10 research outputs found

    Active Learning of Multiple Source Multiple Destination Topologies

    Get PDF
    We consider the problem of inferring the topology of a network with MM sources and NN receivers (hereafter referred to as an MM-by-NN network), by sending probes between the sources and receivers. Prior work has shown that this problem can be decomposed into two parts: first, infer smaller subnetwork components (i.e., 11-by-NN's or 22-by-22's) and then merge these components to identify the MM-by-NN topology. In this paper, we focus on the second part, which had previously received less attention in the literature. In particular, we assume that a 11-by-NN topology is given and that all 22-by-22 components can be queried and learned using end-to-end probes. The problem is which 22-by-22's to query and how to merge them with the given 11-by-NN, so as to exactly identify the 22-by-NN topology, and optimize a number of performance metrics, including the number of queries (which directly translates into measurement bandwidth), time complexity, and memory usage. We provide a lower bound, N2\lceil \frac{N}{2} \rceil, on the number of 22-by-22's required by any active learning algorithm and propose two greedy algorithms. The first algorithm follows the framework of multiple hypothesis testing, in particular Generalized Binary Search (GBS), since our problem is one of active learning, from 22-by-22 queries. The second algorithm is called the Receiver Elimination Algorithm (REA) and follows a bottom-up approach: at every step, it selects two receivers, queries the corresponding 22-by-22, and merges it with the given 11-by-NN; it requires exactly N1N-1 steps, which is much less than all (N2)\binom{N}{2} possible 22-by-22's. Simulation results over synthetic and realistic topologies demonstrate that both algorithms correctly identify the 22-by-NN topology and are near-optimal, but REA is more efficient in practice

    Active Topology Inference using Network Coding

    Get PDF
    Our goal is to infer the topology of a network when (i) we can send probes between sources and receivers at the edge of the network and (ii) intermediate nodes can perform simple network coding operations, i.e., additions. Our key intuition is that network coding introduces topology-dependent correlation in the observations at the receivers, which can be exploited to infer the topology. For undirected tree topologies, we design hierarchical clustering algorithms, building on our prior work. For directed acyclic graphs (DAGs), first we decompose the topology into a number of two-source, two-receiver (2-by-2) subnetwork components and then we merge these components to reconstruct the topology. Our approach for DAGs builds on prior work on tomography, and improves upon it by employing network coding to accurately distinguish among all different 2-by-2 components. We evaluate our algorithms through simulation of a number of realistic topologies and compare them to active tomographic techniques without network coding. We also make connections between our approach and alternatives, including passive inference, traceroute, and packet marking

    Multicast-based Weight Inference in General Network Topologies

    Get PDF
    Network topology plays an important role in many network operations. However, it is very difficult to obtain the topology of public networks due to the lack of internal cooperation. Network tomography provides a powerful solution that can infer the network routing topology from end-to-end measurements. Existing solutions all assume that routes from a single source form a tree. However, with the rapid deployment of Software Defined Networking (SDN) and Network Function Virtualization (NFV), the routing paths in modern networks are becoming more complex. To address this problem, we propose a novel inference problem, called the weight inference problem, which infers the finest-granularity information from end-to-end measurements on general routing paths in general topologies. Our measurements are based on emulated multicast probes with a controllable “width”. We show that the problem has a unique solution when the multicast width is unconstrained; otherwise, we show that the problem can be treated as a sparse approximation problem, which allows us to apply variations of the pursuit algorithms. Simulations based on real network topologies show that our solution significantly outperforms a state-of-theart network tomography algorithm, and increasing the width of multicast substantially improves the inference accuracy

    Network-provider-independent overlays for resilience and quality of service.

    Get PDF
    PhDOverlay networks are viewed as one of the solutions addressing the inefficiency and slow evolution of the Internet and have been the subject of significant research. Most existing overlays providing resilience and/or Quality of Service (QoS) need cooperation among different network providers, but an inter-trust issue arises and cannot be easily solved. In this thesis, we mainly focus on network-provider-independent overlays and investigate their performance in providing two different types of service. Specifically, this thesis addresses the following problems: Provider-independent overlay architecture: A provider-independent overlay framework named Resilient Overlay for Mission-Critical Applications (ROMCA) is proposed. We elaborate its structure including component composition and functions and also provide several operational examples. Overlay topology construction for providing resilience service: We investigate the topology design problem of provider-independent overlays aiming to provide resilience service. To be more specific, based on the ROMCA framework, we formulate this problem mathematically and prove its NP-hardness. Three heuristics are proposed and extensive simulations are carried out to verify their effectiveness. Application mapping with resilience and QoS guarantees: Assuming application mapping is the targeted service for ROMCA, we formulate this problem as an Integer Linear Program (ILP). Moreover, a simple but effective heuristic is proposed to address this issue in a time-efficient manner. Simulations with both synthetic and real networks prove the superiority of both solutions over existing ones. Substrate topology information availability and the impact of its accuracy on overlay performance: Based on our survey that summarizes the methodologies available for inferring the selective substrate topology formed among a group of nodes through active probing, we find that such information is usually inaccurate and additional mechanisms are needed to secure a better inferred topology. Therefore, we examine the impact of inferred substrate topology accuracy on overlay performance given only inferred substrate topology information

    Active topology inference using network coding

    Get PDF
    Our goal, in this paper, is to infer the topology of a network when (i) we can send probes between sources and receivers at the edge of the network and (ii) intermediate nodes can perform simple network coding operations, i.e., additions. Our key intuition is that network coding introduces topology-dependent correlation in the observations at the receivers, which can be exploited to infer the topology. For undirected tree topologies, we design hierarchical clustering algorithms, building on our prior work in [24]. For directed acyclic graphs (DAGs), first we decompose the topology into a number of two source, two receiver (2-by-2) subnetwork components and then we merge these components to reconstruct the topology. Our approach for DAGs builds on prior work on tomography [36], and improves upon it by employing network coding to accurately distinguish among all different 2-by-2 components. We evaluate our algorithms through simulation of a number of realistic topologies and compare them to active tomographic techniques without network coding. We also make connections between our approach and other alternatives, including passive inference, traceroute, and packet marking

    Delay estimation in computer networks

    Get PDF
    Computer networks are becoming increasingly large and complex; more so with the recent penetration of the internet into all walks of life. It is essential to be able to monitor and to analyse networks in a timely and efficient manner; to extract important metrics and measurements and to do so in a way which does not unduly disturb or affect the performance of the network under test. Network tomography is one possible method to accomplish these aims. Drawing upon the principles of statistical inference, it is often possible to determine the statistical properties of either the links or the paths of the network, whichever is desired, by measuring at the most convenient points thus reducing the effort required. In particular, bottleneck-link detection methods in which estimates of the delay distributions on network links are inferred from measurements made at end-points on network paths, are examined as a means to determine which links of the network are experiencing the highest delay. Initially two published methods, one based upon a single Gaussian distribution and the other based upon the method-of-moments, are examined by comparing their performance using three metrics: robustness to scaling, bottleneck detection accuracy and computational complexity. Whilst there are many published algorithms, there is little literature in which said algorithms are objectively compared. In this thesis, two network topologies are considered, each with three configurations in order to determine performance in six scenarios. Two new estimation methods are then introduced, both based on Gaussian mixture models which are believed to offer an advantage over existing methods in certain scenarios. Computationally, a mixture model algorithm is much more complex than a simple parametric algorithm but the flexibility in modelling an arbitrary distribution is vastly increased. Better model accuracy potentially leads to more accurate estimation and detection of the bottleneck. The concept of increasing flexibility is again considered by using a Pearson type-1 distribution as an alternative to the single Gaussian distribution. This increases the flexibility but with a reduced complexity when compared with mixture model approaches which necessitate the use of iterative approximation methods. A hybrid approach is also considered where the method-of-moments is combined with the Pearson type-1 method in order to circumvent problems with the output stage of the former. This algorithm has a higher variance than the method-of-moments but the output stage is more convenient for manipulation. Also considered is a new approach to detection algorithms which is not dependant on any a-priori parameter selection and makes use of the Kullback-Leibler divergence. The results show that it accomplishes its aim but is not robust enough to replace the current algorithms. Delay estimation is then cast in a different role, as an integral part of an algorithm to correlate input and output streams in an anonymising network such as the onion router (TOR). TOR is used by users in an attempt to conceal network traffic from observation. Breaking the encryption protocols used is not possible without significant effort but by correlating the un-encrypted input and output streams from the TOR network, it is possible to provide a degree of certainty about the ownership of traffic streams. The delay model is essential as the network is treated as providing a pseudo-random delay to each packet; having an accurate model allows the algorithm to better correlate the streams

    Security and Privacy in Smart Grid

    Get PDF
    Smart grid utilizes different communication technologies to enhance the reliability and efficiency of the power grid; it allows bi-directional flow of electricity and information, about grid status and customers requirements, among different parties in the grid, i.e., connect generation, distribution, transmission, and consumption subsystems together. Thus, smart grid reduces the power losses and increases the efficiency of electricity generation and distribution. Although smart grid improves the quality of grid's services, it exposes the grid to the cyber security threats that communication networks suffer from in addition to other novel threats because of power grid's nature. For instance, the electricity consumption messages sent from consumers to the utility company via wireless network may be captured, modified, or replayed by adversaries. As a consequent, security and privacy concerns are significant challenges in smart grid. Smart grid upgrade creates three main communication architectures: The first one is the communication between electricity customers and utility companies via various networks; i.e., home area networks (HANs), building area networks (BANs), and neighbour area networks (NANs), we refer to these networks as customer-side networks in our thesis. The second architecture is the communication between EVs and grid to charge/discharge their batteries via vehicle-to-grid (V2G) connection. The last network is the grid's connection with measurements units that spread all over the grid to monitor its status and send periodic reports to the main control center (CC) for state estimation and bad data detection purposes. This thesis addresses the security concerns for the three communication architectures. For customer-side networks, the privacy of consumers is the central concern for these networks; also, the transmitted messages integrity and confidentiality should be guaranteed. While the main security concerns for V2G networks are the privacy of vehicle's owners besides the authenticity of participated parties. In the grid's connection with measurements units, integrity attacks, such as false data injection (FDI) attacks, target the measurements' integrity and consequently mislead the main CC to make the wrong decisions for the grid. The thesis presents two solutions for the security problems in the first architecture; i.e., the customer-side networks. The first proposed solution is security and privacy-preserving scheme in BAN, which is a cluster of HANs. The proposed scheme is based on forecasting the future electricity demand for the whole BAN cluster. Thus, BAN connects to the electricity provider only if the total demand of the cluster is changed. The proposed scheme employs the lattice-based public key NTRU crypto-system to guarantee the confidentiality and authenticity of the exchanged messages and to further reduce the computation and communication load. The security analysis shows that our proposed scheme can achieve the privacy and security requirements. In addition, it efficiently reduces the communication and computation overhead. According to the second solution, it is lightweight privacy-preserving aggregation scheme that permits the smart household appliances to aggregate their readings without involving the connected smart meter. The scheme deploys a lightweight lattice-based homomorphic crypto-system that depends on simple addition and multiplication operations. Therefore, the proposed scheme guarantees the customers' privacy and message integrity with lightweight overhead. In addition, the thesis proposes lightweight secure and privacy-preserving V2G connection scheme, in which the power grid assures the confidentiality and integrity of exchanged information during (dis)charging electricity sessions and overcomes EVs' authentication problem. The proposed scheme guarantees the financial profits of the grid and prevents EVs from acting maliciously. Meanwhile, EVs preserve their private information by generating their own pseudonym identities. In addition, the scheme keeps the accountability for the electricity-exchange trade. Furthermore, the proposed scheme provides these security requirements by lightweight overhead; as it diminishes the number of exchanged messages during (dis)charging sessions. Simulation results demonstrate that the proposed scheme significantly reduces the total communication and computation load for V2G connection especially for EVs. FDI attack, which is one of the severe attacks that threatens the smart grid's efficiency and reliability, inserts fake measurements among the correct ones to mislead CC to make wrong decisions and consequently impact on the grid's performance. In the thesis, we have proposed an FDI attack prevention technique that protects the integrity and availability of the measurements at measurement units and during their transmission to the CC, even with the existence of compromised units. The proposed scheme alleviates the negative impacts of FDI attack on grid's performance. Security analysis and performance evaluation show that our scheme guarantees the integrity and availability of the measurements with lightweight overhead, especially on the restricted-capabilities measurement units. The proposed schemes are promising solutions for the security and privacy problems of the three main communication networks in smart grid. The novelty of these proposed schemes does not only because they are robust and efficient security solutions, but also due to their lightweight communication and computation overhead, which qualify them to be applicable on limited-capability devices in the grid. So, this work is considered important progress toward more reliable and authentic smart grid
    corecore