4,567 research outputs found

    A distributed procedure for computing stochastic expansions with Mathematica

    Get PDF
    The solution of a (stochastic) differential equation can be locally approximated by a (stochastic) expansion. If the vector field of the differential equation is a polynomial, the corresponding expansion is a linear combination of iterated integrals of the drivers and can be calculated using Picard Iterations. However, such expansions grow exponentially fast in their number of terms, due to their specific algebra, rendering their practical use limited. We present a Mathematica procedure that addresses this issue by reparametrizing the polynomials and distributing the load in as small as possible parts that can be processed and manipulated independently, thus alleviating large memory requirements and being perfectly suited for parallelized computation. We also present an iterative implementation of the shuffle product (as opposed to a recursive one, more usually implemented) as well as a fast way for calculating the expectation of iterated Stratonovich integrals for Brownian motion

    A Distributed Procedure for Computing Stochastic Expansions with Mathematica

    Full text link
    The solution of a (stochastic) differential equation can be locally approximated by a (stochastic) expansion. If the vector field of the differential equation is a polynomial, the corresponding expansion is a linear combination of iterated integrals of the drivers and can be calculated using Picard Iterations. However, such expansions grow exponentially fast in their number of terms, due to their specific algebra, rendering their practical use limited. We present a Mathematica procedure that addresses this issue by re-parametrising the polynomials and distributing the load in as small as possible parts that can be processed and manipulated independently, thus alleviating large memory requirements and being perfectly suited for parallelized computation. We also present an iterative implementation of the shuffle product (as opposed to a recursive one, more usually implemented) as well as a fast way for calculating the expectation of iterated Stratonovich integrals for Brownian Motion.Comment: 15 pages, 2 figures. Submitte

    Maximum-likelihood estimation for diffusion processes via closed-form density expansions

    Full text link
    This paper proposes a widely applicable method of approximate maximum-likelihood estimation for multivariate diffusion process from discretely sampled data. A closed-form asymptotic expansion for transition density is proposed and accompanied by an algorithm containing only basic and explicit calculations for delivering any arbitrary order of the expansion. The likelihood function is thus approximated explicitly and employed in statistical estimation. The performance of our method is demonstrated by Monte Carlo simulations from implementing several examples, which represent a wide range of commonly used diffusion models. The convergence related to the expansion and the estimation method are theoretically justified using the theory of Watanabe [Ann. Probab. 15 (1987) 1-39] and Yoshida [J. Japan Statist. Soc. 22 (1992) 139-159] on analysis of the generalized random variables under some standard sufficient conditions.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1118 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Hyperfinite stochastic integration for Lévy processes with finite-variation jump part

    Get PDF
    This article links the hyperfinite theory of stochastic integration with respect to certain hyperfinite Lévy processes with the elementary theory of pathwise stochastic integration with respect to pure-jump Lévy processes with finite-variation jump part. Since the hyperfinite Itô integral is also defined pathwise, these results show that hyperfinite stochastic integration provides a pathwise definition of the stochastic integral with respect to Lévy jump-diffusions with finite-variation jump part. As an application, we provide a short and direct nonstandard proof of the generalized Itô formula for stochastic differentials of smooth functions of Lévy jump-diffusions whose jumps are bounded from below in norm.Lévy processes, stochastic integration, nonstandard analysis, Itô formula
    • …
    corecore