithm. In Section 3.2.3,
according to real-world vehicle specifications, in order to
complete the two light components of the spatial relationship
GMM modeling, we make use of the GMM in the detection
process to join the space position and 3D size information.
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FIGURE 22: Nighttime vehicle detection results.

Adding the distance between the two headlights, our method
can eliminate incorrect matching of the adjacent headlights
on the same horizontal line. Adding the headlight heights
to the space position information, our method can judge
whether the vehicle front plane fits with inverse projection
plane, to avoid the same vehicle multirecognition problem.
The GMM of the headlights’ spatial relationship contains the
horizontal position, vertical position, and height information
of the headlights; therefore, in the GMM further testing
will obtain correct matching results for the headlights, thus
allowing us to determine the representative headlights among
the overall vehicle recognition results.

Assuming that the spatial probability model of the head-
lights is ), the spatial variables relationship of the candidate
headlight componentis D = {d_X_Diff, d_Y _Diff, d_Y _High},
where P(D | Q) indicates that the detected headlight meets
the probability of the established mode. The vehicle detection
formula is

P(D| Q) > Tp, (18)

where Tp is a preset threshold with atypical value of 0.2.

When the probability of the candidate headlight com-
ponent is greater than a certain threshold in a given space
probability model, then we can take these candidate headlight
parts to be the target vehicle. The nighttime vehicle detection
results are shown in Figure 22.

4.2. Daytime Vehicle Detection Algorithm. After building the
model as described in Section 3.3.3, the probability distribu-
tion function must be solved according to the probability that

the confidence level [22] of the node and the edge can further
detect the target.

4.2.1. Energy Function of Node. The energy function of the
node is expressed as

w(f;=p)

1
, node is detected,
1+exp {AP ><Si+Bp} (19)
_ 1
=q1- , p=0,
1+exp{Ap><Si+Bp} P
A, otherwise,

where p is the probability of the current node, the parameters
A, and B, are obtained by learning the S function (A, = -1
and B, = 0), A = 0.01, and the taillight component detection
factor pis 0.8.

4.2.2. Energy Function of Edge. The energy function of the
edge is expressed as

v(fi=p fi=4q)

(M
Z‘kak(x|6k)’ p#0, q#0, p#g,
1

(20)

-4 M
5<1—Z“kpk(x|9k)>» p=0o0rqg=0, p#gq,
1

A, p=q

Using the GMM method to determine the angle between
the taillight and the license plate, as well as the horizontal
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FIGURE 24: Daytime vehicle detection results.

angle between the two taillights, the distribution of the
taillight and license plate is obtained and shown in Figure 23.
In the expression parameter training process, the Expectation
Maximization algorithm [23] is used to estimate the GMM
parameters.

The confidence of nodes and edges determines the MRE
In this paper, the maximum a posteriori (MAP) can be
calculated by all labels f; € F that can meet the MAP:

@" = argmax P (F)

= argmaxnw (fz) H V/(fl’fj) '

eV (i,j€E)

(21)

Pearl [24] proposed a probabilistic inference method to
solve this problem. For an acyclic graph, this method can
obtain a precise solution; for a cyclic graph, it can obtain
an approximate solution. After calculation, each node in the
model has the best label and the target vehicle therefore can
be detected, as shown in Figure 24.

If it is a blue car, detection is handled as follows: through
analysis, after color model transformation, the gray gradient

(b) Inverse projection map

& o
i ]

(a) Original image

(c) License plate detection

FIGURE 25: Processing method for blue car.

of the blue body is significantly enhanced, and there is a large
target area on the transformation image.

According to the results of several experiments, if the
total area of the target is greater than the total area of inverse
projection map, which is 1/5, we can view the target as the rear
of the vehicle, as shown in Figure 25.

Furthermore, the vehicle taillight is red, and the threshold
segmentation results are shown in Figure 26. Note that the
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(a) Inverse projection map
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(b) Taillight segmentation

F1GURE 26: Taillights of blue car.

(a) 312th frame

(b) 315th frame

(c) 381st frame

(d) 385th frame

FIGURE 27: Tracking results.

taillight area brightness is more obvious. After extraction of
the target area and analysis of the two regions, because the
body and the taillights belong to a vehicle target, if the two
regions intersect it is judged to be a vehicle target.

4.3. Tracking and Testing Experiment. In the nighttime scene,
we selected the midpoint of the headlights’ connection and
vehicle speed as the state vectors, and the experimental
results are shown in Figure 27. Figures 27(a) and 27(c) depict
detection of the vehicle starting; Figures 27(b) and 27(d)
show the yellow line for trajectory tracking.

5. Conclusions

This paper mainly introduces a method for realizing the
recognition of a target component by using the spatial
relationship model. The recognition result of the target was
replaced by the result of the recognition of some parts of the
target. In the real world, some inherent characteristics of the
spatial relationship among the components of the target exist
that would enhance the ability to describe and identify the
content of the target. Based on the components of the vehicle
detection algorithm, and by using multiple local components,
a better detection effect was realized, but some missed and
false detection phenomena still existed. Therefore, further
improvement of the proposed method is required, mainly in
the following aspects:

(1) In the evening, detecting the headlight targets using
the GMM, if only one headlight is turned on, or none
are turned on, a detection error would be caused.
Since the model is established based on the amount of
statistical samples, more samples are needed in order
to adapt the method to more models.

(2) In the daytime, the vehicle is detected by the taillights
and license plate color feature of the target. If the
license plates are the same color as the car body,
the detection results would be affected. Similarly,
during taillight detection, a red-colored vehicle body
would affect the test results. Therefore, the detection
algorithm is still relatively imprecise and must be
improved.
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