7 research outputs found

    Detection of Abnormal Vessel Behaviours Based on AIS Data Features Using HDBSCAN+

    Get PDF
     Achieving maritime security is challenging due to the vastness and complexity of the domain. Monitoring all Achieving maritime security is challenging due to the vastness and complexity of the domain. Monitoringall vessels that use this medium is humanly impossible but is needed for law enforcement. This paper proposes amachine learning solution based on HDBSCAN+ to classify the movements of vessels into ‘normal’ or ‘abnormal’.This classification reduces the number of vessels that have to be monitored by law enforcement agencies to amanageable size. To date, AIS is the primary source of information that can represent vessel movements andenable the detection of maritime anomalies. The proposed model uses latitude, longitude, type of vessel, courseand speed as features of the AIS data for analysis. The performance of the proposed model is validated against the marine incidents reported by Information Fusion Centre-Indian Ocean Region (IFC-IOR). The proposed model has successfully detected the incidents reported by IFC-IOR

    COVID-19 Impact on Global Maritime Mobility

    Full text link
    To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world went into lockdown and imposed unprecedented containment measures. These restrictions progressively produced changes to social behavior and global mobility patterns, evidently disrupting social and economic activities. Here, using maritime traffic data collected via a global network of AIS receivers, we analyze the effects that the COVID-19 pandemic and containment measures had on the shipping industry, which accounts alone for more than 80% of the world trade. We rely on multiple data-driven maritime mobility indexes to quantitatively assess ship mobility in a given unit of time. The mobility analysis here presented has a worldwide extent and is based on the computation of: CNM of all ships reporting their position and navigational status via AIS, number of active and idle ships, and fleet average speed. To highlight significant changes in shipping routes and operational patterns, we also compute and compare global and local density maps. We compare 2020 mobility levels to those of previous years assuming that an unchanged growth rate would have been achieved, if not for COVID-19. Following the outbreak, we find an unprecedented drop in maritime mobility, across all categories of commercial shipping. With few exceptions, a generally reduced activity is observable from March to June, when the most severe restrictions were in force. We quantify a variation of mobility between -5.62% and -13.77% for container ships, between +2.28% and -3.32% for dry bulk, between -0.22% and -9.27% for wet bulk, and between -19.57% and -42.77% for passenger traffic. This study is unprecedented for the uniqueness and completeness of the employed dataset, which comprises a trillion AIS messages broadcast worldwide by 50000 ships, a figure that closely parallels the documented size of the world merchant fleet

    Intent-informed state estimation for tracking guided targets

    Get PDF
    This paper proposes a state estimation and prediction for tracking guided targets using intent information. A conditionally Markov process is used to describe the destination-oriented target motion, and the collision intent is incorporated through the zero-effort-miss guidance information. The expected arrival time necessary for the conditionally Markov model is determined through the collision geometry and destination motion. Finally, the Kalman filter technique is used to estimate and predict the target state. Numerical simulations demonstrate that the proposed approach can improve state estimation accuracy in both static and dynamic destination cases

    Deep Learning Methods for Vessel Trajectory Prediction based on Recurrent Neural Networks

    Full text link
    Data-driven methods open up unprecedented possibilities for maritime surveillance using Automatic Identification System (AIS) data. In this work, we explore deep learning strategies using historical AIS observations to address the problem of predicting future vessel trajectories with a prediction horizon of several hours. We propose novel sequence-to-sequence vessel trajectory prediction models based on encoder-decoder recurrent neural networks (RNNs) that are trained on historical trajectory data to predict future trajectory samples given previous observations. The proposed architecture combines Long Short-Term Memory (LSTM) RNNs for sequence modeling to encode the observed data and generate future predictions with different intermediate aggregation layers to capture space-time dependencies in sequential data. Experimental results on vessel trajectories from an AIS dataset made freely available by the Danish Maritime Authority show the effectiveness of deep-learning methods for trajectory prediction based on sequence-to-sequence neural networks, which achieve better performance than baseline approaches based on linear regression or on the Multi-Layer Perceptron (MLP) architecture. The comparative evaluation of results shows: i) the superiority of attention pooling over static pooling for the specific application, and ii) the remarkable performance improvement that can be obtained with labeled trajectories, i.e., when predictions are conditioned on a low-level context representation encoded from the sequence of past observations, as well as on additional inputs (e.g., port of departure or arrival) about the vessel's high-level intention, which may be available from AIS.Comment: Accepted for publications in IEEE Transactions on Aerospace and Electronic Systems, 17 pages, 9 figure

    Multiple Ornstein-Uhlenbeck Processes for Maritime Traffic Graph Representation

    No full text
    We propose an unsupervised procedure to automatically extract a graph-based model of commercial maritime traffic routes from historical Automatic Identification System (AIS) data. In the proposed representation, the main elements of maritime traffic patterns, such as maneuvering regions and sea-lanes, are represented, respectively, with graph vertices and edges. Vessel motion dynamics are defined by multiple Ornstein- Uhlenbeck (OU) processes with different long-run mean parameters, which in our approach can be estimated with a change detection procedure based on Page's test, aimed to reveal the spatial points representative of velocity changes. A density-based clustering algorithm (DBSCAN) is then applied to aggregate the detected changes into groups of similar elements and reject outliers. To validate the proposed graph-based representation of the maritime traffic, two performance criteria are tested against a real-world trajectory data set collected off the Iberian Coast and the English Channel. Results show the effectiveness of the proposed approach, which is suitable to be integrated at any level of a JDL system
    corecore