30,008 research outputs found

    Protein Function Prediction by Integrating Multiple Kernels ∗

    Get PDF
    Determining protein function constitutes an exercise in integrating information derived from several heterogeneous high-throughput experiments. To utilize the information spread across multiple sources in a combined fashion, these data sources are transformed into kernels. Several protein function prediction methods follow a two-phased approach: they first optimize the weights on individual kernels to produce a composite kernel, and then train a classifier on the composite kernel. As such, these methods result in an optimal composite kernel, but not necessarily in an optimal classifier. On the other hand, some methods optimize the loss of binary classifiers, and learn weights for the different kernels iteratively. A protein has multiple functions, and each function can be viewed as a label. These methods solve the problem of optimizing weights on the input kernels for each of the labels. This is computationally expensive and ignores inter-label correlations. In this paper, we propose a method called Protein Function Prediction by Integrating Multiple Kernels (ProMK). ProMK iteratively optimizes the phases of learning optimal weights and reducing the empirical loss of a multi-label classifier for each of the labels simultaneously, using a combined objective function. ProMK can assign larger weights to smooth kernels and downgrade the weights on noisy kernels. We evaluate the ability of ProMK to predict the function of proteins using several standard benchmarks. We show that our approach performs better than previously proposed protein function prediction approaches that integrate data from multiple networks, and multi-label multiple kernel learning methods.

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201
    • …
    corecore