300 research outputs found

    Tight Bounds for Set Disjointness in the Message Passing Model

    Full text link
    In a multiparty message-passing model of communication, there are kk players. Each player has a private input, and they communicate by sending messages to one another over private channels. While this model has been used extensively in distributed computing and in multiparty computation, lower bounds on communication complexity in this model and related models have been somewhat scarce. In recent work \cite{phillips12,woodruff12,woodruff13}, strong lower bounds of the form Ω(n⋅k)\Omega(n \cdot k) were obtained for several functions in the message-passing model; however, a lower bound on the classical Set Disjointness problem remained elusive. In this paper, we prove tight lower bounds of the form Ω(n⋅k)\Omega(n \cdot k) for the Set Disjointness problem in the message passing model. Our bounds are obtained by developing information complexity tools in the message-passing model, and then proving an information complexity lower bound for Set Disjointness. As a corollary, we show a tight lower bound for the task allocation problem \cite{DruckerKuhnOshman} via a reduction from Set Disjointness

    A Lower Bound for Sampling Disjoint Sets

    Get PDF
    Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x subseteq[n] and Bob ends up with a set y subseteq[n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant beta0 of the uniform distribution over all pairs of disjoint sets of size sqrt{n}

    Separating NOF communication complexity classes RP and NP

    Full text link
    We provide a non-explicit separation of the number-on-forehead communication complexity classes RP and NP when the number of players is up to \delta log(n) for any \delta<1. Recent lower bounds on Set-Disjointness [LS08,CA08] provide an explicit separation between these classes when the number of players is only up to o(loglog(n))

    Tribes Is Hard in the Message Passing Model

    Get PDF
    We consider the point-to-point message passing model of communication in which there are kk processors with individual private inputs, each nn-bit long. Each processor is located at the node of an underlying undirected graph and has access to private random coins. An edge of the graph is a private channel of communication between its endpoints. The processors have to compute a given function of all their inputs by communicating along these channels. While this model has been widely used in distributed computing, strong lower bounds on the amount of communication needed to compute simple functions have just begun to appear. In this work, we prove a tight lower bound of Ω(kn)\Omega(kn) on the communication needed for computing the Tribes function, when the underlying graph is a star of k+1k+1 nodes that has kk leaves with inputs and a center with no input. Lower bound on this topology easily implies comparable bounds for others. Our lower bounds are obtained by building upon the recent information theoretic techniques of Braverman et.al (FOCS'13) and combining it with the earlier work of Jayram, Kumar and Sivakumar (STOC'03). This approach yields information complexity bounds that is of independent interest

    Bounds on oblivious multiparty quantum communication complexity

    Full text link
    The main conceptual contribution of this paper is investigating quantum multiparty communication complexity in the setting where communication is \emph{oblivious}. This requirement, which to our knowledge is satisfied by all quantum multiparty protocols in the literature, means that the communication pattern, and in particular the amount of communication exchanged between each pair of players at each round is fixed \emph{independently of the input} before the execution of the protocol. We show, for a wide class of functions, how to prove strong lower bounds on their oblivious quantum kk-party communication complexity using lower bounds on their \emph{two-party} communication complexity. We apply this technique to prove tight lower bounds for all symmetric functions with \textsf{AND} gadget, and in particular obtain an optimal Ω(kn)\Omega(k\sqrt{n}) lower bound on the oblivious quantum kk-party communication complexity of the nn-bit Set-Disjointness function. We also show the tightness of these lower bounds by giving (nearly) matching upper bounds.Comment: 13 pages, an accepted paper of LATIN 202

    Simplified Lower Bounds on the Multiparty Communication Complexity of Disjointness

    Get PDF
    We show that the deterministic number-on-forehead communication complexity of set disjointness for k parties on a universe of size n is Omega(n/4^k). This gives the first lower bound that is linear in n, nearly matching Grolmusz\u27s upper bound of O(log^2(n) + k^2n/2^k). We also simplify the proof of Sherstov\u27s Omega(sqrt(n)/(k2^k)) lower bound for the randomized communication complexity of set disjointness
    • …
    corecore