87,751 research outputs found

    Real Time Fault Detection and Diagnostics Using FPGA-Based Architecture

    Get PDF
    Errors within circuits caused by radiation continue to be an important concern to developers. A new methodology of real time fault detection and diagnostics utilizing FPGA based architectures while under radiation were investigated in this research. The contributions of this research are focused on three areas; a full test platform to evaluate a circuit while under irradiation, an algorithm to detect and diagnose fault locations within a circuit, and finally to characterize Triple Design Triple Modular Redundancy (TDTMR), a new form of TMR. Five different test setups, injected fault test, gamma radiation test, thermal radiation test, optical laser test, and optical flash test, were used to assess the effectiveness of these three research goals. The testing platform was constructed with two FPGA boards, the Device Under Test (DUT) and the controller board, to generate and evaluate specific vector sets sent to the DUT. The testing platform combines a myriad of testing and measuring equipment and work hours onto one small reprogrammable and reusable FPGA. This device was able to be used in multiple test setups. The controlling logic can be interchanged to test multiple circuit designs under various forms of radiation. The detection and diagnostic algorithm was designed to determine fault locations in real time. The algorithm used for diagnosing the fault location uses inverse deductive elimination. By using test generation tools, fault lists were developed. The fault lists were used to narrow \ the possible fault locations within the circuit. The algorithm is able to detect single stuck at faults based on these lists. The algorithm can also detect multiple output errors but not able to diagnose multiple stuck at faults in real time

    New Aspects of Fault Diagnosis of Nonlinear Analog Circuits

    Get PDF
    The paper is focused on nonlinear analog circuits, with the special attention paid to circuits comprising bipolar and MOS transistors manufactured in micrometer and submicrometer technology. The problem of fault diagnosis of this class of circuits is discussed, including locating faulty elements and evaluating their parameters. The paper deals with multiple parametric fault diagnosis using the simulation after test approach as well as detection and location of single catastrophic faults, using the simulation before test approach. The discussed methods are based on diagnostic test, leading to a system of nonlinear algebraic type equations, which are not given in explicit analytical form. An important and new aspect of the fault diagnosis is finding multiple solutions of the test equation, i.e. several sets of the parameters values that meet the test. Another new problems in this area are global fault diagnosis of technological parameters in CMOS circuits fabricated in submicrometer technology and testing the circuits  having multiple DC operating points. To solve these problems several methods have been recently developed, which employ  different concepts and mathematical tools of nonlinear analysis. In this paper they are sketched and illustrated.  All the discussed methods are based on the homotopy (continuation) idea. It is shown that various versions of homotopy and combinations  of the homotopy with some other mathematical algorithms lead to very powerful tools for fault diagnosis of nonlinear analog circuits.  To trace the homotopy path which allows finding multiple solutions, the simplicial method, the restart method, the theory of linear complementarity problem and Lemke's algorithm are employed. For illustration four numerical examples are given

    Fault Detection and Diagnosis in Air Conditioners and Refrigerators

    Get PDF
    A fault detection and diagnosis (FDD) method was used to detect and diagnose faults on both a refrigerator and an air conditioner during normal cycling operation. The objective of the method is to identify a set of sensors that can detect faults reliably before they severely hinder system performance. Unlike other methods, this one depends on the accuracy of a number of small, on-line linear models, each of which is valid over a limited range of operating conditions. To detect N faults, N sensors are needed. Using M>N sensors can further reduce the risk of false positives. For both the refrigerator and air conditioner systems, about 1000 combinations of candidate sensor locations were examined. Through inspection of matrix condition numbers and each sensor's contribution to fault detection calculation, the highest quality sets of sensors were identified. The issue of detecting simultaneous multiple faults was also addressed, with varying success. Fault detection was verified using both model simulations and experimental data. The results were similar, although in practice only one of the two would probably be used. Both load-type faults (such as door gasket leaks) and system faults were simulated on the refrigerator. It was found that system faults were generally more easily detectable than load faults. Refrigerator experiments were performed on a typical household refrigerator because it was readily available in a laboratory, but the results of this project may be more immediately useful on larger commercial, industrial or transport refrigeration systems. Air conditioner experiments were performed on a 3-ton split system. Again, the economic benefits of this type of fault detection scheme may also be more feasible for larger field-assembled systems.Air Conditioning and Refrigeration Project 8

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay

    Testing Embedded Memories in Telecommunication Systems

    Get PDF
    Extensive system testing is mandatory nowadays to achieve high product quality. Telecommunication systems are particularly sensitive to such a requirement; to maintain market competitiveness, manufacturers need to combine reduced costs, shorter life cycles, advanced technologies, and high quality. Moreover, strict reliability constraints usually impose very low fault latencies and a high degree of fault detection for both permanent and transient faults. This article analyzes major problems related to testing complex telecommunication systems, with particular emphasis on their memory modules, often so critical from the reliability point of view. In particular, advanced BIST-based solutions are analyzed, and two significant industrial case studies presente

    Statistical process monitoring of a multiphase flow facility

    Get PDF
    Industrial needs are evolving fast towards more flexible manufacture schemes. As a consequence, it is often required to adapt the plant production to the demand, which can be volatile depending on the application. This is why it is important to develop tools that can monitor the condition of the process working under varying operational conditions. Canonical Variate Analysis (CVA) is a multivariate data driven methodology which has been demonstrated to be superior to other methods, particularly under dynamically changing operational conditions. These comparative studies normally use computer simulated data in benchmark case studies such as the Tennessee Eastman Process Plant (Ricker, N.L. Tennessee Eastman Challenge Archive, Available at 〈http://depts.washington.edu/control/LARRY/TE/download.html〉 Accessed 21.03.2014). The aim of this work is to provide a benchmark case to demonstrate the ability of different monitoring techniques to detect and diagnose artificially seeded faults in an industrial scale multiphase flow experimental rig. The changing operational conditions, the size and complexity of the test rig make this case study an ideal candidate for a benchmark case that provides a test bed for the evaluation of novel multivariate process monitoring techniques performance using real experimental data. In this paper, the capabilities of CVA to detect and diagnose faults in a real system working under changing operating conditions are assessed and compared with other methodologies. The results obtained demonstrate that CVA can be effectively applied for the detection and diagnosis of faults in real complex systems, and reinforce the idea that the performance of CVA is superior to other algorithms
    • …
    corecore