211 research outputs found

    Joint methods in imaging based on diffuse image representations

    Get PDF
    This thesis deals with the application and the analysis of different variants of the Mumford-Shah model in the context of image processing. In this kind of models, a given function is approximated in a piecewise smooth or piecewise constant manner. Especially the numerical treatment of the discontinuities requires additional models that are also outlined in this work. The main part of this thesis is concerned with four different topics. Simultaneous edge detection and registration of two images: The image edges are detected with the Ambrosio-Tortorelli model, an approximation of the Mumford-Shah model that approximates the discontinuity set with a phase field, and the registration is based on these edges. The registration obtained by this model is fully symmetric in the sense that the same matching is obtained if the roles of the two input images are swapped. Detection of grain boundaries from atomic scale images of metals or metal alloys: This is an image processing problem from materials science where atomic scale images are obtained either experimentally for instance by transmission electron microscopy or by numerical simulation tools. Grains are homogenous material regions whose atomic lattice orientation differs from their surroundings. Based on a Mumford-Shah type functional, the grain boundaries are modeled as the discontinuity set of the lattice orientation. In addition to the grain boundaries, the model incorporates the extraction of a global elastic deformation of the atomic lattice. Numerically, the discontinuity set is modeled by a level set function following the approach by Chan and Vese. Joint motion estimation and restoration of motion-blurred video: A variational model for joint object detection, motion estimation and deblurring of consecutive video frames is proposed. For this purpose, a new motion blur model is developed that accurately describes the blur also close to the boundary of a moving object. Here, the video is assumed to consist of an object moving in front of a static background. The segmentation into object and background is handled by a Mumford-Shah type aspect of the proposed model. Convexification of the binary Mumford-Shah segmentation model: After considering the application of Mumford-Shah type models to tackle specific image processing problems in the previous topics, the Mumford-Shah model itself is studied more closely. Inspired by the work of Nikolova, Esedoglu and Chan, a method is developed that allows global minimization of the binary Mumford-Shah segmentation model by solving a convex, unconstrained optimization problem. In an outlook, segmentation of flowfields into piecewise affine regions using this convexification method is briefly discussed

    A Two-Stage Image Segmentation Method Using a Convex Variant of the Mumford--Shah Model and Thresholding

    Get PDF
    The Mumford–Shah model is one of the most important image segmentation models and has been studied extensively in the last twenty years. In this paper, we propose a two-stage segmentation method based on the Mumford–Shah model. The first stage of our method is to find a smooth solution g to a convex variant of the Mumford–Shah model. Once g is obtained, then in the second stage the segmentation is done by thresholding g into different phases. The thresholds can be given by the users or can be obtained automatically using any clustering methods. Because of the convexity of the model, g can be solved efficiently by techniques like the split-Bregman algorithm or the Chambolle–Pock method. We prove that our method is convergent and that the solution g is always unique. In our method, there is no need to specify the number of segments K (K ≥ 2) before finding g. We can obtain any K-phase segmentations by choosing (K − 1) thresholds after g is found in the first stage, and in the second stage there is no need to recompute g if the thresholds are changed to reveal different segmentation features in the image.Experimental results show that our two-stage method performs better than many standard two-phase or multiphase segmentation methods for very general images, including antimass, tubular, MRI, noisy, and blurry images

    A Hierarchical Algorithm for Multiphase Texture Image Segmentation

    Get PDF
    • …
    corecore