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Abstract

The solution of a (stochastic) differential equation can be locally approximated by a
(stochastic) expansion. If the vector field of the differential equation is a polynomial, the
corresponding expansion is a linear combination of iterated integrals of the drivers and
can be calculated using Picard Iterations. However, such expansions grow exponentially
fast in their number of terms, due to their specific algebra, rendering their practical use
limited.

We present a Mathematica procedure that addresses this issue by reparametrizing the
polynomials and distributing the load in as small as possible parts that can be processed
and manipulated independently, thus alleviating large memory requirements and being
perfectly suited for parallelized computation. We also present an iterative implementation
of the shuffle product (as opposed to a recursive one, more usually implemented) as well as
a fast way for calculating the expectation of iterated Stratonovich integrals for Brownian
motion.

Keywords: rough paths, stochastic expansion, iterated integral, picard iteration, simulation,
Mathematica.

1. Motivation and mathematical background

In this section, we introduce the mathematical background and motivation for manipulat-
ing expansions and iterated integrals. The next subsection introduces the Picard procedure,
a simple iterative way to derive local approximation of the solution of a differential equa-
tion. Iterated integrals are then introduced and the two are finally combined to define the
expansions.

http://www.jstatsoft.org/
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1.1. Motivation and notation

Consider the following stochastic differential equation (SDE):

dYt = f(Yt, θ)dXt (1)

where Yt ∈ Rm, Xt ∈ Rn and f(., θ) ∈ Rm×n. The parameters of the function f are collected
in the variable θ. We call each X(i) a driver of the differential equation. We assume the
functions fj,i, i ∈ {1 . . . n}, j ∈ {1 . . .m} to be polynomials. The initial value of Yt is set to
Y0.

The objective is to derive a local approximation of the solution in terms of f , Y0 and the
iterated integrals of Yt, i.e., that is integrals of the form∫

. . .

∫
0<u1<···<uk≤T

dXτ1
u1 . . . dX

τk
uk

for any word τ = (τ1, . . . , τk) constituted of the letter τi ∈ {1, . . . , n}, i = 1, . . . , k.. Such
expansions play an important role in the theory of rough paths, allowing one to define such
a differential equation for a large class of drivers X (Lyons and Qian 2003). They have also
been used recently for parameter estimation of SDE (Papavasiliou and Ladroue 2010).

Iterated integrals have been implemented in Mathematica before. Kendall (2005) showed how
to manipulate stochastic integrals symbolically by implementing the rules of Itô calculus.
Their package Itosvn3 could also compute analytic forms of the expectation of stochastic
integrals. For example, once the user provided the solution of an SDE in terms of stochastic
integrals, its moments could be calculated. In this paper’s setting however, the solution is
not known and is analytically approximated with Stratonovitch calculus. Tocino (2009) pre-
sented an implementation of iterated integral calculus that realized both Itô and Stratonovitch
variants and used it to derive a number of new relations for iterated integrals products and
powers. However, as the number of terms to consider grows exponentially with every product,
this implementation will not scale up.

1.2. Picard iterations

Picard iterations provide a way for deriving local approximations of solutions of differential
equation. They are defined as:

Y0,T (0) = Y0 − Y0 = 0 (2)

Y0,T (r + 1, j) =
n∑
i=1

∫
fj,i(Ys(r, j))dX

(i)
s (3)

(4)

where Y0,T (r, j) is the j-th component of the approximation of Y0,T =
∫ T
0 dYs = YT −Y0 after

r iterations. Thus, the first iteration gives:

Y0,T (1, j) =

∫ t

0
fj,1(Y0)dX

(1)
s + . . .+

∫ t

0
fj,n(Y0)dX

(n)
s (5)

Note that if we are interested in the actual value of the solution at a time t ∈ [0, T ], its Picard
approximation is given by

Yt(r, j) = Y0 + Y0,t(r, j).
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One of the main successes in the theory of rough paths was to give precise conditions on X
and f for Picard iterations to converge (Lyons and Qian 2003).

1.3. Iterated integrals

Iterated integrals are integrals of the form:

X
(τ)
s,t =

∫
. . .

∫
s<u1<...<uk<t

dX(τ1)
u1 . . . dX(τk)

uk

where τ = (τ1, . . . , τk) is called a word, with letters τi ∈ {1 . . . n}, i = 1, . . . , k. By definition,
integrating an iterated integral produces an iterated integral:∫ T

0
X

(τ)
0,s dX

(j)
s =

∫ T

0

∫
. . .

∫
0<u1<...<uk<s

dX(τ1)
u1 . . . dX(τk)

uk
dX(j)

s (6)

= X
(τ1,...,τk,j)
0,T (7)

If X is a geometric p-rough path, i.e., it can be approximated by paths of bounded varia-
tion (see Lyons and Qian (2003) for a precise definition), then the integrals obey the usual
integration-by-parts rule, which can be generalized as follows:

X
(τ)
s,t X

(ρ)
s,t =

∑
α∈τtρ

X
(α)
s,t (8)

The shuffle product t of two words τ and ρ is the set of all words using the letters in τ and ρ
such that they are in their original order. For example 13t42 = {1342, 1432, 4132, 1423, 4213,
4132} but 1324, for example, does not belong to the set.

This result holds only in the case of deterministic drivers X, or Stratonovitch integrals. A
similar relation exists for Itô integrals but requires a small correcting term (Tocino 2009)
making them slightly less practical in this context. A simple transformation allows diffusion
processes to be defined with respect to Itô or Stratonovitch integrals (Kloeden and Platen
1991):

dyt = µ(yt)dt+ σ(yt)dBt ⇔ dyt =

(
µ(yt)−

1

2
σ′(yt)σ(yt)

)
dt+ σ(yt) ◦ dBt

It immediately follows from Equation 8 that any power of an iterated integral is a sum of
iterated integrals and that a polynomial of iterated integrals is also a linear combination of
single iterated integrals. For example:

X
(1)
0,TX

(2,3)
0,T = X

(1,2,3)
0,T +X

(2,1,3)
0,T +X

(2,3,1)
0,T(

X
(1)
0,T

)2
= X

(1)
0,TX

(1)
0,T

= X
(1,1)
0,T +X

(1,1)
0,T

= 2X
(1,1)
0,T(

X
(1)
0,T

)`
= `! X

(1,...,1)
0,T

X
(0,1,0)
0,T X

(1,1)
0,T = X

(0,1,0,1,1)
0,T + 2X

(0,1,1,0,1)
0,T + 3X

(0,1,1,1,0)
0,T

+X
(1,0,1,0,1)
0,T + 2X

(1,0,1,1,0)
0,T +X

(1,1,0,1,0)
0,T
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The number of terms from the product of iterated integrals grows fast, exponentially if all
letters are different.

1.4. Expansions

We are now in position to derive expansions for the solution of a differential equation. Picard
iterations yield:

Y0,T (0, j) = 0

Y0,T (1, j) =

∫
0,T

fj1(Ys(0))dX(1)
s + . . .+

∫
0,T

fjn(Ys(0))dX(n)
s

= fj1(Y0)X
(1)
0,T + . . .+ fjn(Y0)X

(n)
0,T

Y0,T (2, j) =

∫
0,T

fj1(Ys(1))dX(1)
s + . . .+

∫
0,T

fjn(Ys(1))dX(n)
s

=

∫
0,T

fj1(Y0,s(1) + Y0)dX
(1)
s + . . .+

∫
0,T

fjn(Ys(1) + Y0)dX
(n)
s

Since Y0,s(1, .) is a sum of iterated integrals, the polynomials fji(Ys(1) + Y0) are also sums
of iterated integrals and so is their integration with respect to X(i). Y0,T (2) is thus a sum of
iterated integrals and by recursion all Y0,T (r, .) are. A formal proof in the context of differential
equations driven by rough paths can be found in Papavasiliou and Ladroue (2010).

Example

Consider the Ornstein-Uhlenbeck process: dyt = a(1− yt)dt+ bdWt and y0 = 0. In this case,

X
(1)
t = t, X

(2)
t = Wt and Y

(i)
0 = 0 for i ∈ {1, 2}. Applying Picard iterations, we obtain:

Y0,T (0) = 0

Y0,T (1) =

∫ T

0
a(1− 0)dX(1)

s +

∫ T

0
bdX(2)

s

= aX
(1)
0,T + bX

(2)
0,T

Y0,T (2) =

∫ T

0
a(1− (aX(1)

s + bX(2)
s ))dX(1)

s +

∫ T

0
bdX(2)

s

= aX
(1)
0,T − a

2X
(1,1)
0,T − abX

(2,1)
0,T + bX

(2)
0,T

Y0,T (3) = aX
(1)
0,T − a

2X
(1,1)
0,T + a3X

(1,1,1)
0,T + abX

(2,1,1)
0,T + abX

(2,1)
0,T + bX

(2)
0,T

The solution of the stochastic differential equation can thus be approximated by a series
of iterated integral of the drivers, whose coefficients are a function of the parameters. The
iterated integrals capture the statistics of the drivers and are separated from the parameters.

This derivation can be readily implemented in Mathematica (Wolfram 2003) – see Tocino
(2009) for an implementation of the shuffle product – but suffers a major drawback: each
product of iterated integrals being a shuffle product, the number of terms produced grows
extremely fast (exponentially in the worst cases) and rapidly becomes unmanageable. In the
next section, we introduce a reparametrization of the problem that circumvents this problem
by providing an alternative representation of the expansion which can be processed in a
distributed manner, alleviating large memory requirements.
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2. Reparametrization of the polynomials

One thing to note in the derivation of expansions is that each successive iterations requires the
explicit linear combination of iterated integrals for the previous iteration; evaluating Y0,T (r)
requires the complete expansion for Y0,T (r−1). As the number of terms grows, manipulating
this object rapidly becomes unwieldy.

In this section, we describe a reparametrization of the polynomials which bypasses the need
for an expansion in terms of iterated integrals. It provides a more compact representation
of the approximate solution and is naturally amenable to parallel processing. For clarity
of exposition, we first introduce the approach in the case of a one-dimensional (m = 1)
differential equation with n drivers. We assume the polynomials f1i to be of degree less or
equal to q. In the last subsection, the procedure is generalized to m-dimensional differential
equations.

2.1. One-dimensional case

We first remark that a polynomial P (y) can be written in terms of y−y0 by writing its Taylor
expansion around y0:

P (y) =

q∑
k=0

1

k!
∂kP (y0)(y − y0)k (9)

Next we introduce the following new operation for iterated integrals:

Xα
s,t B Xβ

s,t =

∫ t

s
Xα
s,udX

β
s,u =

∫ t

s
Xα
s,uX

β−
s,udX

βend
u (10)

where β− is the word β with the last letter removed and βend the last letter of β. This is a
non-associative, non-commutative operation – in fact, it can be viewed as a non-commutative
dendriform. We can rewrite the Picard iteration using this operation. Note that from now
on, the interval [s, t] will be fixed to [0, T ] and will be omitted.

Y (0) = y0 − y0 = 0 (11)

Y (1) =
n∑
i=1

∫ T

0
fj1(Ys(0) + y0)dX

(i)
s (12)

=
n∑
i=1

fj1(y0)X
(i) (13)

Y (r + 1) =

n∑
i=1

f1i(Ys(r) + y0) B X(i) (14)

=
n∑
i=1

q∑
k=0

1

k!
∂kf1i(y0)Ys(r)

k B X(i) (15)

=

q∑
k=0

(
((Ys(r))

k B
n∑
i=1

(∂kf1i(y0)X
(i))

)
(16)

Therefore, if we define the objects Q as:

Qk =
n∑
i=1

1

k!
∂kf1i(y0)X

(i), (17)
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the Picard iteration takes the following form:

Y (1) = Q0

Y (r + 1) =

q∑
k=0

Y (r)k B Qk

where Y (r)k is the usual product.

2.2. Description of the approach

Consider a one-dimensional differential equation with quadratic functions f1i, i.e., q = 2. The
new representation yields:

Y (1) = Q0 (18)

Y (2) = 1 B Q0 +Q0 B Q1 + (Q0)2 B Q2 (19)

= Q0 +Q0 B Q1 + (Q0)2 B Q2 (20)

Y (3) = Q0 + (Q0 +Q0 B Q1 + (Q0)2 B Q2) B Q1 (21)

+(Q0 +Q0 B Q1 + (Q0)2 B Q2)2 B Q2 (22)

where (Qk)` is the k-th object Q to the power `. Crucially, this new representation does not
require the explicit computation of the shuffle products, keeping the number of terms under
control. Moreover, the expression can be expanded into its summands and each summand be
processed independently. Thus, we avoid the handling of a large expression and are able to
parallelize the computation.

Note that the representation only depends on the maximum degree of the polynomials but
not on the number of drivers. The Picard iteration can therefore be done only once, stored
in a file and used at a later date for any system that uses the same maximum degree q.

Using this representation, it is possible to derive the stochastic expansions through a few
stages:

1. Expand the expression Y (r) into its monomials u. Each monomial u is a function of Q’s
that uses the non-commutative products. Importantly, the objects Q and the product
B are only used as place-holders at that stage. For example, the first three monomials
for Y (3) are Q0, Q0 B Q1 and (Q0 B Q1) B Q1.

2. For each monomial u, the objects Q are replaced by their values from the model at
hand. Each Q is a weighted sum of the drivers X(i) (Equation 17), so each u becomes
a polynomial V of X(i) in terms of the non-commutative product. As in the previous
step, the product is still only employed as a place-holder and not instantiated.

3. Each polynomial V is expanded into its monomials v. Each v is a function of X(i) and
B.

4. For each monomial v, the product is instantiated; its actual definition in terms of shuffle
product is only used at this later stage.



Journal of Statistical Software 7

Each process only requires a fraction of the memory that a direct approach (replacing Q’s by
the X(i) and using the product’s definition) would. Moreover, at all stages, each monomial
can be processed independently from the rest, leading to natural parallelization. It is also
important to note that the whole expression is actually stored in a file and thus not in memory
at any point. The exact details of this procedure are given in Section 3.

2.3. Generalization

In the multidimensional case, the Taylor expansion of a polynomial requires a larger number
of terms that involve cross-products between the components of the vector Y . The objects Q
are not indexed by k ∈ {0, . . . , q} but by the set OWm(0, q) of the ordered words of length
up to q written with letters {1, . . . ,m} and are now defined as:

Qτj =
n∑
i=1

|τ |!
c(τ)

∂τfji(Y0)X
(i) (23)

for j ∈ {1, . . . ,m}. The constant c(τ) is the number of different words we can construct using
the letters in τ . The Picard iteration becomes:

Y (1)(j) = Q∅j and Y (r + 1)(j) =
∑

τ∈OWm(0,q)

Y (r)τ B Qτj

3. Implementation

This section describes how this new approach was implemented in Mathematica. In this part,
iterated integrals of the drivers (X(i1,...,in)) are denoted j(i1,...,in) to follow convention and
drivers are numbered from 0 with the first driver representing time.

3.1. Shuffle product

Since each product of two iterated integrals is a shuffle product, special care must be taken of
its implementation. Tocino (2009) has shown a way of writing the product in Mathematica:

Tocino[j[{x_}], j[a_List]] :=

Sum[j[Insert[a, x, k]], {k, 1, Length@a + 1}];

Tocino[j[a_List], j[{x_}]] := Tocino[j[{x}], j[a]];

Tocino[j[a_List], j[b_List]] :=

Ap[Tocino[j[a], j[Drop[b, -1]]], Last@b] +

Ap[Tocino[j[Drop[a, -1]], j[b]], Last@a]

/; (Length@a > 1 && Length@b > 1);

This is a direct and natural translation of the following result:

JαJβ =

∫
Jα−JβdJαend +

∫
JαJβ−dJβend

We present a new implementation of the shuffle product. The product is done iteratively
instead of recursively and is based on string transformation. To calculate the shuffle product
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Figure 1: Average time taken to compute a shuffle product, as a function of the words’ total
length.

of two words α and β, we first set the string ‘aa...aabb..bb’, with as many a’s and b’s as there
are letters in α and β respectively (line 2). We then replace all occurrences of ‘ab’ by ‘ba’
(line 6) and keep on iterating the replacement until none are possible (i.e when the word
is ‘bb..bbaa..aa’) while keeping track of the new words generated (lines 4–6). The set of all
words thus created is the shuffle product of two arbitrary words of the same lengths of α and
β. Finally, the letters a and b in each word are replaced by their actual values from α and β
(lines 7–9).

Shuffle[a_List,b_List]:=Module[{list,u,v},

u={StringJoin@Join[Table["a",{Length[a]}],Table["b",{Length[b]}]]};

v=Table[0,{StringLength[u[[1]]]}];

list=Flatten@NestWhileList[

DeleteDuplicates@Flatten@

StringReplaceList[#,"ab"->"ba"]&,u,#!={}&];

(v[[#[[1]]&/@StringPosition[#,"a"]]]=a;

v[[#[[1]]&/@StringPosition[#,"b"]]]=b;

v)&/@list];

Figure 1 shows the relative performances of the implementation. The product of two iterated
integrals with random words is calculated with the recursive definition and the iterative defi-
nition. On average, the two methods are similar on short words but the new implementation
proves faster on long words (from a total length of 8). Since longer words are more numerous,
using the iterative method will be advantageous.
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3.2. Non-commutative product

The non-commutative and non-associative product B is implemented as � in Mathematica,
an operation with no built-in meaning. We only set a few basic properties for this product:

Unprotect[CircleDot]; (* $\odot$ = esc c . esc *)

1$\odot$x_ := x;

x_$\odot$1 := 0;

0$\odot$x_ := 0;

x_$\odot$0 := 0;

Protect[CircleDot];

Since � is only used as a placeholder, its actual definition in terms of shuffle product (Equa-
tion 10) is coded in another function, NCP:

NCP[0, j[b_List]] := 0;

NCP[1, j[b_List]] := j[b];

NCP[j[a_List], 0] := 0;

NCP[j[a_List], 1] := j[a];

NCP[j[a_List], j[{}]] := j[a];

NCP[j[a_List], j[b_List]] :=

Ap[j[a]*j[Drop[b, -1]], Last[b]] /; Length[b] > 0;

NCP[n_*j[a_List], j[b_List]] := n*NCP[j[a], j[b]];

NCP[j[a_List], n_*j[b_List]] := n*NCP[j[a], j[b]];

NCP[n_*j[a_List], m_*j[b_List]] := n*m*NCP[j[a], j[b]];

NCP[x_ + y_, z_] := NCP[x, z] + NCP[y, z];

NCP[x_, y_ + z_] := NCP[x, y] + NCP[x, z];

NCP[x_*(y_ + z_), t_] := NCP[x*y, t] + NCP[x*z, t];

NCP[(y_ + z_)*x_, t_] := NCP[x*y, t] + NCP[x*z, t];

3.3. Picard iteration

The usual Picard iteration is implemented with a helper function PicardIteration as fol-
lowing:

PicardIteration[f_List,X_]:=

Total[MapIndexed[(Ap[#1[X]*j[{}],First[#2]-1])&,f]]

Picard[f_List,X0_,n_Integer]:=

Nest[(PicardIteration[f,#])&,X0,n]

For example, Picard[f,x0,4] outputs the stochastic approximation of the SDE with the
functions f collected in a list in the first argument. This was used in Papavasiliou and
Ladroue (2010) for a system with linear drift and quadratic variance.

With the new representation in Q, it can be written directly as in Equation 2:

PicardQ1Dim[Q_, R_, q_] :=

Nest[Q[0] + Sum[(#^r)$\odot$Q[r], {r, 1, q}] &, Q[0], R - 1];
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R is the number of iterations to be calculated and q the maximum degree of the polynomials
f . PicardQ1Dim[] produces a very compact representation of the expansion, which needs to
be processed further in order to give the same result as Picard[].

3.4. Expectation of an iterated integral

It is often of interest to calculate the moments of the solution of the SDE and this can be
approximated by computing the moments of the stochastic expansion. Since the expansion
is a weighted sum of iterated integrals j, its expectation is simply the weighted sum of the
integrals’ expectations. If the drivers consist of time and Brownian motions, the expectation
of an iterated integral has a simple analytic form that can be arrived at recursively (Tocino
2009).

Here we present a more direct way of calculating this quantity. Given a word α and assuming
Wiener processes (Ladroue 2010):

EJα(t) =

{
0 if α is not a sequence of 0 and pairs mm

pα
tqα
qα!

otherwise

where pα = 1
2

#{αi 6=0}
2 and qα = 1

2(#{αi 6= 0}) + (#{αi = 0}). Thus, for example:

EJ (0,1,1,0,0) = 1/22/2t(3+2/2)/(3 + 2/2)! = t4

48

EJ (0,1,1,0,0,1) = 0

EJ (2,2,1,1,3,3) = 1/26/2t(0+6/2)/(0 + 6/2)! = t3

48

EJ (2,2,0,1,1,3,3,0,0,0) = 1/26/2t(4+6/2)/(4 + 6/2)! = t7

8.7!

This result is implemented in Mathematica. The expectation for a word α is then calculated
in at most |α| steps:

ExpSBM[t_, j[a_List]] := Module[{i, c},

i = Length@a;

c = {0, 0};

Catch[

While[i > 0,

If[a[[i]] == 0,

c += {0, 1}; i--,

If[(i > 1) && (a[[i]] == a[[i - 1]]),

c += {1, 1}; i -= 2,

c = {Infinity, 0}; Throw@0

]]]];

(1/2)^First@c t^Last@c/(Last@c)!];

3.5. Distributed processing of monomials

Going from the compact representation provided by PicardQ1Dim[] to the linear combination
of iterated integrals j’s is done in a few stages. Each stage modifies the representation of the
stochastic expansion in such a way that a) computational requirements are minimized and b)
it can be parallelized.

As described in Section 2.2, the workflow goes as follows:
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Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 2: Workflow. From the compact representation in Q and � to the linear combination
of iterated integrals J ’s.

1. PicardQ1Dim[] produces a polynomial in Q and �.

2. Each monomial (in Q and �) is extracted and stored in a list (actually a file).

3. For each monomial, the Q’s are replaced by their values in j (17). They are now
polynomials in j and �.

4. The monomials (in j and �) from each polynomial are extracted and stored in a file.

5. The product � is instantiated in terms of the shuffle product (10). The result is a linear
combination of iterated integrals j for each monomials. The stochastic expansion is the
overall sum of the all those linear combinations.

As can be seen on Figure 2, the different polynomials are successively expanded in terms of
monomials, which in turn are processed independently. Since each expression is effectively
broken down in small parts and dumped into a file, a much larger number of terms can be
computed, as can be seen in the next section.

Our dedicated package (DistributedExpansion) implements this workflow. It comprises of
parallel processing functions and the necessary procedures for computing with iterated inte-
grals: shuffle product, Picard iteration and derivation of the closed form of the expectation
of the iterated integrals in the case of Brownian motion.

Two procedures (ParallelProcess and ParallelProcessUntilNoChange) apply a user-
defined function to each expression found in the input file, in a parallel fashion. The ac-
companying notebook demonstrates these two procedures with some examples. As the name
suggests, parallelProcessUntilNoChange will apply the function in possibly multiple passes
until the resulting output reaches a fixed point. This is useful when going through some parts
of the workflow, in which a first pass of the transforming function might results into smaller
further inputs for the same function, keeping the computing load to a minimum at each
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step. The procedures require the creation of temporary files, one per processor, to avoid the
concurrent overwriting of the output file.

In the following example, an input file is created that contains 2000 random integers. Each
integer is factorized in parallel. A simple test then checks that the factorization is correct.
The order of the inputs does not necessarily match that of the outputs, owing to the parallel
calls to the input file and the varying processing time of each factorization.

original=Table[Random[Integer,10^3],{2000}];

in=OpenWrite@"buffer/seed";

Scan[PutAppend[#,in]&,original];

Close@in;

ParallelProcess["buffer/seed","buffer/result",FactorInteger];

in=OpenRead@"buffer/result";after=ReadList[in];Close@in;

rebuild[x_]:=Fold[#1*(#2[[1]]^#2[[2]])&,1,x];

If[Fold[Times,1,original]!=rebuild@after,

Print@"Total products are different!",

Print@"It's working"]

Thanks to the parallel processing functions, the workflow is implemented very easily, by defin-
ing one function per stage. The whole method is written in the procedure
ParallelStochasticExpansion, so the stochastic expansion of a SDE can be calculated
in one call to this function.

4. Example

Consider the following SDE: dYt = a(1− Yt)dX1 + bY 2
t dX2 and Y0 = 0. In this case, m = 1,

n = 2, q = 2. The two functions f are f1,1(x) = a(1− x) and f1,2(x) = bx2.

Only two things are required from the user: the definition of the objects Q in a transformation
rule, easily obtained by derivation (17), and the number of Picard iterations to be computed.
In this case, the three Q’s are:

Q0 =
1

0!
(a(1− 0)X(1 + b02X(2))

= aX(1)

Q1 =
1

1!
(−aX(1) + 2b0X(2))

= −aX(1)

Q2 =
1

2!
(0X(1 + 2bX(2))

= bX(2)

Therefore, the transformation rule corresponding to this system is:

ruleModel={Q[0]->aj[{1}],Q[1]->-aj[{1}],Q[2]->bj[{2}]}};

If the first driver is time, we can follow the convention that drivers are numbered from 0:
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Figure 3: Completion time for deriving the expansion of a complex model using from 2 to 8
processors.

ruleModel={Q[0]->aj[{0}],Q[1]->-aj[{0}],Q[2]->bj[{1}]}};

A small number (e.g., 4) of Picard iterations is sufficient for a good approximation (see
Papavasiliou and Ladroue 2010). An optional parameter is the maximum word length of the
iterated integrals.

Running the algorithm with these parameters, we obtain the expansion, which is a weighted
sum of 676 iterated integrals and already has a ByteCount (size) of 504’768. Its expectation
is a much smaller expression:

at− a2t2

2
+
a3t3

6
− a4t4

24
+

1

4
a3b2t4 − 7

20
a4b2t5 +

61

360
a5b2t6 − 1

24
a6b2t7 +

17

140
a5b4t7

1

192
a7b2t8 − 21

160
a6b4t8 +

157a7b4t9

3024
− 17a8b4t10

2800
+

43a7b6t10

1800
− 1

100
a8b6t11

This is confirmed by the previous implementation of Picard iteration with the simple code:

P0[x_] := a (1 - x);

P1[x_] := b x^2;

expansion = Picard[{P0, P1}, 0, 4];

ExpSBM[t, expansion]

However, if we now set the initial value to an arbitrary y0 instead of 0, the stochastic expansion
contains a much larger number of terms. It is calculated in the same manner using Q as:

ruleModel={Q[0]->a(1-y0)j[{0}]+by0^2j[{1}],

Q[1]->-aj[{0}]+2by0j[{1}],Q[2]->bj[{1}] };

This results in an expansion with 20 129 terms (from 262 terms only one iteration earlier) and
a ByteCount of 21 495 104. This cannot be confirmed by the simple code on our computer
as it runs out of memory and crashes before completing. Note that the expansion is usually
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left in a file whose entries are parts of the linear combination. Thus, it is possible to, for
example, compute the expectation of the expansion without having to store it in memory at
any point. Moreover, while computationally expensive, these expansions can be calculated
once in a general case and saved in a file for future application without having to recompute
them de novo.

The notebook DistributedExpansion.nb provides a few examples and validations of the
approach.

Figure 3 shows how the performance changes with the number of processors used. There is
an increase in speed until the performance reaches a plateau. This is due to an input/output
bottleneck which takes a constant time (the collection of expression’ positions in a file, to be
assigned to the different processors).

5. Conclusion

Stochastic expansions provide a local approximation of the solution of a stochastic (or deter-
ministic) differential equation. They can be used for a variety of applications, from simulation
to parameter estimation. However, as the number of terms grows exponentially with the de-
sired precision, they can rapidly become unwieldy to manipulate.

We presented a new way of calculating these expansions that bypasses the limitation of the
usual approach, via a reparametrization of the problem and the parallelization of the computa-
tion. We have shown that in a simple example our method was able to compute the expansion
when a direct approach failed. We also presented two new approaches for efficiently deriving
the shuffle product of two iterated integrals and the expectation of an iterated integral, when
the drivers are time and Brownian motion.

So far, our approach has been implemented for one-dimensional differential equation. How-
ever, the theoretical foundation for the multi-dimensional case is available, as presented in
Section 2.3. Now that the computing requirements have been alleviated, an implementation
for the general case is possible. Stochastic expansions will then be available for more complex
systems.
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