39,023 research outputs found

    Multi-Label Zero-Shot Human Action Recognition via Joint Latent Ranking Embedding

    Get PDF
    Human action recognition refers to automatic recognizing human actions from a video clip. In reality, there often exist multiple human actions in a video stream. Such a video stream is often weakly-annotated with a set of relevant human action labels at a global level rather than assigning each label to a specific video episode corresponding to a single action, which leads to a multi-label learning problem. Furthermore, there are many meaningful human actions in reality but it would be extremely difficult to collect/annotate video clips regarding all of various human actions, which leads to a zero-shot learning scenario. To the best of our knowledge, there is no work that has addressed all the above issues together in human action recognition. In this paper, we formulate a real-world human action recognition task as a multi-label zero-shot learning problem and propose a framework to tackle this problem in a holistic way. Our framework holistically tackles the issue of unknown temporal boundaries between different actions for multi-label learning and exploits the side information regarding the semantic relationship between different human actions for knowledge transfer. Consequently, our framework leads to a joint latent ranking embedding for multi-label zero-shot human action recognition. A novel neural architecture of two component models and an alternate learning algorithm are proposed to carry out the joint latent ranking embedding learning. Thus, multi-label zero-shot recognition is done by measuring relatedness scores of action labels to a test video clip in the joint latent visual and semantic embedding spaces. We evaluate our framework with different settings, including a novel data split scheme designed especially for evaluating multi-label zero-shot learning, on two datasets: Breakfast and Charades. The experimental results demonstrate the effectiveness of our framework.Comment: 27 pages, 10 figures and 7 tables. Technical report submitted to a journal. More experimental results/references were added and typos were correcte

    VQS: Linking Segmentations to Questions and Answers for Supervised Attention in VQA and Question-Focused Semantic Segmentation

    Full text link
    Rich and dense human labeled datasets are among the main enabling factors for the recent advance on vision-language understanding. Many seemingly distant annotations (e.g., semantic segmentation and visual question answering (VQA)) are inherently connected in that they reveal different levels and perspectives of human understandings about the same visual scenes --- and even the same set of images (e.g., of COCO). The popularity of COCO correlates those annotations and tasks. Explicitly linking them up may significantly benefit both individual tasks and the unified vision and language modeling. We present the preliminary work of linking the instance segmentations provided by COCO to the questions and answers (QAs) in the VQA dataset, and name the collected links visual questions and segmentation answers (VQS). They transfer human supervision between the previously separate tasks, offer more effective leverage to existing problems, and also open the door for new research problems and models. We study two applications of the VQS data in this paper: supervised attention for VQA and a novel question-focused semantic segmentation task. For the former, we obtain state-of-the-art results on the VQA real multiple-choice task by simply augmenting the multilayer perceptrons with some attention features that are learned using the segmentation-QA links as explicit supervision. To put the latter in perspective, we study two plausible methods and compare them to an oracle method assuming that the instance segmentations are given at the test stage.Comment: To appear on ICCV 201
    • …
    corecore