1,832 research outputs found

    A Study Of Vantage Point Neighbourhood Search In The Bees Algorithm For Combinatorial Optimization Problems

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014Thesis (M.Sc. ) -- İstanbul Technical University, Institute of Science and Technology, 2014Bu tez çalışmasının temel amacı arıların kaynak arama davranışlarını modelleyen arı algoritmasının, kombinatoryal uzaylarda komşuluk arama fazına yeni bir yaklaşım geliştirilmesidir. Geliştirilen yaklaşım Gezgin Satıcı Problemine uygulanarak Gezgin Satıcı Problemi çözümünün en iyilenmesi amaçlanmıştır.This thesis focuses on nature-inspired optimisation algorithms, in particular, the Bees Algorithm that developed for combinatorial domains with new local search procedure and applied to Traveller Salesman Problem (TSP). An efficient and robust local neighborhood search algorithm is proposed for combinatorial domains to increase the efficiency of the Bees Algorithm.Yüksek LisansM.Sc

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    An Evolutionary Optimization Algorithm for Automated Classical Machine Learning

    Get PDF
    Machine learning is an evolving branch of computational algorithms that allow computers to learn from experiences, make predictions, and solve different problems without being explicitly programmed. However, building a useful machine learning model is a challenging process, requiring human expertise to perform various proper tasks and ensure that the machine learning\u27s primary objective --determining the best and most predictive model-- is achieved. These tasks include pre-processing, feature selection, and model selection. Many machine learning models developed by experts are designed manually and by trial and error. In other words, even experts need the time and resources to create good predictive machine learning models. The idea of automated machine learning (AutoML) is to automate a machine learning pipeline to release the burden of substantial development costs and manual processes. The algorithms leveraged in these systems have different hyper-parameters. On the other hand, different input datasets have various features. In both cases, the final performance of the model is closely related to the final selected configuration of features and hyper-parameters. That is why they are considered as crucial tasks in the AutoML. The challenges regarding the computationally expensive nature of tuning hyper-parameters and optimally selecting features create significant opportunities for filling the research gaps in the AutoML field. This dissertation explores how to select the features and tune the hyper-parameters of conventional machine learning algorithms efficiently and automatically. To address the challenges in the AutoML area, novel algorithms for hyper-parameter tuning and feature selection are proposed. The hyper-parameter tuning algorithm aims to provide the optimal set of hyper-parameters in three conventional machine learning models (Random Forest, XGBoost and Support Vector Machine) to obtain best scores regarding performance. On the other hand, the feature selection algorithm looks for the optimal subset of features to achieve the highest performance. Afterward, a hybrid framework is designed for both hyper-parameter tuning and feature selection. The proposed framework can discover close to the optimal configuration of features and hyper-parameters. The proposed framework includes the following components: (1) an automatic feature selection component based on artificial bee colony algorithms and machine learning training, and (2) an automatic hyper-parameter tuning component based on artificial bee colony algorithms and machine learning training for faster training and convergence of the learning models. The whole framework has been evaluated using four real-world datasets in different applications. This framework is an attempt to alleviate the challenges of hyper-parameter tuning and feature selection by using efficient algorithms. However, distributed processing, distributed learning, parallel computing, and other big data solutions are not taken into consideration in this framework
    corecore