53 research outputs found

    Gaussian process deconvolution

    Full text link
    Let us consider the deconvolution problem, that is, to recover a latent source x()x(\cdot) from the observations y=[y1,,yN]\mathbf{y} = [y_1,\ldots,y_N] of a convolution process y=xh+ηy = x\star h + \eta, where η\eta is an additive noise, the observations in y\mathbf{y} might have missing parts with respect to yy, and the filter hh could be unknown. We propose a novel strategy to address this task when xx is a continuous-time signal: we adopt a Gaussian process (GP) prior on the source xx, which allows for closed-form Bayesian nonparametric deconvolution. We first analyse the direct model to establish the conditions under which the model is well defined. Then, we turn to the inverse problem, where we study i) some necessary conditions under which Bayesian deconvolution is feasible, and ii) to which extent the filter hh can be learnt from data or approximated for the blind deconvolution case. The proposed approach, termed Gaussian process deconvolution (GPDC) is compared to other deconvolution methods conceptually, via illustrative examples, and using real-world datasets.Comment: Accepted at Proceedings of the Royal Society

    On Negative Transfer and Structure of Latent Functions in Multi-output Gaussian Processes

    Full text link
    The multi-output Gaussian process (MGP\mathcal{MGP}) is based on the assumption that outputs share commonalities, however, if this assumption does not hold negative transfer will lead to decreased performance relative to learning outputs independently or in subsets. In this article, we first define negative transfer in the context of an MGP\mathcal{MGP} and then derive necessary conditions for an MGP\mathcal{MGP} model to avoid negative transfer. Specifically, under the convolution construction, we show that avoiding negative transfer is mainly dependent on having a sufficient number of latent functions QQ regardless of the flexibility of the kernel or inference procedure used. However, a slight increase in QQ leads to a large increase in the number of parameters to be estimated. To this end, we propose two latent structures that scale to arbitrarily large datasets, can avoid negative transfer and allow any kernel or sparse approximations to be used within. These structures also allow regularization which can provide consistent and automatic selection of related outputs

    A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings

    Full text link
    We introduce a novel kernel that models input-dependent couplings across multiple latent processes. The pairwise joint kernel measures covariance along inputs and across different latent signals in a mutually-dependent fashion. A latent correlation Gaussian process (LCGP) model combines these non-stationary latent components into multiple outputs by an input-dependent mixing matrix. Probit classification and support for multiple observation sets are derived by Variational Bayesian inference. Results on several datasets indicate that the LCGP model can recover the correlations between latent signals while simultaneously achieving state-of-the-art performance. We highlight the latent covariances with an EEG classification dataset where latent brain processes and their couplings simultaneously emerge from the model.Comment: 17 pages, 6 figures; accepted to ACML 201

    Convolved Gaussian process priors for multivariate regression with applications to dynamical systems

    Get PDF
    In this thesis we address the problem of modeling correlated outputs using Gaussian process priors. Applications of modeling correlated outputs include the joint prediction of pollutant metals in geostatistics and multitask learning in machine learning. Defining a Gaussian process prior for correlated outputs translates into specifying a suitable covariance function that captures dependencies between the different output variables. Classical models for obtaining such a covariance function include the linear model of coregionalization and process convolutions. We propose a general framework for developing multiple output covariance functions by performing convolutions between smoothing kernels particular to each output and covariance functions that are common to all outputs. Both the linear model of coregionalization and the process convolutions turn out to be special cases of this framework. Practical aspects of the proposed methodology are studied in this thesis. They involve the use of domain-specific knowledge for defining relevant smoothing kernels, efficient approximations for reducing computational complexity and a novel method for establishing a general class of nonstationary covariances with applications in robotics and motion capture data.Reprints of the publications that appear at the end of this document, report case studies and experimental results in sensor networks, geostatistics and motion capture data that illustrate the performance of the different methods proposed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore