36,096 research outputs found

    Partially Linear Estimation with Application to Sparse Signal Recovery From Measurement Pairs

    Full text link
    We address the problem of estimating a random vector X from two sets of measurements Y and Z, such that the estimator is linear in Y. We show that the partially linear minimum mean squared error (PLMMSE) estimator does not require knowing the joint distribution of X and Y in full, but rather only its second-order moments. This renders it of potential interest in various applications. We further show that the PLMMSE method is minimax-optimal among all estimators that solely depend on the second-order statistics of X and Y. We demonstrate our approach in the context of recovering a signal, which is sparse in a unitary dictionary, from noisy observations of it and of a filtered version of it. We show that in this setting PLMMSE estimation has a clear computational advantage, while its performance is comparable to state-of-the-art algorithms. We apply our approach both in static and dynamic estimation applications. In the former category, we treat the problem of image enhancement from blurred/noisy image pairs, where we show that PLMMSE estimation performs only slightly worse than state-of-the art algorithms, while running an order of magnitude faster. In the dynamic setting, we provide a recursive implementation of the estimator and demonstrate its utility in the context of tracking maneuvering targets from position and acceleration measurements.Comment: 13 pages, 5 figure

    Reducing “Structure from Motion”: a general framework for dynamic vision. 1. Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of apparently unrelated models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The “natural” dynamic model, derived from the rigidity constraint and the projection model, is first reduced by explicitly decoupling structure (depth) from motion. Then, implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for models seen so far in the literature, but we can also derive novel ones

    Deep Learning for Single Image Super-Resolution: A Brief Review

    Get PDF
    Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM
    corecore