3 research outputs found

    Scalar and Vectorial mu-calculus with Atoms

    Get PDF
    We study an extension of modal μ\mu-calculus to sets with atoms and we study its basic properties. Model checking is decidable on orbit-finite structures, and a correspondence to parity games holds. On the other hand, satisfiability becomes undecidable. We also show expressive limitations of atom-enriched μ\mu-calculi, and explain how their expressive power depends on the structure of atoms used, and on the choice between basic or vectorial syntax

    Multiple-Labelled Transition Systems for nominal calculi and their logics

    No full text
    Action-labelled transition systems (LTSs) have proved to be a fundamental model for describing and proving properties of concurrent systems. In this paper we introduce Multiple-Labelled Transition Systems (MLTSs) as generalisations of LTSs that enable us to deal with system features that are becoming increasingly important when considering languages and models for network-aware programming. MLTSs enable us to describe not only the actions that systems can perform but also their usage of resources and their handling (creation, revelation . . .) of names; these are essential for modelling changing evaluation environments. We also introduce MoMo, which is a logic inspired by Hennessy–Milner Logic and the μ-calculus, that enables us to consider state properties in a distributed environment and the impact of actions and movements over the different sites. MoMo operators are interpreted over MLTSs and both MLTSs and MoMo are used to provide a semantic framework to describe two basic calculi for mobile computing, namely μKlaim and the asynchronous π-calculus
    corecore