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Abstract

In this thesis we address the problem of modeling correlated outputs using Gaus-
sian process priors. Applications of modeling correlated outputs include the joint
prediction of pollutant metals in geostatistics and multitask learning in machine
learning. Defining a Gaussian process prior for correlated outputs translates into
specifying a suitable covariance function that captures dependencies between the
different output variables. Classical models for obtaining such a covariance func-
tion include the linear model of coregionalization and process convolutions. We
propose a general framework for developing multiple output covariance functions
by performing convolutions between smoothing kernels particular to each output
and covariance functions that are common to all outputs. Both the linear model
of coregionalization and the process convolutions turn out to be special cases
of this framework. Practical aspects of the proposed methodology are studied
in this thesis. They involve the use of domain-specific knowledge for defining
relevant smoothing kernels, efficient approximations for reducing computational
complexity and a novel method for establishing a general class of nonstationary
covariances with applications in robotics and motion capture data.

Reprints of the publications that appear at the end of this document, report case
studies and experimental results in sensor networks, geostatistics and motion

capture data that illustrate the performance of the different methods proposed.

11



Declaration

I hereby declare that no portion of the work referred to in the thesis has been
submitted in support of an application for another degree or qualification of this

or any other university or other institute of learning.

12



Copyright

ii.

iii.

iv.

The author of this thesis (including any appendices and/or schedules to
this thesis) owns certain copyright or related rights in it (the “Copyright”)
and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright, De-
signs and Patents Act 1988 (as amended) and regulations issued under it
or, where appropriate, in accordance with licensing agreements which the
University has from time to time. This page must form part of any such

copies made.

The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproduc-
tions”), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property and
Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is avail-
able in the University IP Policy (see http://www.campus.manchester.ac.
uk/medialibrary/policies/intellectual-property.pdf), in any rele-
vant Thesis restriction declarations deposited in the University Library,
The University Library’s regulations (see http://www.manchester.ac.uk/
library/aboutus/regulations) and in The University’s policy on presen-

tation of Theses

13



Acknowledgements

Foremost, I would like to say thanks to my supervisor Neil Lawrence. Many
steps in this long journey have only been possible due to his constant support
and confidence. Neil encouraged me to think beyond given paradigms and was
always a source of thoughtful advice and contagious enthusiasm.

Thanks to Michalis Titsias for his generous collaboration. Michalis was constantly
keen to discuss research ideas or provide some light over concepts that at some
point looked obscure to me. This work has also benefited greatly from discussions
with David Luengo and Magnus Rattray, who were always willing to share their
opinions and propose alternative research routes.

I'd also like to thank Jan Peters and Bernhard Schoélkopf for giving me the op-
portunity to spend a couple of very productive months in a place of research
excellence: the Department of Empirical Inference at MPI.

To my friends Richard, Michalis, Nicolo and Kevin for the trips, the good food
and the beers and to all the people in the MLO group for offering me with a very
pleasant environment to develop my work.

I take this opportunity to acknowledge my sponsors: the Overseas Research
Student Award scheme, the School of Computer Science, the Google Research
Award “Mechanistically Inspired Convolution Processes for Learning”, the EP-
SRC Grant No EP/F005687/1 “Gaussian Processes for Systems Identification
with Applications in Systems Biology”, the Internal Visiting Programme, Con-
ference & Workshop Organisation Programme and the Conference & Workshop
Attendance Programme of the FP7 EU Network of Excellence PASCAL 2.

Thanks to my family for their permanent attention and for being there for me.

I would like to dedicate this work to Marcela. This thesis is yours as much as it

1S mine.

14



Notation

Mathematical notation

Generalities

P dimensionality of the input space

D number of outputs

K number of inducing points

N number of data points per output

Q number of latent functions

X input space

D set of the integer numbers {1,2,..., D}

X input training data, X = {x,}_,

Z set of inducing inputs, Z = {z } X,

Operators

cov|, -] covariance operator

E[] expected value

tr(-) trace of a matrix

vec(A) or A: vectorization of matrix A

A®B Kronecker product between matrices A and B
AoB Hadamard product between matrices A and B
Functions

U (%) g-th latent function or latent process evaluated at x
Fo(x,X'), Kugu, (%, %) covariance function for the Gaussian process of u,(x)
fa(x) d-th output evaluated at x

f(x;), f; vector-valued function, f(x;) = [fi(x;),..., fo(x:)]"
Efou, (%, %) cross-covariance between output f;(x) and function wu,(x")

15



kfd»fd/ (X> X,)
5k,k’
6()

Vectors and matrices

cross-covariance between output f;(x) and output fg(x')
Kronecker delta for discrete arguments

Dirac delta for continuous arguments

u, u,(x) evaluated at X or Z, u, = [uy(z1), ..., uy(zx)]"
K, Ky, u, covariance matrix with entries k,(x, x’) evaluated at X or Z
f; fa(x) evaluated at X, f; = [fa(x1), ..., fa(xn)]"
f vectors {f;}1.,, stacked in a column vector
Ky ¢(x,x') covariance matrix with entries kg4 (x,x’) with d,d’ € D
Ke, ¢, covariance matrix with entries kg g (Xp, X, ) with x,,, x,,, € X
Ky ¢ covariance matrix with blocks K, ¢, with d, deD
K, u, cross-covariance matrix with elements ky, ,, (x, x’)
Kt cross-covariance matrix with blocks Kg, y,
In identity matrix of size N
Abbreviations

GP Gaussian Process

LMC Linear Model of Coregionalization

ICM Intrinsic Coregionalization Model

SLFM Semiparametric Latent Factor Model

MTGP Multi-task Gaussian Processes

PC Process Convolution

CMOC Convolved Multiple Output Covariance

LFM Latent Force Model

DTC Deterministic Training Conditional

FIC Fully Independent Conditional

FITC Fully Independent Training Conditional

PIC Partially Independent Conditional

PITC Partially Independent Training Conditional

FI(T)C either FIC,
PI(T)C either PIC,

FITC or both
PITC or both

VIK Variational Inducing Kernel
DTCVAR Deterministic Training Conditional Variational
SDLFM Switched Dynamical Latent Force Model

16



Chapter 1
Introduction

Accounting for dependencies between related processes has important applica-
tions in several areas. In sensor networks, for example, missing signals from
certain sensors may be predicted by exploiting their correlation with observed
signals acquired from other sensors (Osborne et al., 2008), as shown in figure
1.1(a). Figure 1.1(a) represents a sketch of the south coast of England, where
several sensors (the red dots in the figure), that keep track of different environ-
mental variables, such as temperature and air pressure, have been placed along
the coastline. In a normal scenario, we have access to the readings of all these
devices at all time instants. However, at some random points in time, a num-
ber of sensors can fail or segments of the sensor network can suffer disruptions,
rendering inaccessible the information of certain environmental variables. Given
that the sensors are located sufficiently close to each other and many of them
make similar readings, we can make use of the signals obtained from the unbro-
ken sensors (in figure 1.1(a), sensors b, ¢ and d) to predict the missing signals for

the broken ones (in figure 1.1(a), sensor a).

In geostatistics, predicting the concentration of heavy pollutant metals, which are
expensive to measure, can be done using inexpensive and oversampled variables
as a proxy (Goovaerts, 1997). Figure 1.1(b) illustrates a region of the Swiss Jura,
for which we would like to know when the concentration of certain heavy metals,
goes beyond a toxic threshold that can be risky for human health. It is usually
cheaper to measure the level of pH in the soil (the green dots in the figure)
than the concentration of Copper or Lead (the blue and read dots in the figure).
We can exploit the correlations between the metals and pH level learned from

different locations to predict, for example, the value of Lead in input location a,
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(a) A network of sensors (b) Pollutant metals concentrations

Figure 1.1: Examples of the type of problems that we consider in this thesis.

(a) Walking movement with missing poses (b) Frames have been filled with plausible poses

Figure 1.2: An example of a walking exercise. In 1.2(a), there are missing poses that are filled
in 1.2(b).

shown in figure 1.1(b) or the value of Copper in input location b.

In computer graphics, a common theme is the animation and simulation of phys-
ically plausible humanoid motion. As shown in figure 1.2(a), given a set of poses
that delineate a particular movement (for example, walking), we are faced with
the task of completing a sequence by filling in the missing frames with natural-
looking poses, as in figure 1.2(b). Human movement exhibits a high-degree of
correlation. Think, for example, of the way we walk. When moving the right
leg forward, we unconsciously prepare the left leg, which is currently touching
the ground, to start moving as soon as the right leg reaches the floor. At the
same time, our hands move synchronously with our legs. We can exploit these im-
plicit correlations for predicting new poses and for generating new natural-looking

walking sequences.

In the examples above, it would be possible to assume that we do not have

18



access to secondary information (in the geostatistics example, pH levels) and
consequently employ models that make predictions individually for each variable
(Copper and Lead). However, these examples share an underlying principle: it is
possible to exploit the interaction between the different variables to improve their
joint prediction. Within the machine learning community this type of modeling is
sometimes referred to as multitask learning. The idea in multitask learning is that
information shared between different tasks can lead to improved performance in
comparison to learning the same tasks individually. It also refers to systems that
learn by transferring knowledge between different domains, for example, what
can we learn about running through seeing walking? Therefore it is also known
as “transfer learning” (Thrun, 1996; Caruana, 1997; Bonilla et al., 2008).

There are plenty of methods in the literature that have been used to approach
the type of problems we have described, including neural networks (Caruana,
1997), Bayesian neural networks (Bakker and Heskes, 2003), Dirichlet process
priors (Xue et al., 2007) and support vector machines (Evgeniou et al., 2005).

Essentially, this sort of problems conform to a multivariate regression analysis.!
If we assume that the variables are independent given the inputs, then, the simul-
taneous regression transforms to a series of single variable regression problems.
Nowadays, the most established technology for univariate regression, within the
machine learning community, corresponds to Gaussian process (GP) regression
(Rasmussen and Williams, 2006).

A Gaussian process specifies a prior distribution over functions f(x), with x € R?.
The distribution is defined in terms of a positive semidefinite function k(x,x’),
known as the covariance function, that encodes the degree of similarity or corre-
lation between f(x) and f(x') as a function of the inputs x and x’. Covariance
functions for single outputs are widely studied in machine learning (see, for ex-
ample, Rasmussen and Williams, 2006) and some examples include the squared-
exponential or the Matérn class of covariance functions. From a Bayesian statis-
tics point of view, the Gaussian process specifies our prior beliefs about the prop-
erties of the functions we are modeling. Our beliefs are updated in the presence of
data by means of a likelihood function, that relates our prior assumptions to the
actual observations, leading to an updated distribution, the posterior distribution,

that can be used, for example, for predicting test cases.

IMultivariate problems are also known as multivariable, multiple output or multiple response
problems.
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In this thesis, we consider the problem of extending the Gaussian process frame-
work for modeling correlated outputs. The main challenge is the definition of a
covariance function that encodes not only the degree of correlation of a process
fa(x) as function of the input x, but, concomitantly, expresses the correlation
between two different processes f;(x) and fy(x), for d # d'. Importantly, the

covariance function must be valid, that is, positive semidefinite.

Much of the common practice in univariate Gaussian process regression, as it is
done today in machine learning, has been rigorously systematized in Rasmussen
and Williams (2006). Except for some isolated attempts, the counterpart for the
multivariate case is yet to be written. In this thesis, we introduce some ideas

towards that direction, from both theoretical and applied perspectives.

Outline of the thesis and contributions

One of the paradigms that has been considered for extending Gaussian processes
to the multivariable scenario (Teh et al., 2005; Osborne et al., 2008; Bonilla et al.,
2008) is known in the geostatistics literature as the linear model of coregionaliza-
tion (LMC) (Journel and Huijbregts, 1978; Goovaerts, 1997). In the LMC the
covariance function is expressed as the sum of products between coregionalization
matrices and a set of underlying covariance functions. The correlations across
the outputs are expressed in the coregionalization matrices, while the underly-
ing covariance functions express the correlation between different data points in
terms of the input vectors.

An alternative approach to constructing covariance functions for multiple outputs
employs process convolutions (PC). To obtain a PC in the single output case, the
output of a given process is convolved with a smoothing kernel function. For
example, a white noise process may be convolved with a smoothing kernel to
obtain a covariance function (Barry and Ver Hoef, 1996). Ver Hoef and Barry
(1998) noted that if a single input process was convolved with different smoothing
kernels to produce different outputs, then correlation between the outputs could
be expressed. This idea was introduced to the machine learning audience by
Boyle and Frean (2005a).

Although these base processes have been considered almost exclusively as white
noise Gaussian processes, in this thesis we allow the bases processes to be Gaus-

sian processes with more general covariance functions. The first contribution
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in this thesis is to develop a unifying model for the covariance function for mul-
tiple outputs that contains the linear model of coregionalization and the process
convolution as special cases. We refer to this model as the convolved multiple
output covariance (CMOC). In chapter 2, we arrive at this covariance function
by building upon previous work in the linear model of coregionalization literature

and the process convolution literature.

The convolved multiple output covariance is obtained by convolving covariance
functions with smoothing kernels. Usually it is difficult to specify in advance
a functional form for the smoothing kernel that results in meaningful covariance
functions, in the sense that the resulting multiple output covariance can represent
important features of the data. Drawing connections with the theory of differ-
ential equations as in Lawrence et al. (2007), our second contribution is that
we develop a general framework in which the smoothing kernels correspond to
the Green’s function associated to the differential equations used to describe the

system. In chapter 3, we develop this idea under the name of latent force models.

A Gaussian process is a nonparametric technique and due to this nonparametric
nature it carries the cross of being computationally expensive to use in prac-
tice. The expensive steps are related to the successive inversion of the covariance
matrix computed from the covariance function of the Gaussian process. In the
multiple output case, the computational complexity grows as O(D3N?), where
N is the number of observations per output and D is the number of outputs.
Our third and fourth contributions are the development of efficient approx-
imation techniques that reduce computational complexity to O(DN K?), where
K is a user-specified parameter. In the third contribution, we develop reduced
rank approximations for the covariance matrix of the full Gaussian process by
exploiting different conditional independence assumptions in the likelihood func-
tion. In the fourth contribution, we introduce the concept of inducing function.
An inducing function acts as a smooth surrogate for white noise processes, when
these processes are used as base functions in the CMOC. Embedding these in-
ducing functions in a variational framework, replicating ideas presented in Titsias
(2009), we develop an efficient approximation that behaves as a lower bound of the
marginal likelihood of the full multivariate Gaussian process. Both contributions

and the relationships between them are presented in chapter 4.

Finally, in chapter 5 we present our fifth contribution. We propose a novel

model that allows discrete changes in the parameter space of the smoothing kernel
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and/or the parameter space of the covariances of the base processes. Our main
focus is to develop a latent force model in which the parameters of the multivariate
covariance change as a function of the input variable. Thus, the model obtained

allows for the description of highly nonstationary multivariate time series courses.

How to read this thesis

This thesis follows the Alternative Format Thesis allowed by the University of
Manchester thesis submission regulations,? that consents to incorporate sections
that are in a format suitable for submission for publication in a peer-reviewed
journal. The way in which the thesis has been developed is as follows. The main
document serves as a backbone of a series of contributions already published at
the Annual Conference on Neural Information Processing Systems (NIPS), the
International Conference on Artificial Intelligence and Statistics (AISTATS), a
journal paper at the Journal of Machine Learning Research and a technical report
appearing in Alvarez et al. (2009). Each chapter includes in the introduction a
remark that explains what sections of the chapter have been published. We
then describe the theory involved in that chapter and include an experiment that
illustrates the main ideas developed. At the end of each chapter, we comment
about further experiments that accompany the theory and that are found in
the publications. Reprints of the publications are attached at the end of the
document.

We refer to the publications using the numbers in the list of publications of the
following section. So for example, we will use expressions like “in publication iv”

to refer to the publication [iv] in the list below.

List of publications

The main contributions in the thesis have been presented in the following publi-

cations and a submitted paper.

[ii Mauricio A. Alvarez and Neil D. Lawrence (2008): Sparse Convolved Gaus-
sian Processes for Multi-output Regression, in D. Koller and D. Schuurmans
and Y. Bengio and L. Bottou (Eds), Advances in Neural Information Pro-
cessing Systems 21, pp 57-64, 2009.

Zhttp://www.campus.manchester.ac.uk /researchoffice /graduate /ordinancesandregulations
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Chapter 2

Covariance functions for

multivariate regression

In chapter 1, we discussed applications of multivariate regression that are en-
countered in machine learning problems, including multitask learning (see Bonilla
et al., 2008, for example). In geostatistics these models are used for jointly pre-
dicting the concentration of different heavy metal pollutants (Goovaerts, 1997).
In statistics more researchers are becoming interested in emulation of multiple
output simulators (see Higdon et al., 2008; Rougier, 2008; Conti and O’Hagan,
2010, for example). In this chapter we provide a general review of structured
covariance/kernel functions for multiple outputs.

There is a huge amount of work in geostatistics focused on constructing valid
covariance functions for predicting spatial varying data. The basic approach is
based on the so called “Linear Model of Coregionalization” (Journel and Hui-
jbregts, 1978; Goovaerts, 1997). Similar methods have been suggested in several
machine learning and statistics related papers, including special type of kernels
proposed as a generalization of the regularization theory to vector-valued func-
tions. We show how some of those methods can be seen as particular cases of the
linear model of coregionalization.

An alternative approach for constructing the covariance function involves a mov-
ing average construction in the form of “Process Convolutions” (Ver Hoef and
Barry, 1998; Higdon, 2002). In a process convolution a latent process is convolved
with output-specific smoothing kernels to produce a valid covariance. The latent
process is usually assumed to be a white noise process. If the latent process fol-

lows a Gaussian process with general covariance function, we will see that the
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linear model of coregionalization and the process convolution framework can be
interpreted as particular cases of this moving-average construction. We refer to

this covariance as the “Convolved Multiple Output Covariance” (CMOC).

Having firstly presented alternatives for constructing multivariate kernel func-
tions, we then embed these kernels in a Gaussian process prior and explain two
important aspects of multivariate Gaussian process regression, namely, how to
perform parameter estimation and prediction for test data. We also briefly re-
view how parameter estimation and prediction is done in research areas such as

geostatistics and statistics.

The chapter is organized as follows. In section 2.1, different methods for con-
structing the kernel for multiple outputs are reviewed, including the linear model
of coregionalization and process convolutions. We then employ the defined co-
variances for multivariate regression with Gaussian process priors in section 2.2.
Finally, in section 2.3, we present an example of multivariate regression in gene

expression data.

Remark. In publication v, we introduced the main idea that appears in section
2.1 and that is the motivation for this chapter. Detailed analysis of related work,
including the linear model of coregionalization in computer emulation, is new,

though. The example of section 2.3 also appears in publication v.

2.1 Kernels for multiple outputs

In geostatistics, prediction over multivariate output data is known as cokriging.
Geostatistical approaches to multivariate modelling are mostly formulated around
the “linear model of coregionalization” (LMC, see, e.g., Journel and Huijbregts,
1978; Wackernagel, 2003). We will first consider this model and discuss how
several recent models proposed in the machine learning and statistics literature
are special cases of the LMC, including approaches to constructing “multitask”
kernels in machine learning introduced from the perspective of regularization
theory (Evgeniou and Pontil, 2004). We also review different alternatives for the
moving average construction of the covariance function, under the generic name
of process convolutions and introduce the model for the covariance function that

is used in the thesis.
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2.1. KERNELS FOR MULTIPLE OUTPUTS

2.1.1 The linear model of coregionalization

In the linear model of coregionalization, the outputs are expressed as linear com-
binations of independent random functions. This is done in such a way that
ensures that the resulting covariance function (expressed jointly over all the out-
puts and the inputs) is a valid positive semidefinite function. Consider a set of
D variables {f4(x)}1., with x € ®P. In the LMC, each variable f; is expressed
as (Journel and Huijbregts, 1978)

Falx) = 3" @ guy (%) + pa,

g=1

where (14 represents the mean of each process fy4(x) and the functions wu,(x),
with ¢ = 1,...,Q, have mean equal to zero and covariance cov|u,(x), uy (x")] =
ky(x,x')04 4, where 0, is the Kronecker delta (§,, = 11if ¢ = ¢ and §,4 =0
if ¢ # ¢'). Therefore, the processes {uq(x)}?:1 are independent. We will assume
that pug = 0 for all outputs, unless it is stated otherwise. Some of the basic
processes u,(x) and u,(x’) can have the same covariance k,(x,x'), k,(x,x') =
k, (x,x’) while remaining orthogonal. A similar expression for {f4(x)}._, can be
written grouping the functions w,(x) which share the same covariance (Journel
and Huijbregts, 1978; Goovaerts, 1997)

Q Ry
fa(x) = > auug(x), (2.1)

g=1 i=1
where the functions ufl(x), with ¢ = 1,...,Q and ¢ = 1,..., R,, have mean
equal to zero and covariance covlu}(x), ul,(x)] = kq(x,x')0;104,. Expression

(2.1) means that there are () groups of functions ufl(x) and, within each group,
functions ué(x) share the same covariance, but are independent. We assume that
the processes f4(x) are second-order stationary.! The cross covariance between

any two functions fy(x) and fz(x) is given in terms of the covariance functions

IThe stationarity condition is introduced so that the prediction stage can be realized through
a linear predictor using a single realization of the process (Cressie, 1993). Implicitly, ergodicity
is also assumed. For nonstationary processes, description is done in terms of the so called
variogram functions (Matheron, 1973).
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for u} (x)

Q Q Rq Rq

cov[fa(x), for(x 4+ h)] ZZZZGZM%’ , covlug (x), uf;,(x—irh)],

q=1 ¢'=1i=1 i'=1

with h = x —x’ being the lag vector. We refer to the covariance cov[f;(x), fo (x+
h)] as kg, s, (h). Due to the independence of the functions u}(x), the above

expression reduces to

Q Ry
Kt (h) = Z Z Qg ad’ Z bd d (2.2)

=1 i=1

with b3 , = Z?ql al qad, For the D outputs, equation (2.1) can be expressed in

matrix form as

Q
= Z Aguy(x)

where, for each x, f(x) = [fi(x),..., fp(x)]T, A, € RP*Fa is a matrix with

entries ajj , and ug(x) = [ug(x), .. _,ub?(x)]T. The covariance function for u,(x)

18
COV[uq(X)7 uy(x + h)| = kq(h)IRq(S%q’v

where I, € REa<Fq i5 the identity matrix.

The covariance function for the outputs is then given as

q=1 q'=1
Q Q
=> ) ALE[u(x)uy(x+h)]A]
q=1 ¢'=1
Q
= AA ky(h). (2.3)
qg=1
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Equation (2.3) can be written as

Q
Kee(h) = ) Byk,(h), (2.4)

where Ky ¢(h) = cov[f(x),f(x +h)] and B, = A;A], with B, € R”*” is known
as the coregionalization matriz. In general, we denote the covariance of f(x)
as Kr¢(x,x’) = cov[f(x),f(x’)]. For the stationary case, it reduces to K¢¢(h).
The elements of each B, are the coefficients bfh o appearing in equation (2.2). The
covariance function K¢ ¢(h) is positive semidefinite as long as the coregionalization
matrices B, are positive semi-definite and k,(h) is a valid covariance function. By
definition, matrices B, fulfill the positive semidefiniteness requirement and several
models for the covariance function k,(h) can be used, for example the squared
exponential covariance function, the Matérn class of covariance functions, among
others (see Rasmussen and Williams, 2006, chap. 4).

Equation (2.1) can be interpreted as a nested structure (Wackernagel, 2003) in
which the outputs fy(x) are first expressed as a linear combination of spatially un-
correlated processes fy(x) = Z(?:l fi(x), with E[f](x)] = 0 and cov[f](x), fg,/ (x+
h)] = bf ykq(h)d, . At the same time, each process fj(x) can be represented
as a set of uncorrelated functions weighted by the coefficients afi,q, fix) =
S ay ,uh(x) where again, the covariance function for u}(x) is kq(h).

The linear model of coregionalization represents the covariance function as the
sum of the products of two covariance functions. One of the covariance functions
models the dependence between the functions, independently of the input vector
x, this is given by the coregionalization matrix B,, whilst the other covariance
function models the input dependence, independently of the particular set of
functions fy(x), this is the covariance function k,(h). In equation (2.4), the
output covariance for a particular value of the lag vector h, is represented as a
weighted sum of the same set of coregionalization matrices B,, where the weights
depend on the input x, given by the factors k,(h).

For a number N of input vectors, let f; be the vector of values from the output d
evaluated at X = {x,}_,. If each output has the same set of inputs the system
is known as isotopic. In general, we can allow each output to be associated with

a different set of inputs, X@ = {Xq(ld)}nNil, this is known as heterotopic.? For

2These names come from geostatistics (Wackernagel, 2003). Heterotopic data is further
classified into entirely heterotopic data, where the variables have no sample locations in common,
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notational simplicity, we restrict ourselves to the isotopic case, but our analysis
can be easily used for heterotopic setups. The covariance matrix for f; is obtained

by expressing equation (2.2) as

Q Rq

covlfy, fy] = Z Z ay aty K Z b K (2.5)

q=1 =1

where K, € RV*Y has entries k,(h), for the different values that h may take for
the particular set X. Define f as f = [f,...,f}]". The covariance matrix for f

in terms of equation (2.5) can be written as

Q
Kee=» B,®K, (2.6)

q=1

with the symbol ® representing the Kronecker product between matrices (Brookes,
2005).

Intrinsic coregionalization model

A simplified version of the LMC, known as the intrinsic coregionalization model
(ICM) (see Goovaerts, 1997), assumes that the elements b7, of the coregional-
ization matrix B, can be written as bi s = Vaaby. In other words, as a scaled
version of the elements b, which do not depend on the particular output functions

fa(x). Using this form for b7 ,, equation (2.2) can be expressed as

COV[fd< fd/ Zvd d/b /{ X X = Ud d! Zb k X X Ud7d/k(X, X,),

where k(x,x) = ZQ bykq(x,x’) is an equivalent covariance function. The co-

variance matrix for f takes the form
K =T QK, (2.7)

where Y € RP*P | with entries vy s, and K = ZQ b, K, is an equivalent valid

covariance matrix.

and partially heterotopic data, where the variables share some sample locations. In machine
learning, the partially heterotopic case is sometimes referred to as asymmetric multitask learning
(Xue et al., 2007; Chai, 2010).
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The intrinsic coregionalization model can also be seen as a linear model of core-

gionalization where we have () = 1. In such case, equation (2.6) takes the form

Ker=AA] @K, = B, ®K;, (2.8)
where the coregionalization matrix By has elements by, = 25‘21 al,aly . The
value of R; determines the rank of the matrix B;.

As pointed out by Goovaerts (1997), the ICM is much more restrictive than the
LMC since it assumes that each basic covariance k,(x,x’) contributes equally to
the construction of the autocovariances and cross covariances for the outputs.
However, for inference purposes, the inverse of the covariance matrix K¢ ¢ can be
computed using the properties of the Kronecker product (as along as the input
space follows the isotopic configuration) reducing the computational complexity
involved when compared to the matrix inversion of the full covariance matrix Ky ¢
obtained from LMC. This property is employed by Rougier (2008) to speed-up
the inference process in an emulator for multiple outputs. First, it assumes that
the multiple output problem can be seen as a single output problem considering
the output index as another variable of the input space. Then, the new output
fp(X), with X € R? x D and D the set D = {1,..., D}, is expressed as a weighted
sum of () deterministic regressors, {gq(i)}gzl, plus a Gaussian error term e(X)
with covariance k(X,X’). The set of regressors explain the mean of the output
process, while the Gaussian error term explains the variance in the output. Both,
the set of regressors and the covariance for the error, are assumed to be separable
in the input space, this is, each regressor ¢,(x) ~ g,(x)g,(d) and the covariance
k(X,X') = k(x,x')k(d,d"). For isotopic spaces (Rougier (2008) refers to this
condition as regular outputs, meaning outputs that are evaluated at the same
set of inputs X), the mean and covariance for the output fp(x), can be obtained
through Kronecker products for the regressors and the covariances involved in the
error term. For inference, the inversion of the necessary terms is accomplished
using properties of the Kronecker product. We will see in the next section that
the model that replaces the set of outputs for a single output as described before,
can be seen as a particular case of the intrinsic coregionalization model (Conti
and O’Hagan, 2010).

It can be shown that if the outputs are considered to be noise-free, prediction using
the intrinsic coregionalization model under an isotopic data case is equivalent to

independent prediction over each output (Helterbrand and Cressie, 1994). This
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circumstance is also known as autokrigeability (Wackernagel, 2003).

Linear Model of Coregionalization in Machine Learning and Statistics

The linear model of coregionalization has already been used in machine learning in
the context of Gaussian processes for multivariate regression, and regularization
theory for multitask learning. It has also been used in statistics for computer

emulation of expensive multivariate computer codes.

Before looking at related work, let us define the parameter space for the LMC. The

Q

set of parameters in the LMC includes the coregionalization matrices, {Bg},Z,,

and the parameters associated to the basic covariances k,(x,x’), that we denote
here as v, also called hyperparameters. We use O yc = {{Bq}qul, {zbq}qQ:l} to
denote the whole set of parameters involved in the LMC or Oicm = {By, ¢} if
Q=1

As we have seen before, the linear model of coregionalization imposes the corre-
lation of the outputs explicitly through the set of coregionalization matrices. A
recurrent idea in the early days of Gaussian processes for multi-output modeling,
within the machine learning literature, was based on the intrinsic coregionaliza-
tion model and assumed B; = Ip. In other words, the outputs were considered to
be conditionally independent given the parameters 1);. Correlation between the
outputs was assumed to exist implicitly by imposing the same set of hyperparam-
eters ¥, for all outputs, and estimating those parameters, or directly the kernel
matrix K, using data from all the outputs (Minka and Picard, 1999; Lawrence

and Platt, 2004; Yu et al., 2005).

In this section, we review more recent approaches for multiple output modeling

that are different versions of the linear model of coregionalization.

Semiparametric latent factor model. The semiparametric latent factor model
(SLFM) proposed by Teh et al. (2005) turns out to be a simplified version of equa-
tion (2.6). In particular, if R, = 1 (see equation (2.1)), we can rewrite equation
(2.6) as

Q
Kf’f = Z aqaqT & Kq,

q=1
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where a, € RP*! with elements {aq,}>? , and ¢ fixed. With some algebraic

manipulations, that exploit the properties of the Kronecker product, we can write

Q
Kee =) (a, 0Iy)K,(a] ©Iy) = (A Iy)K(AT @ Iy),

q=1

where A € RP*Q is a matrix with columns a,, and K € RONXQN ig a block
diagonal matrix with blocks given by K,.

The functions u,(x) are considered to be latent factors and the semiparametric
name comes from the fact that it is combining a nonparametric model, this is a
Gaussian process, with a parametric linear mixing of the functions u,(x). The
kernel for each basic process ¢, k,(x,x’), is assumed to be of Gaussian type with
a different length scale per input dimension. For computational speed up the

informative vector machine (IVM) is employed (Lawrence et al., 2003).

Multi-task Gaussian processes. The intrinsic coregionalization model has
been employed by Bonilla et al. (2008) for multitask learning. We refer to this
approach as multi-task Gaussian processes (MTGP). The covariance matrix is
expressed as Krr(x,x') = K/k(x,x’), with K/ being constrained positive semi-
definite and k(x,x’) a covariance function over inputs. It can be noticed that
this expression is similar to the one in (2.7), when it is evaluated for x,x’ € X.
In Bonilla et al. (2008), K/ (equal to Y in equation (2.7) or B; in equation
(2.8)) expresses the correlation between tasks or inter-task dependencies, and
it is represented through a probabilistic principal component analysis (PPCA)
model. In turn, the spectral factorization in the PPCA model is replaced by an
incomplete Cholesky decomposition to keep numerical stability, so that K/ =~
ifﬁ, where L € RP*E1. The authors also refer to the autokrigeability effect
as the cancellation of inter-task transfer (Bonilla et al., 2008). An application of

MTGP for obtaining the inverse dynamics of a robotic manipulator was presented
in Chai et al. (2009).

Multi-output Gaussian processes. The intrinsic coregionalization model
has been also used by Osborne et al. (2008). Matrix Y in expression (2.7) is
assumed to be of the spherical parametrisation kind, ¥ = diag(e)S'S diag(e),
where e gives a description for the length scale of each output variable and S

is an upper triangular matrix whose i-th column is associated with particular
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spherical coordinates of points in R (for details see Osborne and Roberts, 2007,
sec. 3.4). Function k(x,x’) is represented through a Matérn kernel, where dif-
ferent parametrisations of the covariance allow the expression of periodic and
non-periodic terms. Sparsification for this model is obtained using an IVM style

approach.

Multi-task kernels in regularization theory. Kernels for multiple outputs
have also been studied in the context of regularization theory. The approach
is based mainly on the definition of kernels for multitask learning provided in
Evgeniou and Pontil (2004); Micchelli and Pontil (2005); Evgeniou et al. (2005).
The derivation is based on the theory of kernels for vector-valued functions. Ac-
cording to Evgeniou et al. (2005), the following lemma can be used to construct
multitask kernels,

Lemma. If G is a kernel on T x T and, for every d € D there are prescribed

mappings @4 : X — T such that
kaa(x,x) = k((x,d), (X, d)) = G(Qu(x), Pa (x)), x,x" € R, d.d €D,

then k(-) is a multitask or multioutput kernel.

A linear multitask kernel can be obtained if we set 7 = R, ¢,(x) = Cyx with
Py € R™ and G : R™ x R™ — R as the polynomial kernel G(z,2') = (z'z')" with
n = 1, leading to kg4 (x,x') = x' CjCyx’. The lemma above can be seen as
the result of applying kernel properties to the mapping ®4(x) (see Genton, 2001,
pag. 2). Notice that this corresponds to a generalization of the semiparametric
latent factor model where each output is expressed through its own basic process
acting over the linear transformation Cgx, this is, ug(®P4(x)) = ugs(Cyx). In

general, it can be obtained from fy(x) = 7

=1 0d,qUg(Py(x)), Where aqy = 1 if

d = q or zero, otherwise.

Computer emulation. A computer emulator is a statistical model used as a
surrogate for a computationally expensive deterministic model or computer code,
also known as simulator. Gaussian processes have become the preferred statis-
tical model among computer emulation practitioners (for a review see O’Hagan,
2006). Different Gaussian process emulators have been recently proposed to deal
with several outputs (Higdon et al., 2008; Conti and O’Hagan, 2010; Rougier,
2008). In Higdon et al. (2008), the linear model of coregionalization was used to
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model images representing the evolution of the implosion of steel cylinders after
using TNT, and obtained employing the so called Neddemeyer simulation model
(see Higdon et al., 2008, for further details). The input variable x represents
parameters of the simulation model, while the output is an image of the radius
of the inner shell of the cylinder over a fixed grid of times and angles. In the
version of the LMC that the authors employed, R, = 1, and the @) vectors a,
were obtained as the eigenvectors of a PCA decomposition of the set of training
images.

In Conti and O’Hagan (2010), the intrinsic coregionalization model is employed
for emulating the response of a vegetation model called the Sheffield Dynamic
Global Vegetation Model (SDGVM) (Woodward et al., 1998). Authors refer to
the ICM as the Multiple-Output (MO) emulator. The inputs to the model are
variables related to broad soil, vegetation and climate data, while the outputs
are time series of the index Net Biome Productivity (NBP) measured at different
sites. The NBP index accounts for the residual amount of carbon at a vegetation
site after some natural processes have taken place. In the paper, the authors as-
sume that the outputs correspond to the different sampling time points, so that
D =T, being T the number of time points, while each observation corresponds
to a spatial sampling site.

As we mentioned before, Rougier (2008) introduces an emulator for multiple-
outputs that assumes that the set of output variables can be seen as a single
variable while augmenting the input space with an additional index over the out-
puts. In other words, it considers the output variable as an input variable. Conti
and O’Hagan (2010) refer to the model in Rougier (2008) as the Time input
(TT) emulator. They discussed how the TT model turns out to be a particular
case of the MO model, by using a squared-exponential kernel (see Rasmussen
and Williams, 2006, chapter 4) for computing the entries in the coregionalization

matrix Bj.

2.1.2 Process convolutions for multiple outputs

The approaches introduced above involve some form of instantaneous mixing
through a linear weighted sum of independent processes to construct correlated
processes. By instantaneous mixing we mean that the output function f(x) eval-
uated at the input point x only depends on the values of the latent functions

{uq(x)}ff:l at the same input x. Instantaneous mixing has some limitations. If
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we wanted to model two output processes in such a way that one process was a
blurred version of the other, we cannot achieve this through instantaneous mix-
ing. We can achieve blurring through convolving a base process with a smoothing
kernel.? If the base process is a Gaussian process, it turns out that the convolved
process is also a Gaussian process. We can therefore exploit convolutions to con-
struct covariance functions (Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998;
Higdon, 1998, 2002). A recent review of several extensions of this approach for the
single output case is presented in Calder and Cressie (2007). Applications include
the construction of nonstationary covariances (Higdon, 1998; Higdon et al., 1998;
Fuentes, 2002a,b; Paciorek and Schervish, 2004) and spatiotemporal covariances
(Wikle et al., 1998; Wikle, 2002, 2003).

We will first introduce the idea of moving average construction for multivariate
responses as it has traditionally been presented in the statistics and geostatis-
tics literature (Ver Hoef and Barry, 1998; Ver Hoef et al., 2004; Higdon, 2002).
They normally consider convolutions between kernels and white Gaussian noise
processes. We then describe the covariance model used in the thesis, that allows
for convolutions of kernels with more general Gaussian processes. A similar idea
was presented by Fuentes (2002a,b) using discrete convolutions for developing
nonstationary covariances, in the single output case.

Consider again a set of D functions { f4(x)}2_,. Each function could be expressed

through a convolution integral between a kernel, {G4(x)}%.;, and a function

{ra() Yy,
fa(x) = /XGd(X — 2)r4(z)dz.

For the integral to exist, it is assumed that the kernel G4(x) is a continuous
function with compact support (Héormander, 1983) or square-integrable (Ver Hoef
and Barry, 1998; Higdon, 2002). The kernel G4(x) is also known as the moving
average function (Ver Hoef and Barry, 1998) or the smoothing kernel (Higdon,
2002).

The function r4(x) is given by r4(x) = pgwq(x) + agqu(x). It is composed of
two elements: a white Gaussian noise random process associated to each output,

wq(x), with mean zero and variance one, and a white Gaussian noise random

3We use kernel to refer to both reproducing kernels and smoothing kernels. Reproducing
kernels are those used in machine learning that conform to Mercer’s theorem. Smoothing kernels
are functions which are convolved with a signal to create a smoothed version of that signal.
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process that is common to all outputs, u(x), also with mean zero and variance
one. We can choose pg4, such that the variance of r,;(x) be equal to one. For
example, in Ver Hoef and Barry (1998), \/1 — a2. The processes {wq(x)}2_,

and u(x) are assumed to be mdependent.

The cross-covariance between f;(x) and fy(x’) is then given by

cov [fa(x), fu(x)] = E [ [ Gatx—araits [ Galx ~2)ratanas

_ /X /X Ga(x — 2)Ca (X — 2V E [ra(z)re ()] dzdz
= covy [fa(x), fa (x)] + covy, [fa(x), far(X)] daar,

where the subscripts u and w appearing in the covariance operator, emphasize
the components of 74(x) and ry(x) involved in the covariance expression. We
refer to cov [fa(x), fa (x)] as ky, 1, (x,X'), covy [fa(x), for(X')] as K}, ;  (x,x') and
covy [fa(x), fo (x')] as K, ; (x,x'). The covariances k} , (x,x') and k%, ; (x,x')

are given as

ki, (%,X) = agaq /}(Gd(x —2)Gy(x' —2z)dz (2.9)

kY, g6 X) = pj /X Ga(x — 2)Ga(x' — z)dz.

With the equations above, we can indirectly specify a functional form for the co-
variance ky, ¢, (x,X’) through a particular choice of the smoothing kernels G 4(x).
The smoothing kernels are usually parameterized functions and we refer to these
parameters as Opc = {0g, }1.,, where the subscript PC stands for process convo-
lution. Under the above construction, the covariance function for the vector f(x)

is positive semidefinite, for any fixed values of x = x; and x’ = x;.

In Ver Hoef and Barry (1998), the input space over which the integrals are com-
puted is X = RP. Higdon (2002) depicted a similar construction to the one pre-
sented above, but assuming that the functions r4(x) only included the common
component u(x), so that r4(x) = r(x) = u(x). The input space is partitioned
into disjoint subsets X = (7, &;, and the latent process u(x) is assumed to be

independent on these separate subspaces. Each function f;(x) is expressed by
fa(x) = / Ga(x — z)u(z)dz.
XgUXo
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The functions f;(x) and fu(x) are dependent within Xp, but independent within
Xd and Xd"

The approach described so far was introduced to the machine learning community
with the name of “Dependent Gaussian Processes” (DGP) by Boyle and Frean
(Boyle and Frean, 2005a,b) and further developed in Boyle (2007). Similar to
Ver Hoef and Barry (1998), the input space is again X = RP. The components
of the function r4(x), wg(x) and u(x) are considered independently (p; and aq
are assumed to be one), and additional moving average functions { Hy(x)}%Z_, are
convolved with the processes wy(x) to allow for a different functional form for the

covariance ky, ¢, (x,x’) when d = d'. In this way each output fy(x) follows

fa(x) = /XGd(X —z)u(z)dz + /XHd(X — z)wy(z)dz,

and the covariance ky, r, (x,x’) is again given by kf, fu (x,x') plus k¥, ty (x, X" )da.a,
where k%, , (x,x’) follows equation (2.9), with aq = 1 for all outputs, and
kY 5 (x,x') is

Ky 5 (x,x") = /XHd(X —z)Hy(x' — z)dz. (2.10)

Additional modeling flexibility is allowed if instead of using a single and common
white noise process u(x), we consider a set of ) independent and common white

noise processes {u,(x)}%_,, with zero mean and variance equal to one. Then the

q=1
outputs { f4(x)}Z_, can be expressed as

= é/}( Gaq(x — 2)uy(z)dz + /XHd(X — z)wqy(z)dz,

leading to a covariance k¥, (x,x’) given as

Q

kY, 1, (x,%) Z/ Gag(x —2)Gy (X' — z)dz.
g=1"%

The covariance £y, . (x,x’) follows the same expression appearing in equation

(2.10). The parameter vector for the DGP includes the parameters for the kernels

{Gdg(x)}f:’?,q:l, {OGd_’q}i’?’qzl, and the parameters for the kernels {Hg(x)}2,,

{01,}2_,. We also denote this set of parameters jointly as Opc.
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In Majumdar and Gelfand (2007), a different moving average construction for the
covariance of multiple outputs was introduced. It is obtained as a convolution
over covariance functions in contrast to the process convolution approach where
the convolution is performed over processes. Assuming that the covariances in-
volved are isotropic, Majumdar and Gelfand (2007) show that the cross-covariance

obtained from

cov [fa(x +h), fo(x)] = /Xkd(h —2)ky(z)dz,
where kq(h) and kgz(h) are covariances associated to the outputs d and d’, lead
to a valid covariance function for the outputs {fs(x)}2_,. If we assume that
the smoothing kernels are not only square integrable, but also positive definite
functions, then the covariance convolution approach turns out to be a particular
case of the process convolution approach (square-integrability might be easier to

satisfy than positive definiteness).

When developing a covariance function for multivariable processes, our aim is to
specify jointly the dependencies over the input space X and over the set of outputs
D. We have seen how in the linear model of coregionalization this compound
dependency is broken in two different components, the coregionalization matrices
B,, that specify dependencies in the set DD independently of &X', and the basic
kernels k,(x, x), specifying dependencies over X" independently of D. Therefore,
the LMC assumption implies that all cross-covariances cov [fq(x), for(x')] share
the same input dependencies that are allowed by k,(x,x’). For a large value of
@, the weighted sum of covariances k,(x,x’) might indirectly reflect the different
levels of variation in the input space. However, a large value for () also leads to a
larger parameter space for the vector @y \ic, particularly when the system involves
a large number of outputs D. In practice, though, one usually has prior knowledge
about the diverse degrees of variation that the outputs have as functions of x and,
subsequently, selects a set of covariances {k,(x,x’) qu1 that better reflects that
amount of variation. On the other hand, the process convolution framework
attempts to model the variance of the set of outputs by the direct association of
a different smoothing kernel G4(x) to each output fy(x). By specifying G4(x),
one can model, for example, the degree of smoothness and the length-scale that
characterizes each output. If each output happens to have more than one degree

of variation (marginally, it is a sum of functions of varied smoothness) one is
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faced with the same situation than in LMC, namely, the need to augment the
parameter space Opc so as to satisfy a required precision. However, due to the
local description of each output that the process convolution performs, it is likely

that the parameter space O@p¢ grows slower than the parameter space for LMC.

Here we have two methods that allows us to specify the degree of variation in each
output fy(x) while leading to a valid covariance function for multiple outputs:
globally, by means of () underlying covariance functions k,(x,x’) via the linear
model of coregionalization or locally, through a set of smoothing kernels G4,(x)

by way of the process convolution framework.

In this thesis, we employ an extension of the process convolution framework that
lies somewhere between the local and the global methods we described above. We
refer to this extension as the “convolved multiple output covariance” (CMOC)
In a similar way to the linear model of coregionalization, we consider () groups
of functions, where a particular group ¢ has elements uf](z), fori=1,..., R,
Each member of the group has the same covariance k,(x,x’), but is sampled

independently. Any output fy(x) is described by

Q_ A . Q
i) =323 [ Giylox = auy(ada + i) = 7 720 + wal)

where

/’dqx—zq@mL )

and {wgy(x)}?_, are independent Gaussian processes with mean zero and covari-
ance ky,(x,x’). We have included the superscript ¢ for fj(x) in (2.11) to empha-
size the fact that the function depends on the set of latent processes {u}(x) Vi
Notice that in the process convolution formulation, each function wy(x) was a
part of ry(x) and led to the covariance k¥, ; (x,x'), which was a function of ei-
ther G4(x) or both G4(x) and Hy(x). Here we allow the covariance k,,,(x,x’)
to be any valid covariance function. Importantly, the latent functions ufl(z) are
Gaussian processes with general covariances k,(x,x’), in contrast to the process
convolution framework is which they were assumed to be white noise Gaussian

processes.
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Under the same independence assumptions used in the linear model of coregion-

alization, the covariance between f;(x) and fy(x’) follows

Q
kfd’fd/ (X, X,) = Z kfg7f§/ (X, X/) + kwd(X, X/)éd,d’a (212)

g=1

where

Rq
ko s (x,X) = /X ha(X—2) /X vo(x — 2k, (2,2')dZ dz. (2.13)
=1

Specifying G ,(x —z) and k,(z,2’) in (2.13), the covariance for the outputs fs(x)
can be constructed indirectly.

Notice that if the smoothing kernels are taken to be the Dirac delta function such
that G (x —2z) = a}; ,6(x —2),* the double integral is easily solved and the linear
model of coregionalization is recovered. On the other hand, if the latent processes

Uq

recover the process convolution formulation (with R, = 1),

(x) are white Gaussian noise processes with mean zero and variance one, we

Q
kg, (x,X) = Z /X Gag(x —2)Gy (X' — 2)dz + ky,(x,X).
q=1

As well as the covariance across outputs, the covariance between the latent func-
i

4(2z), and any given output, fs(x), can be computed,

tion, u

kpoui(x,2) = cov [ fa(x), ui(z)] = /XGil’q(X — 2k, (2, z)dz. (2.14)

The convolved multiple output covariance can also be seen as a dynamic version
of the linear model of coregionalization: the latent functions are dynamically
combined with the help of the kernel smoothing functions, as opposed to the
static combination of the latent functions in the LMC case. We are interested
in allowing the latent Gaussian processes ufl(x) to go beyond the white noise
assumption for different reasons. First, in several problems in systems biology, the

latent functions represent physical quantities, for example, transcription factor

4We have slightly abused of the delta notation to indicate the Kronecker delta for discrete
arguments and the Dirac function for continuous arguments. The particular meaning should
be understood from the context.
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proteins (Gao et al., 2008; Honkela et al., 2010; Perkins et al., 2006). We expect
a priori that these transcription factors behave smoothly, so that the white noise
assumption would not be correct. Second, from the perspective of dynamical
systems, for which the smoothing kernel corresponds to the impulse response
of a particular system, the latent functions usually have very structured forms
like step responses or sinusoidal waveforms, even piece-wise continuous functions.
Third, even if we do not believe that the convolved multiple output covariance can
represent some physical quantity (the latent function or the dynamical system),
by introducing this more informative or more redundant latent function, we can
propose efficient approximations of the convolved multiple output covariance for
inference with large numbers of outputs and observations. An example of this

approach will be presented in chapter 4.

The parameter space for the convolved multiple output covariance include the
parameters of the moving-average functions and the parameters of the basic co-

variances k,(x,x'), this is Ocyoc = {{oGé,q 5:7612,75:(11,1‘:17 {’l/)q}qul )

Murray-Smith and Pearlmutter (2005) introduced the idea of transforming a
Gaussian process prior using a discretized process convolution, f; = Ggu, where
Gy € RV*E is a so called design matriz with elements {Gd(xn,zk)}anik:l and
u' = [u(xy),...,u(xx)]. Such transformation could be applied for the purposes
of fusing the information from multiple sensors, for solving inverse problems in
reconstruction of images or for reducing computational complexity working with

the filtered data in the transformed space (Shi et al., 2005).

The process convolution framework is mostly based on the assumption that the
latent functions u,(x) are white Gaussian noise processes. A similar model to ours
was proposed by Fuentes (2002a,b), but instead of the continuous convolution,
Fuentes (2002a,b) used a discrete convolution. The purpose in Fuentes (2002a,b)
was to develop a spatially varying covariance for single outputs, by allowing the
parameters of the covariance of a base process to change as a function of the

input domain. We will come back to this type of model in chapter 5.

We have seen that by going beyond the white noise process assumption, we can
link models appearing in the linear model of coregionalization literature and the

process convolution literature. In a similar way, Calder (2003, 2007, 2008) also
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allows more general latent processes, but instead of attempting to compute cross-
covariances in the multiple output setting, she embeds the latent processes into
a Kalman filtering framework, while dependency between the outputs and the
latent functions is given by a discretized convolution. In Calder (2008), two
particulate matter (PM) levels measured in the air (10 ym in diameter and 25
pum in diameter) are modeled as the added influence of coarse and fine particles.
In turn, these coarse and fine particles are modeled as random walks and then
transformed by discrete convolutions to actually represent the levels of PM at 10

pm and 25 pm.

Process convolutions are also closely related to the Bayesian kernel method (Pillai
et al., 2007; Liang et al., 2009) to construct reproducible kernel Hilbert spaces
(RKHS) assigning priors to signed measures and mapping these measures through

integral operators. In particular, define the following space of functions,

F={f]s)= [ 6.2, ver),

for some space I' C B(X) of signed Borel measures. In Pillai et al. (2007, propo-
sition 1), the authors show that for I' = B(X), the space of all signed Borel
measures, F corresponds to a RKHS. Examples of these measures that appear in
the form of stochastic processes include Gaussian processes, Dirichlet processes
and Lévy processes. In principle, we can extend this framework for the multiple

output case, expresing each output as

fd(:p):/XGd(x,z)y(dz).

An example of a convolved multiple output covariance.

A simple general purpose kernel for multiple outputs based on the convolved mul-
tiple output covariance framework can be constructed assuming that the kernel
smoothing function, Gg,(x) (with R, = 1), and the covariance for the latent
function, k,(x,x’), follow both a Gaussian form. A similar construction using
a Gaussian form for G(x) and a white noise process for u(x) has been used in
Paciorek and Schervish (2004) to propose a nonstationary covariance function in
single output regression. It has also been used in Boyle and Frean (2005a) as an

example of constructing dependent Gaussian processes.
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The kernel smoothing function is given as

_ Sd7q|Pcl|1/2 I
Gd,q(T) = WQXP —57' PdT s

where S;, is a variance coefficient that depends both on the output d and the
latent function ¢, and Py is the precision matrix associated to the particular
output d. The covariance function for the latent process is expressed as

1

LY {_5 (x—x) T Ay (x— x’)} , (2.15)

kg (x, x') (2m)P/2

with A, the precision matrix of the latent function g.

Expressions for the kernels are obtained applying systematically the identity for
the product of two Gaussian distributions. Let N (x|w, P™!) denote a Gaussian

for x, then
N(x|p1, PN (x| p2, Py 1) = N (i |pe, PTY + PN (x| pe, P, (2.16)

where pr, = (P14 Py) ' (P + Popy) and P! = (P; +Py) "', For all inte-
grals we assume that X = RP. Since the Gaussian covariance is stationary, we can
write it as N (x —x/|0,P71) = N (x' —x|0,P7!) = N (x|x/,P7!) = N(X'|x,P71).
Using the identity in equation (2.16) twice, we get

© Su.Swg 1

T -
Rposa (6 X) = ) s i &P | 5 (0= X)) Py (x=x)) | (2.17)
=1

eqv ’

where Peq, = P;l + P;,l + A;l. For a large value of the input dimension, p,
the factor 1/[(27)P/?|Peq|'/?] in each of the terms above will dominate, making
values go quickly to zero. We can fix this problem, by scaling the outputs using the
factors 1/[(2m)P/4|2P ;" + A;1|1/4] and 1/[(2m)P/42P ! + A;1|1/4]. Each of these
scaling factors correspond to the standard deviations associated to ky, f,(x, X)
and ky, r,(x,X).

Equally, for the covariance cov [f4(x), u,(x’)] in equation (2.14), we obtain

S, 1 T _
27T)p/2|fq>d /2 exp |-z (x—x) (Pay) ' (x—x)|, (2.18)
7q

kfdauq(x7 X,) = ( 9

where Py, = P, + A;l. Again, this covariance must be standardized when
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working in higher dimensions.

2.2 Multivariate Gaussian Process Priors

It is important to highlight the fact that once a multivariate Gaussian process
prior has been specified, through the definition of a corresponding valid covariance
function, one can use the traditional Gaussian process methodology for single out-
puts (Rasmussen and Williams, 2006) to perform parameter estimation (section
2.2.1) and model prediction (section 2.2.2).

A Gaussian process is defined as a collection of random variables, such that any
finite number of them follow a joint Gaussian distribution. Section 2.1 described
a series of models for the set of outputs {f4(x)}2_,, that led to a valid covariance
function for the vector f(x). As mentioned before, we denote this covariance as
K ¢(x,x') € RP*P with elements given by ky, ;,(x,x), and define the Gaussian

process prior for the vector f(x),
f(x) ~ GP(p(x), Kes(x, X)),

where p(x) € RP*! is a vector that contains the mean functions {u4(x)}2, of

each output. For a finite number of inputs, X = {x,}"_,, the prior distribution

over the vector f = [f],... f}]" is given as f ~ N'(u, Ksy) or

f 75 Ker Ko o0 Kegp,

fs Y M2 ng,fl ng,fg s KfQ,fD

fp HD KfD,f1 KfD,f2 s KfD,fD
where each vector f; = [fa(x1), fa(X2), ..., fa(xn)]T; = [p] , p1q , ..., x| " with
e = [pa(x1), pa(x2), ..., pa(xy)]"; the covariance matrix Keg € RPV¥PN g

a block partitioned matrix with blocks given by Kg, ¢,, and in turn each block
Ky, r, has entries ky, r, (x,x’) for all values of X. The kernel function ky, r, (x,x’)
is obtained with any of the methods introduced in section 2.1. Without loss of

generality, we assume that the vector p is zero.

In practice, we usually have access to noisy observations, so we model the outputs
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{ya(x)}L, using
Ya(x) = fa(x) + ea(x),

where {e;(x)}1, are independent white Gaussian noise processes with variance

o2. The marginal likelihood is given as
p(yX, ) = N(y|0, K¢ + %), (2.19)

where y = [le,yQT e ,yHT is the set of output functions and each vector y,
has elements {yq(x,)})_;; ¥ = ¥ ® Iy, where ¥ € RP*P is a diagonal matrix
with elements {02}, and ¢ is the set of parameters of the covariance matrix,
including the parameters associated to the covariance function (@pyc, @pc or

Ocroc for the multivariate case) and {02} ,.

Notice that we have obtained the marginal likelihood in equation 2.19 after inte-

grating out the latent functions u(x).

In subsection 2.2.1, we describe how the estimation of the parameter vector ¢
is accomplished, using the marginal likelihood in equation (2.19). In subsection

2.2.2, we present prediction for test inputs.

2.2.1 Parameter estimation

In this section we refer to the parameter estimation problem for the models pre-

sented in section 2.1.

In the machine learning literature, the maximization of the marginal likelihood
has become the preferred method among practitioners for estimating parameters.
The method also goes by the names of evidence approximation, type II maximum

likelihood, empirical Bayes, among others (Bishop, 2006).

Our objective function is the logarithm of the marginal likelihood in equation
(2.19),

1 1 ND
log p(y|X, ¢) = _in(Kf,f +3)y - 5 108 [Kee + 3 — ——log2m. (2.20)

Parameters ¢ are obtained by maximizing log p(y|X, ¢) with respect to each
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element in ¢, using a gradient-descent method. Derivatives follow

o1 X 1 0K 1 oK
og p(y|X, @) SVvTK-L y,yK;;y — tr (K—l y’y) , (2.21)

B Y Py T 2 YY" Hg,

where ¢; is an element of the vector ¢ and K, = K¢¢ + X.

Another method used for parameter estimation, more common in the geostatis-
tics literature, consists of optimizing an objective function which involves some
empirical measure of the correlation between the functions fy(x), Rf,f(h), and
the multivariate covariance obtained using a particular model, K¢ ¢(h), (Goulard
and Voltz, 1992; Kiinsch et al., 1997; Pelletier et al., 2004),

N

WSS =3 w(hy) tr { [(f{f,f(hi) - Kf,f(hi))] 2} , (2.22)

=1

where w(h;) is a weight coefficient, Kﬂf(hi) is an experimental covariance ma-
trix and Ky ¢(h;) is the covariance matrix obtained, for example, using the linear
model of coregionalization.® One of the first algorithms for obtaining 6y\c was
proposed by Goulard and Voltz (1992). It assumed that the parameters of the
basic covariance functions k,(h) had been determined a priori and then used a
weighted least squares method to fit the coregionalization matrices. In Pelletier
et al. (2004) the efficiency of other least squares procedures was evaluated exper-
imentally, including ordinary least squares and generalized least squares. Other
more general algorithms in which all the parameters in @y ¢ are estimated si-
multaneously include simulated annealing (Lark and Papritz, 2003) and the EM
algorithm (Zhang, 2007). Ver Hoef and Barry (1998) also proposed the use of an

objective function like (2.22), to estimate the parameters in @pc.

Both methods described above, the evidence approximation or the least-square

method, give point estimates of the parameter vector ¢. Several authors have

5Note that the common practice in geostatistics is to work with variograms instead of co-
variances. A variogram characterizes a general class of random functions known as intrinsic
random functions (Matheron, 1973), which are random processes whose increments follow a
stationary second-order process. For clarity of exposition, we will avoid the introduction of the
variogram and its properties. The interested reader can follow the original paper by Matheron
(1973) for a motivation of their existence, Gneiting et al. (2001) for a comparison between
variograms and covariance functions and Goovaerts (1997) for a definition of the linear model
of coregionalization in terms of variograms.
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employed full Bayesian inference by assigning priors to ¢ and computing the pos-
terior distribution through some sampling procedure. Examples include Higdon
et al. (2008) and Conti and O’Hagan (2010) under the LMC framework or Boyle
and Frean (2005a) and Calder (2007) under the process convolution approach.

In the thesis, we use the marginal likelihood to find point estimates of the pa-
rameter vector, $ In the case of the LMC, in which the coregionalization matri-
ces must be positive semidefinite, we use an incomplete Cholesky decomposition

B, = L,L], with L, € R°*F_ as suggested in Bonilla et al. (2008). The elements

of the matrices L, are considered to be part of the vector ¢.

2.2.2 Prediction

The predictive distribution for a new set of input vectors X, is (Rasmussen and

Williams, 2006)

p(Y*|Y7X>X*7¢) =N (Y*“l’y*ly?Ky*ly) ) (2'23)
with

Hy.ly = Kf*,f(Kf,f + E)_ly>
Ky y =K —Ke(Keg + 3)7'K{ ¢+ 5.,

y«ly

where we have used Kg, ¢, as a compact notation to indicate when the covariance

matrix is evaluated at the inputs X,, with a similar notation for Kg, ¢.

Once we have provided a model to describe the uncertainty in the predictions,
the next step usually involves making a decision related to the problem at hand
(Bishop, 2006). Decision theory is the mathematical framework that studies how
to make optimal decisions given the uncertainty in the prediction. These optimal
decisions are made by minimizing an ezpected loss or risk, by taking the average
of a loss function with respect to the predictive distribution (Rasmussen and
Williams, 2006). For the single output case, define L(y.,y(x.)) as the loss we
would incur in approximating v, (which is the true unknown value) with the
value §(x.), provided by the model. In practice, we do not know the probability

distribution for y,, so we use the predictive distribution given by the model to
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average over all values of y,. The expected loss is then

B[] = / Ly, ()l ., data)dy.

A common loss function in regression problems is the squared-loss, (. — 7(x,)).
With this loss function, the risk follows

B[] = / (5. — §(x.))2p(ya ., data)dy.

Minimizing the above expression with respect to g(x.) leads to the following

expression for the optimal prediction

goptimal(x*) = /y*p(y*‘x*u data)dy* = Ey* [y*]u

that corresponds to the mean prediction given by the predictive distribution. In

the multivariate case, it just corresponds to py,|y .

In geostatistics, the framework that allows for optimal predictions in the multi-
variate case is known by the general name of cokriging (Goovaerts, 1997). Pre-
diction for a particular output fy(x,) is obtained as the result of the following

linear estimator,

D ns(xx)

fd(X* — pa(Xy) Z Z Aoy (%) [fs(Xa) = 115(Xa,)]

s=1 as=1

where \,, (x.) are the weights assigned to the output data fs(x,,), is(Xa,) are the
expected values of fy(x,,), and ng(x,) < N. Cokriging estimators are required
to be unbiased (E[fs(x.) — fa(x.)] = 0), and minimize the error variance, o2,

between the true value and the estimator prediction,

o2 (x,) = var | fq(x,) — fd(x*) )

The weights A\, (x.) are those that minimize 0%(x.).

In the cokriging literature, each output function f;(x) is decomposed into a resid-
ual component R;(x) and a trend component jiq(x), fa(x) = Ra(x) + pa(x), Vd.

Residuals Ry(x) are assumed to be stationary Gaussian processes with mean equal
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zero and covariance kq4(h), while two different residuals, R(x) and Ry (x), have
cross-covariance kg g (h). If the means {pug(x)}2_, are considered to be known
and constants,® in particular zero, it can be shown that for a matrix of inputs

X., the cokriging weights are given as (Goovaerts, 1997),
A= K;,fl'K;l';,fa

where K¢ ¢ is a valid positive semidefinite matrix. Predictions for f are then given
as f = ATf = K. e K¢ %f , that matches the mean prediction of the predictive
distribution in equation (2.23), for the case of noise-free observations.

Cokriging can be considered as a non-Bayesian version of prediction with Gaus-
sian processes, in which the predictor is obtained directly from the loss function
(the variance of the error in this case). Contrast this with the Bayesian perspec-
tive of GPs, where the predictive distribution is obtained in a first stage of the
analysis, while the loss function appears at the end, as part of the decision stage.
This difference between Bayesian and non-Bayesian paradigms was highlighted

in Rasmussen and Williams (2006, page 22).

As part of the inference process, we might also be interested in computing the pos-
terior distribution over the latent functions. To keep the notation uncluttered, as-
sume R, = 1. Letu = [u],ug,...,u}]", where uy = [ug(x1), ug(X2), . .., ug(xn)] ",
then the posterior distribution over the latent functions u, p(uly, X, qg) can be

computed as
p(uly, X, @) = N (u|ptuly, Kujy); (2.24)
with

pay = K¢, (Keg + )y,
Kuy = Kuu — K{, (Keg + ) K,

where K,y is a block-diagonal matrix with blocks given by K, . In turn, the
elements of Ky, v, are given by kq(x,x’) for {x,}2 ;. Also K¢, is a matrix with

blocks K¢, v,, where K, ,,, has entries given by ky, ., (x,x’) in equation (2.14).

6This is a special case of cokriging, known as simple cokriging. Different assumptions over
{pa(x) L lead to different cokriging estimators. For other variants of cokriging, the reader is
referred to Goovaerts (1997).
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In the next section, we present an example of multivariate regression with Gaus-

sian processes using the tools developed so far.

2.3 Multivariate regression for gene expression

In this section we present an example in which we compare the linear model of
coregionalization and the convolved multiple output covariance for multivariate
regression in gene expression data.

Microarray technology has made the simultaneous measurement of mRNA from
thousands of genes possible. Transcription is governed by the presence or absence
of transcription factor (TF) proteins that act as switches to turn on and off the
expression of the genes. Most of these methods are based on assuming that there
is an instantaneous linear relationship between the gene expression and the pro-
tein concentration. We compare the performance of the intrinsic coregionalization
model and the convolved GPs for two independent time series or replicates of 12
time points collected hourly throughout Drosophila embryogenesis in wild-type
embryos (Tomancak et al., 2002). For preprocessing the data, we follow Honkela
et al. (2010). We concentrate on a particular transcription factor protein, namely
twi, and the genes associated with it. The information about the network con-
nections is obtained from the ChIP-chip experiments. This particular TF is a
key regulator of mesoderm and muscle development in Drosophila (Zinzen et al.,
2009).

After preprocessing the data, we end up with a dataset of 1621 genes with ex-
pression data for N = 12 time points. It is believed that this set of genes are
regulated by at least the twi transcription factor. For each one of these genes, we
have access to 2 replicates. Each gene is considered to be an output, y,4(t), while
the transcription factor is assumed to be a latent function, u(t), that triggers the
expression of the genes. Out of the 1621 genes, we randomly select D = 50 genes
from replicate 1 for training a full multiple output GP model based on either the
LMC framework or the convolved multiple output covariance. The corresponding
50 genes of replicate 2 are used for testing, and results are presented in terms of
the standardized mean square error (SMSE) and the mean standardized log loss
(MSLL) as defined in Rasmussen and Williams (2006).” The parameters of both

"The definitions for the SMSE and the MSLL we have used here are slightly different from the
ones provided in Rasmussen and Williams (2006). Instead of comparing against a Gaussian with
a global mean and variance computed from all the outputs in the training data, we compare
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2.3. MULTIVARIATE REGRESSION FOR GENE EXPRESSION

the LMC and the convolved GPs are found through the maximization of the log-
marginal likelihood in equation (2.20), by means of a scaled conjugate gradient
procedure, and using only the data from replicate 1. We run the scaled conjugate
gradient routine for 100 iterations. Once we have estimated the hyperparameters
of the covariance function, we test both methods over the outputs in replicate 2,
by conditioning on the outputs of replicate 1. In practice then, we assume indi-
rectly that both replicates are correlated, in the sense that they are realizations
of the same multivariate Gaussian process. We repeated the experiment 10 times
using a different set of 50 genes each time. We also repeated the experiment se-
lecting the 50 genes for training from replicate 2 and the corresponding 50 genes
of replicate 1 for testing. For testing over the genes of replicate 1, we condition
on the genes of replicate 2.

Since we are interested in a reduced representation of the data, we assume that
@ =1 and R, = 1, for the LMC and the convolved multiple output GP in
equations (2.1) and (2.12), respectively. For the LMC model, we follow Bonilla
et al. (2008) and assume an incomplete Cholesky decomposition for B; = quNJlT,
where Ly € 50! and as the basic covariance k,(x,X') we assume the squared
exponential covariance function (Rasmussen and Williams, 2006, p. 83). For the
convolved multiple output GP we employ the covariance in equation (2.17), with

the appropriate scaling factors.

Train set Test set | Method | Average SMSE | Average MSLL
LMC | 0.6069 + 0.0294 | —0.2687 £ 0.0594

CMOC | 0.4859 £ 0.0387 | —0.3617 £ 0.0511
LMC | 0.6194 +0.0447 | —0.2360 £ 0.0696

CMOC | 0.4615+£0.0626 | —0.3811 £ 0.0748

Replicate 1 | Replicate 2

Replicate 2 | Replicate 1

Table 2.1: Standardized mean square error (SMSE) and mean standardized log loss (MSLL)
for the gene expression data for 50 outputs. CMOC stands for convolved multiple output
covariance. The experiment was repeated ten times with a different set of 50 genes each time.
Table includes the value of one standard deviation over the ten repetitions. More negative
values of MSLL indicate better models.

Table 2.1 shows the results of both methods over the test set for the two different
replicates. It can be seen that the convolved multiple output covariance (appear-

ing as CMOC in the table), outperforms the LMC covariance both in terms of
SMSE and MSLL.

against a Gaussian with local means and local variances computed from the training data
associated to each output.
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FBgn0038617 MSLL —0.60185 SMSE 0.27299 FBgn0038617 MSLL -1.3965 SMSE 0.056511
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Figure 2.1: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216
(second row) using the linear model of coregionalization (figures 2.1(a) and 2.1(c)) and the
convolved multiple-output covariance (figures 2.1(b) and 2.1(d)) with @ = 1 and R, = 1. The
training data comes from replicate 1 and the testing data from replicate 2. The solid line
corresponds to the predictive mean, the shaded region corresponds to 2 standard deviations of
the prediction. Performances in terms of SMSE and MSLL are given in the title of each figure
and appear also in table 2.2. The adjectives “short” and “long” given to the length-scales in
the captions of each figure, must be understood relative to each other.

Figure 2.1 shows the prediction made over the test set (replicate 2 in this case)
by the two models for two particular genes, namely FBgn0038617 (figure 2.1,
first row) and FBgn0032216 (figure 2.1, second row). The black dots in the
figures represent the gene expression data of the particular genes. Figures 2.1(a)
and 2.1(c) show the response of the LMC and figures 2.1(b) and 2.1(d) show
the response of the convolved multiple output covariance. It can be noticed
from the data that the two genes differ in their responses to the action of the

transcription factor, that is, while gene FBgn0038617 has a rapid decay around
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time 2 and becomes relatively constant for the rest of the time interval, gene
FBgn0032216 has a smoother response within the time frame. The linear model
of coregionalization is driven by a latent function with a length-scale that is shared
across the outputs. Notice from figures 2.1(a) and 2.1(c) that the length-scale
for both responses is the same. On the other hand, due-to the non-instantaneous
mixing of the latent function, the convolved multiple output framework, allows
for the description of each output by using its own length-scale, which gives an
added flexibility for describing the data.

Table 2.2 (first four rows) shows the performances of both models for the genes
of figure 2.1. CMOC outperforms the linear model of coregionalization for both
genes in terms of SMSE and MSLL.

Test replicate | Test genes | Method | SMSE | MSLL
LMC | 0.2729 | —0.6018

Renlicate 2 FBgn0038617 | 160 | 0.0565 | —1.3965
ephcate FBen0032216 | LMC | 07621 [ —0.0998

& CMOC | 0.1674 | —0.8443

LMC | 0.2572 | —0.5699

Renlicate 1 FBgn0010531 | -\ 16¢ | 0.0446 | —1.3434
P FBan0004007 | PMC | 04984 [ —0.3069

& CMOC | 0.0971 | —1.0841

Table 2.2: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for
the genes in figures 2.1 and 2.2 for LMC and CMOC. Gene FBgn0038617 and gene FBgn0010531
have a shorter length-scale when compared to the length-scales of genes FBgn0032216 and
FBgn0004907.

A similar analysis can be made for figures 2.2(a), 2.2(b), 2.2(c) and 2.2(d). In
this case, the test set is replicate 1 and we have chosen two different genes,
FBgn0010531 and FBgn0004907 with a similar behavior to the ones in figure
2.1. Table 2.2 (last four rows) also highlights the performances of both mod-
els for the genes of figure 2.2. Again, CMOC outperforms the linear model of
coregionalization for both genes and in terms of SMSE and MSLL.

Having said this, we can argue that the performance of the LMC model can be
improved by either increasing the value of () or the value R,, or both. For the
intrinsic coregionalization model, we would fix the value of ) = 1 and increase the
value of R;. Effectively, we would be increasing the rank of the coregionalization
matrix By, meaning that more latent functions sampled from the same covariance
function are being used to explain the data. In a extreme case in which each

output has its own length scale, this translates into equating the number of latent
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FBgn0010531 MSLL —0.56996 SMSE 0.25721 FBgn0010531 MSLL -1.3434 SMSE 0.044655
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Figure 2.2: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907
(second row) using the linear model of coregionalization (figures 2.2(a) and 2.2(c)) and the
convolved multiple-output covariance (figures 2.2(b) and 2.2(d)) with @ = 1 and R, = 1. The
difference with figure 2.1 is that now the training data comes from replicate 2 while the testing
data comes from replicate 1. The solid line corresponds to the predictive mean, the shaded
region corresponds to 2 standard deviations of the prediction. Performances in terms of SMSE
and MSLL are given in the title of each figure.

functions to the number of outputs, or in other words assuming a full rank for
the matrix B;. This leads to the need of estimating the matrix B; € R°*P_ that
might be problematic if D is high. For the semiparametric latent factor model,
we would fix the value of R, = 1 and increase (), the number of latent functions
sampled from () different GPs. Again, in the extreme case of each output having
its own length-scale, we might need to estimate a matrix A € RD*D , which could
be problematic for a high value of outputs. In a more general case, we could also
combine values of ) > 1 and R, > 1. We would need then, to find values of @
and R, that fit the different outputs with different length scales.
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2.4. SUMMARY

Therefore, in the above context, we have seen that the convolved covariance could

offer an explanation of the data through a simpler model or converge to the LMC,

if needed.

2.4 Summary

In this chapter we have presented different alternatives for constructing valid
covariance functions to be used in a multivariate Gaussian process framework.
We introduced the convolved multiple output covariance and saw that it contains
the Linear Model of Coregionalization and the Process Convolutions as particular
cases. We have also specified the elements that we will use in the following
chapters, namely, parameter estimation by maximum likelihood and predictive
posterior distribution.

The linear model of coregionalization can be interpreted as an instantaneous
mixing of latent functions, in contrast to a convolved multiple output framework,
where the mixing is not necessarily instantaneous. Experimental results presented
in publication v showed that there is a benefit in using this non-instantaneous
mixing in terms of predictive precision. This augmented performance was more
noticeable in systems with a presence of some dynamics.

One important question in the process convolution framework and in the con-
volved multiple output covariance is how to choose the kernel smoothing func-
tions {Gd,q}gz’? 4=1- Although, there are non-parametric alternatives (Ver Hoef
and Barry, 1998) as well as plenty of parametric ones (Higdon, 2002), in this thesis
we are interested in dynamical systems, for which the present alternatives are not
suitable. In the next chapter, we will study moving-average functions obtained
from linear differential equations, that will allow us to encode prior knowledge of

the system’s dynamics in the covariance function.
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Chapter 3
Linear Latent force models

In chapter 2 we established a general framework to develop covariance func-
tions for multivariate regression in a Gaussian processes context. We proposed
the convolved multiple output covariance as a method that generalizes different
other alternatives in the literature and that is parameterized in terms of a set of
moving-average functions G ,(x) and a set of covariances k,(x,x’). One impor-
tant question for making the approach practical is how to specify the moving-

average functions and the covariances of the latent functions.

It is well known, from the theory of dynamical systems, that there exists a cor-
respondence between a linear differential equation and a convolution transform,
and that this correspondence is established through what is called as the impulse
response of the system. From a mathematical point of view, the impulse response
is better known as the Green’s function and it is a standard method used to solve
differential equations (Griffel, 2002; Rynne and Youngson, 2008).

In this chapter, we motivate the use of Green’s functions as alternatives to
smoothing kernels by introducing a generative model of the noisy outputs, which
we call linear latent force models or simply latent force models (LFM). A latent
force model introduces basic mechanistic principles in the formulation of a tradi-
tional latent variable model. Our motivation is to augment a latent variable model
with the ability to incorporate salient characteristics of the data (for example,
in a mechanical system inertia or resonance), even knowing that the differential
equation from which it is derived does not reflect the real dynamics of the sys-

tem. For example, for a human motion capture dataset, we develop a mechanistic

56



3.1. FROM LATENT VARIABLES TO LATENT FORCES

model of motion capture that does not exactly replicate the physics of human
movement, but nevertheless captures important features of the movement.

The linear latent force model is a generalization of the work of Lawrence et al.
(2007) and Gao et al. (2008), who encoded first order differential equations in the
covariance function of a multivariate Gaussian process.

In section 3.1, we introduce the linear latent force model as a latent variable
model. We then see how the latent force model translates into a multivariate
Gaussian process with a convolved multiple output covariance in section 3.2. In
section 3.3, we present a second order latent force model for motion capture data.
Finally, section 3.4 presents related work.

Remark. Section 3.1 and 3.3 were originally presented in publication ii. Section
3.2, which connects the latent force model with chapter 2, is new. The section

on related work is also new.

3.1 From latent variables to latent forces

From the perspective of machine learning, the linear latent force model can be seen
as a type of latent variable model. In a latent variable model we may summarize
a high dimensional data set with a reduced dimensional representation. For
example, if our data consists of N points in a D dimensional space we might
seek a linear relationship between the data, Y = [y1,...,yp] € RV*P with
ya € RV*1 and a reduced dimensional representation, U = [uy, ..., ug] € RV*€@
with u, € R¥*!, where @ < D. From a probabilistic perspective this involves an

assumption that we can represent the data as
Y=UW' +E, (3.1)

where E = [ey,...,ep| is a matrix-variate Gaussian noise: each column, e; €
RN*L (1 < d < D), is a multivariate Gaussian with zero mean and covariance
34, this is eg ~ N (0,3,). The usual approach, as undertaken in factor analysis
(FA) and principal component analysis (PCA), to dealing with the unknowns
in this model is to integrate out U under a Gaussian prior and optimize with
respect to W € RP*@Q (for a non-linear variant of the model it can be convenient
to do this the other way around, this is, integrate out W and optimize U, see for

example Lawrence (2005)). If the data has a temporal nature, then the Gaussian
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3.1. FROM LATENT VARIABLES TO LATENT FORCES

prior in the latent space could express a relationship between the rows of U,
u;, = I'uy, , +n, where I' is a transformation matrix, 7 is a general noise process,
usually Gaussian, and uy, is the n-th row of U, which we associate with time t,,.
This is known as the Kalman filter/smoother. Normally the times ¢, are taken
to be equally spaced, but more generally we can consider a joint distribution for

p(UJt), with t = [t; ...¢x]", which has the form of a Gaussian process,

Q
p(U|t) = HN <u¢I|0’Kuqvuq) ’

q=1

where we have assumed zero mean and independence across the () dimensions
of the latent space. The GP makes explicit the fact that the latent variables
are functions, {uq(t)}qQ:17 and we have now described them with a process prior.
The elements of the vector u, = [u,(t1), ..., u,(ty)]", represent the values of the
function for the g-th dimension at the times given by t. The matrix Ky, 4, is the

covariance function associated to wu,(t) computed at the times given in t.

Such a GP can be readily implemented. Given the covariance functions for
{uq(t)}le, the implied covariance functions for {y.(t)}5_, are straightforward
to derive. In Teh et al. (2005) this is known as a semiparametric latent factor
model. If the latent functions w,(t) share the same covariance, but are sampled
independently, this is known as the multi-task Gaussian process prediction model
(Bonilla et al., 2008) with a similar model introduced in Osborne et al. (2008).
Both models were introduced in chapter 2 as particular cases of the linear model
of coregionalization. Historically the Kalman filter approach has been preferred,
perhaps because of its linear computational complexity in N. However, recent ad-
vances in sparse approximations have made the general GP framework practical

(see Quinonero-Candela and Rasmussen, 2005b, for a review).

So far the model described relies on the latent variables to provide the dynamic
information. The novelty here is that we include a further dynamical system
with a mechanistic inspiration. We now use a mechanical analogy to introduce
it. Consider the following physical interpretation of equation (3.1): the latent
functions, wu,(t), are @ forces and we observe the displacement of D springs,
ya(t), to the forces. Then we can reinterpret (3.1) as the force balance equation,
Yk = UST+E. We have assumed that the forces are acting, for example, through
levers, so that we have a matrix of sensitivities, S € ®°*?, and a diagonal matrix

%DXD

of spring constants, kK € , with elements {xq}%,. The original model is
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recovered by setting W' = STk™! and é; ~ N (O, nTEd&). The model can be
extended by assuming that the spring is acting in parallel with a damper and

that the system has mass, allowing us to write,
YM+ YV + Yk =US" +E, (3.2)

where M and V are diagonal matrices of masses, {m4}2_,, and damping co-
efficients, {vq}2.,, respectively, Y is the first derivative of Y with respect to
time (with entries {gq(t,)} for d =1,...D and n = 1,...,N), Y is the second
derivative of Y with respect to time (with entries {4(t,)} for d = 1,...D and
n=1,...,N), and E is once again a matrix-variate Gaussian noise. Equation
(3.2) specifies a particular type of interaction between the outputs Y and the set
of latent functions U, namely, that a weighted sum of the second derivative for
ya(t), §a(t), the first derivative for y4(t), ya(t), and y,(t) is equal to the weighted
sum of functions {uq(t)}qul plus random noise. The second order mechanical
system that this model describes will exhibit several characteristics which are im-
possible to represent in the simpler latent variable model given by (3.1), such as
inertia and resonance. This model is not only appropriate for data from mechan-
ical systems. There are many analogous systems which can also be represented
by second order differential equations, for example Resistor-Inductor-Capacitor
circuits. A unifying characteristic for all these models is that the system is being
forced by latent functions, {uq(t)}qul. Hence, we refer to them as latent force
models.

One way of thinking about this model is to consider puppetry. A marionette
is a representation of a human (or animal) controlled by a limited number of
inputs through strings (or rods) attached to the character. This limited number
of inputs can lead to a wide range of character movements. In the model, the
data is the movements of the marionette, and the latent forces are the inputs to

the system from the puppeteer.

3.2 From latent forces to convolved covariances

In the last section we provided a general description of the latent force model
idea and commented how it compares to previous models in the machine learning

and statistics literature. In this section we specify the operational procedure
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to obtain the Gaussian process model related to the outputs. We illustrate the
methodology using a first-order latent force model, for which we assume there are
no masses associated to the outputs and the damper constants are equal to one.
We then generalize the operational procedure for latent force models of higher

order and multidimensional inputs.

3.2.1 First-order Latent Force Model

Assume a simplified latent force model, for which only the first derivative of the
outputs is included. This is a particular case of equation (3.2), with masses equal
to zero and damper constants equal to one. With these assumptions, equation

(3.2) can be written as
Y + Yk =US" +E. (3.3)
Individual elements in equation (3.3) follow

dya(t)
dt

+ Kaya(t Zquuq + éa(t). (3.4)
Given the parameters {sq}2_, and {Sy,}% 4—1» the uncertainty in the outputs is
given by the uncertainty coming from the set of functions {uq(t)}qQ:1 and the noise
éq4(t). Strictly speaking, this equation belongs to a more general set of equations
known as stochastic differential equations (SDE) that are usually solved using
special techniques from stochastic calculus (Oksendal, 2003). The representation
used in equation (3.4) is more common in physics, where it receives the name of
Langevin equations (Reichl, 1998, p. 251-254). For the simpler equation (3.4),

the solution is found using standard calculus techniques and is given as

Ya(t) = ya(to)e ™" + Z Sa,qGalug)(t) + Galéa] (1), (3.5)

q=1

where y4(to) correspond to the value of y4(t) for ¢t = ¢y (or the initial condition)

and G, is a linear integral operator that follows

Galtug) (1) = falt, ug(t)) = / e—ilt=")y, (F)dr.

60



3.2. FROM LATENT FORCES TO CONVOLVED COVARIANCES

The integral operation corresponds to a convolution transform and we can im-
mediately recognize the analogy with equation (2.11), with R, = 1, where the
smoothing kernel is given by G4(x — z) = e #(*=2)_ Notice that the smoothing
kernel here does not depend on parameters related to the latent function, u,(t).
However, the sensitivity coefficient Sg , could be easily incorporated into the mov-
ing average function, and we would have G4,(x — z) = Sy e "¢@=2),

Our noise model Gy[é,4](f) in equation (3.5) has a particular form depending on the
linear operator G;. For example, assuming a white noise process prior for ey4(t),
it can be shown that the process Gy[é4](t) corresponds to the Ornstein-Uhlenbeck
(OU) process (Reichl, 1998). In what follows, we will allow the noise model to
be a more general process and we denote it by wg4(t). It could be an independent
Gaussian process as in chapter 2, a noise process, or even both. For the current
formulation, we also assume that the initial conditions {ya(to)}2., are zero, so

that we can write again equation (3.5) as
Q
ya(t) =) SaqGalug)(t) +wal?).
q=1

We assume that the latent functions {uq(t)}gz1 are independent and each of them
follows a Gaussian process prior, this is, u,(t) ~ GP(0, ky,u,(t,t')). Following a
similar framework to the one exposed in chapter 2, {y4(t)}%., correspond to a

Gaussian process with covariances

kymyd/ (t> t/) = kfmfd/ <t7 t/) + kw,i,wd/ (t7 tl>(5d,d’7
where kg, ¢, (£,1') is given as
Q
Koo () = SaqSw gk, o, (t,1).

q=1

Furthermore, the covariance ka s (¢,t) is equal to
fd ’fd/

¢ ¢
kfg’f‘;z/(t,t/) :/0 e”d(tT)/O e*”d’(t/”/)kumuq(ﬂ )dr'dr. (3.6)

Notice that this equation has the same form than equation (2.13), used to estab-

lish the basic covariance in the convolved multiple output covariance framework.
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In our current framework, the form for the function k£, ., (¢,t') must be such that
we can solve both integrals in equation (3.6) and find an analytical expression
for the covariance ky, ;,(¢,'). In this chapter, we assume that the covariance
for each latent force u,(t) follows the squared-exponential (SE) form (Rasmussen
and Williams, 2006)

Ky, (£, 1) = exp (— (t ;;5/)2) : (3.7)

q

where £, is known as the length-scale. We can compute the covariance ks, 1, (t,t)

obtaining (Lawrence et al., 2007)

ml
kfiaf;’, <t7 t/> = \/; : [hd',d(t/7 t) + hd,d’ (tv tl)]v (38)

where

eXP(ng/) /
————exp(—kgt exp(kgt
i exp(—rat ) explrat)

t—t t
x |erf T — Vg, d' + erf g— + Vg,d'
q q

— exp(—Kqt) {erf (;— — yq,d/) + erf(l/%d/)] }7
q

with erf(z) the real valued error function, erf(x) = \% Iy exp(—y?)dy, and v 4 =

Eqmd/Z.

ha a(t',t) =

The covariance function in equation (3.8) is nonstationary. For the stationary
regime, the covariance function can be obtained by writing ¢’ = ¢ + 7 and taking
the limit as ¢ tends to infinity. This is, k?g/}g (7) = lim¢ oo kya go (¢, + 7). The
stationary covariance could also be obtained making use of the power spectral
density for the stationary processes u,(t), U,(w) and the transfer function H(w)
associated to h(t—s) = e (=) the impulse response of the first order dynamical
system. Then applying the convolution property of the Fourier transform to
obtain the power spectral density of fy(t), Fy(w) and finally using the Wiener-

Khinchin theorem to find the solution for f;(¢) (Shanmugan and Breipohl, 1988).

Due to the independence between u,(t) and wy(t), the cross-covariance between
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the output y4(¢) and the latent force u,(t) reduces to ky, ., (¢, 1), given as

K (1) = Y950 (02 ) excp( 1~ )

t— t' t/
x |erf "~ Vgd | +erf 7 +vgal |-
q q

3.2.2 Higher-order Latent Force Models

In general, a latent force model of order M can be described by the following

equation
> D"[Y]A,, =US" +E, (3.9)

where D™ is a linear differential operator such that D™[Y] is a matrix with

d™ya(t)
d'nlt

A, q that weights the contribution of D™y,(t).

elements given by D™y, (t) = and A,, is a diagonal matrix with elements

We follow the same procedure described in section 3.2.1 for the model in equation

(3.9) with M = 1. Each element in expression (3.9) can be written as

M
D'y = Z A, aD"ya(t) Z Sa,qtq(t) + éq(t), (3.10)

m=0

where we have introduced a new operator D}! that is equivalent to applying
the weighted sum of operators D™. For a homogeneous differential equation in
(3.10), this is u,(t) = 0 for ¢ = 1,...,Q and é4(t) = 0, and a particular set of
initial conditions {D™y,(to)} -, it is possible to find a linear integral operator
G, associated to Dé” that can be used to solve the non-homogeneous differential

equation. The linear integral operator is defined as

%M@:mmmmzéammmmw, (3.11)

where G4(t, s) is known as the Green’s function associated to the differential oper-

ator DY, u(t) is the input function for the non-homogeneous differential equation
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and 7 is the input domain. The particular relation between the differential op-

erator and the Green’s function is given by
Dy'[Galt, s)] = 6(t — ), (3.12)

with s fixed, G4(t, s) a fundamental solution that satisfies the initial conditions
and 6(t — s) the Dirac delta function (Griffel, 2002). Strictly speaking, the dif-
ferential operator in equation (3.12) is the adjoint for the differential operator
appearing in equation (3.10). For a more rigorous introduction to Green’s func-
tions applied to differential equations, the interested reader is referred to Roach
(1982). In the signal processing and control theory literature, the Green’s func-
tion is known as the impulse response of the system. Following the general latent

force model framework, we write the outputs as

stqu Uq +wd< )

where wgy(t) is again an independent process associated to each output. We
assume once more that the latent forces follow independent Gaussian process
priors with zero mean and covariance k,,, (t,t'). The covariance for the outputs
Kygy, (1) is given as ky, ¢, (£, ') + kuyw, (t,1)0aa, with kg, r, (t,1') equal to

Q
kpop, (t, 1) = Z qud/’q/ Ga(t = 7)Ga (t' — T kg, (7, 7)dr'dT  (3.13)

M@ Il

Sdaqsd’,qkfg,fg, (t, t’)’

1

q

and kg g0 (t,t") following

kga go (¢, t') / /,Gd (t—7)Ga(t' — 7")kyyu, (T, 7")d7dT. (3.14)

Learning and inference for the higher-order latent force model is done as ex-
plained in subsections 2.2.1 and 2.2.2, respectively. The Green’s function is de-
scribed by a parameter vector ¢, and with the length-scales {1,bq} L ={{ }

describing the latent GPs, the vector of hyperparameters is given as Oppy =

{010, {Sq 9 = 1,{1,bq}(?:1}. The parameter vector @ppy is estimated by
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maximizing the logarithm of the marginal likelihood in equation (2.20), where the
elements of the matrix Ky are computed using expression (3.13) with ks 1, (t,t)
given by (3.14). For prediction we use expression (2.23) and the posterior distri-
bution is found using expression (2.24), where the elements of the matrix Kg ,,

Kfoug(t,t) = kya,, (¢,t), are computed using
Sua | Gult = T (V)0 (3.15)
T

3.2.3 Multidimensional inputs

In the sections above we have introduced latent force models for which the input
variable is one-dimensional. For higher-dimensional inputs, x € R?, we can use
linear partial differential equations to establish the dependency between the latent
forces and the outputs. The initial conditions turn into boundary conditions,
specified by a set of functions that are linear combinations of y4(x) and its lower
derivatives, evaluated at a set of specific points of the input space. Inference and
learning is done in a similar way to the one-input dimensional latent force model.
Once the Green’s function associated to the linear partial differential operator has
been established, we employ similar equations to (3.14) and (3.15) to compute
kg,.p,(x,x') and ky, (%, x’) and the hyperparameters appearing in the covariance

function are estimated by maximizing the marginal likelihood.

3.3 A Latent Force Model for Motion Capture
Data

In section 3.1 we introduced the analogy of a marionette’s motion being controlled
by a reduced number of forces. Human motion capture data consists of a skeleton
and multivariate time courses of angles which summarize the motion. This motion
can be modelled with a set of second order differential equations which, due to
variations in the centers of mass induced by the movement, are non-linear. The
simplification we consider for the latent force model is to linearize these differential

equations, resulting in the following second order system,

) Q
Cyat) | dyalt) | Kaya(t) = Y Saquq(t) + éa(t). (3.16)

M 2 at
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Whilst (3.16) is not the correct physical model for our system, it will still be
helpful when extrapolating predictions across different motions, as we shall see
later. Note also that, although similar to (3.4), the dynamic behavior of this
system is much richer than that of the first order system, since it can exhibit
inertia and resonance. In what follows, we will assume without loss of generality

that the masses are equal to one.

For the motion capture data, y4(t) corresponds to a given observed angle over
time, and its derivatives represent angular velocity and acceleration. The system
is summarized by the undamped natural frequency, wyqy = /K4, and the damping
ratio, (4 = %Ud/ /K4 Systems with a damping ratio greater than one are said
to be overdamped, whereas underdamped systems exhibit resonance and have a
damping ratio less than one. For critically damped systems (; = 1, and finally,

for undamped systems (this is no friction) (4 = 0.

Ignoring the initial conditions, the solution of (3.16) is given by the integral

operator of equation (3.11), with Green’s function

Ga(t,s) = widexp(—ad(t — 5)) sin(wq(t — s)), (3.17)

where wy = \/4kg — v3/2 and oy = v4/2.

According to the general framework described in section 3.2.2, the covariance
function between the outputs is obtained by solving expression (3.14), where
Kug,uy (t, 1) follows the SE form in equation (3.7). Solution for kj, 7 (t,t') is then
given as (Alvarez et al., 2009)

KO [hq(ﬂ’};d/7 Yd, t, t,) + hq(’)/d, f’?d” t,, t) + hq(’)/d’; A’}/Jd, t, t/) + hqﬁm Yd’ t/7 t)
- hq(:?d’a A’y/da t7 t,) - hq(:?da ﬁd’; tlv t) - hq(’Yd’a Yd» t7 t,) - hq(,}/da Yd tlv t)]a

where Ky = ly\/T/8wawar, Ya = g + jwa and 74 = ag — jwy, and the functions

hq (’A}/Jd/, Yd t, t/) follow

TQ(VdU t/7 t) - G_thTq (7017 t/7 O)
Yd + Var

hQ(F)/d’a Vd; ta t/) =

Y
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with Ty (ya, £, ')

2 C5) ratet _ () )

@2
—e( Iz )e('yd’t)w(—jzd/ﬂ((]))’ (318)

and zg 4(t) = (t —t')/ly — ({yyar)/2. Note that zy ,(t) € C, and w(jz) in (3.18),
for z € C, denotes Faddeeva’s function w(jz) = exp(z?)erfc(z), where erfc(z) is
the complex version of the complementary error function, erfc(z) =1 — erf(z) =
\/%? f:o exp(—v?)dv. Faddeeva’s function is usually considered the complex equiv-
alent of the error function, since |w(jz)| is bounded whenever the imaginary part
of jz is greater or equal than zero, and is the key to achieving a good numerical
stability when computing (3.18) and its gradients.

Similarly, the cross-covariance between latent functions and outputs in equation
(3.15) is given by

— ft]‘sal,tz\/E

/ ~ / /
kfgvuq(t’t ) - j4wd [Tq(%lv i1 ) - Tq(’yda t,t )]

Motion Capture data

Our motion capture data set is from the CMU motion capture data base.! We
considered 3 balancing motions (18, 19, 20) from subject 49. The subject starts
in a standing position with arms raised, then, over about 10 seconds, he raises
one leg in the air and lowers his arms to an outstretched position. Of interest to
us was the fact that, whilst motions 18 and 19 are relatively similar, motion 20
contains more dramatic movements. We were interested in training on motions
18 and 19 and testing on the more dramatic movement to assess the model’s
ability to extrapolate. The data was down-sampled by 32 (from 120 frames per
second to just 3.75) and we focused on the subject’s left arm. For the left arm,
we chose D = 9 outputs including the humerus (X, Y and Z rotations), the radius
(X rotation), the wrist (the Y rotation), the hand (X and Z rotations), and the
thumb (X and Z rotations). The number of latent forces is fixed to @ = 2.
Our objective was to reconstruct the movement of this arm for motion 20 given

the angles of the humerus and the parameters learned from motions 18 and 19

!The CMU Graphics Lab Motion Capture Database was created with funding from NSF
EIA-0196217 and is available at http://mocap.cs.cmu.edu.
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using two latent functions. First, we train the second order differential equation
latent force model on motions 18 and 19, treating the sequences as independent,
but sharing parameters (this is, the damping coefficients and natural frequencies
of the two differential equations associated with each angle were constrained to
be the same). The training is done by maximizing the log-marginal likelihood
in equation (2.20). Once the parameters are learned, we use them for testing
the extrapolation ability of the model over movement 20. For the test data, we
condition on the observations of the humerus orientation to make predictions for
the rest of the arm’s angles.

For comparison, we considered a regression model that directly predicts the angles
of the arm given the orientation of the humerus using standard independent
GPs with SE covariance functions. A similar setup is used, this is, we learn
hyperparameters for 6 independent GPs, having as inputs the humerus’ angle
rotations (three rotations) of motions 18 and 19. For testing, we use the three
angles of humerus for motion 20, and predict over the 6 other outputs. Results
are summarized in table 3.1, with some example plots of the tracks of the angles

given in figure 3.1.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09

Table 3.1: Root mean squared (RMS) angle error for prediction of the left arm’s configuration
in the motion capture data. Prediction with the latent force model outperforms the prediction
with regression for all apart from the radius’s angle.

In the next section, we present related work of differential equations in statistics

and machine learning.

3.4 Related work

Differential equations are the cornerstone in a diverse range of engineering fields

and applied sciences. However, their use for inference in statistics and machine
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(¢) Thumb X Rotation (d) Thumb Z Rotation

Figure 3.1: Predictions from the latent force model (solid line, grey error bars) and from direct
regression from the humerus angles (crosses with stick error bars). For these examples noise is
high due to the relatively small length of the bones. Despite this the latent force model does
a credible job of capturing the angle, whereas direct regression with independent GPs fails to
capture the trends.

learning has been less studied. The main field in which they have been used is

known as functional data analysis (Ramsay and Silverman, 2005).

From the frequentist statistics point of view, the literature in functional data
analysis has been concerned with the problem of parameter estimation in differ-

ential equations (Poyton et al., 2006; Ramsay et al., 2007): given a differential

M
m:O7

equation with unknown coefficients {A,,} how do we use data to fit those
parameters? Notice that there is a subtle difference between those techniques and
the latent force model. While these parameter estimation methods start with a
very accurate description of the interactions in the system via the differential

equation (the differential equation might even be non-linear as in Perkins et al.
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(2006)), in the latent force model, we use the differential equation as part of the
modeling problem: the differential equation is used as a way to introduce prior
knowledge over a system for which we do not know the real dynamics, but for
which we hope, some important features of that dynamics could be expressed.
Having said that, we review some of the parameter estimation methods because

they also deal with differential equations with an uncertainty background.

Classical approaches to fit parameters @ of differential equations to observed
data include numerical approximations of initial value problems and collocation
methods (Ramsay et al. (2007) and Brewer et al. (2008) provide reviews and
detailed descriptions of additional methods).

The solution by numerical approximations include an iterative process in which
given an initial set of parameters @, and a set of initial conditions yg, a numer-
ical method is used to solve the differential equation. The parameters of the
differential equation are then optimized by minimizing an error criterion between
the approximated solution and the observed data. For exposition, we assume in
equation (3.10) that D = 1, @ = 1 and S;; = 1. We are interested in finding
the solution y(¢) to the following differential equation, with unknown parameters

0= {Am}M

Dy'y(t) = Y AnD™y(t) = ult),

In the classical approach, we assume that we have access to a vector of initial
conditions, yy, and data for u(t), u. We start with an initial guess for the
parameter vector 6y and solve numerically the differential equation to find a

solution y. An updated parameter vector 0 is obtained by minimizing

E0) = Il5(tn) — y(ta)]-

through any gradient descent method. To use any of those methods, we must be
able to compute 0F(0)/00, which is equivalent to compute dy(t)/06. In general,
when we do not have access to dy(t)/06, we can compute it using what is known
as the sensitivity equations (see Bard, 1974, chapter 8, for detailed explanations),
which are solved along with the ODE equation that provides the partial solution

y. Once a new parameter vector 6 has been found, the same steps are repeated
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until some convergence criterion is satisfied. If the initial conditions are not
available, they can be considered as additional elements of the parameter vector

0 and optimized in the same gradient descent method.

In collocation methods, the solution of the differential equation is approximated
using a set of basis functions, {¢;(t)}.,, this is y(t) = 327, Bigs(t). The basis
functions must be sufficiently smooth so that the derivatives of the unknown func-
tion, appearing in the differential equation, can be obtained by differentiation of
the basis representation of the solution, this is, D™y(t) = >_ 3;D™¢;(t). Colloca-
tion methods also use an iterative procedure for fitting the additional parameters
involved in the differential equation. Once the solution and its derivatives have
been approximated using the set of basis functions, minimization of an error cri-
teria is used to estimate the parameters of the differential equation. Principal
differential analysis (PDA) (Ramsay, 1996) is one example of a collocation method
in which the basis functions are splines. In PDA, the parameters of the differen-
tial equation are obtained by minimizing the squared residuals of the higher order
derivative DMy(t) and the weighted sum of derivatives {D™y(t)}¥=} instead of

m=0"

the squared residuals between the approximated solution and the observed data.

An example of a collocation method augmented with Gaussian process priors
was introduced by Graepel (2003). Graepel starts with noisy observations, y(t),
of the differential equation D}’y(¢), such that y(¢t) ~ N(Dy'y(t),0,). The solu-
tion y(t) is expressed using a basis representation, y(t) = > Fi¢i(t). A Gaus-
sian prior is placed over B8 = [f,..., 0], and its posterior computed under
the above likelihood. With the posterior over 3, the predictive distribution for
y(t.) can be readily computed, being a function of the matrix D} ® with ele-
ments {Dy@(tn)}gi,i:y It turns out that products D%@(D%@)T that appear

in this predictive distribution have individual elements that can be written as
S DY i) DY di(tw) = DIDY, S ¢i(ta)di(tw) or, using a kernel repre-
sentation for the inner products k(t,,, t,/) = ijl Oi(tn)bi(tn), as kpy, i, (tn, tw),
where this covariance is obtained by taking D)’ derivatives of k(t,t') with respect
to t and D}! derivatives with respect to ¢'. In other words, the result of the dif-
ferential equation D}’ y(t) is assumed to follow a Gaussian process prior with co-
variance kpar M, (t,t'). An approximated solution y(t) can be computed through
the expansion 7(t) = SN oznkpévﬁl (t,t,), where «, is an element of the vector

(KD{)Vft,’D(J)‘ﬂ, + 0,In)""y, where KD(%,D(J)V’Q/ is a matrix with entries ]{,"D(J)v’%fp(])\ﬂl (tn,tn)
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and y are noisy observations of D}fy(t).

Although, we presented the above methods in the context of linear ODEs, solu-
tions by numerical approximations and collocation methods are applied to non-
linear ODEs as well.

Gaussian processes have been used as models for systems identification (Solak
et al., 2003; Kocijan et al., 2005; Thompson, 2009). In Solak et al. (2003), a
non-linear dynamical system is linearized around an equilibrium point by means

of a Taylor series expansion (Thompson, 2009),

© ) (a |
o) =3 " -y

Vi

with a the equilibrium point. For a finite value of terms, the linearization above
can be seen as a regression problem in which the covariates correspond to the
terms (¢t — a)?, and the derivatives y')(a) as regression coefficients. The deriva-
tives are assumed to follow a Gaussian process prior with a covariance function
that is obtained as kU (¢, '), where the superscript j indicates how many deriva-
tive of k(t,t") are taken with respect to ¢ and the superscript j' indicates how
many derivatives of k(¢,t’) are taken with respect to ¢’. Derivatives are then es-
timated a posteriori through standard Bayesian linear regression. An important
consequence of including derivative information in the inference process is that
the uncertainty in the posterior prediction is reduced as compared to using only
function observations. This aspect of derivative information have been exploited
in the theory of computer emulation to reduce the uncertainty in experimental
design problems (Morris et al., 1993; Mitchell and Morris, 1994).

Gaussian processes have also been used to model the output y(¢) at time t; as a
function of its L previous samples {y(t—t;_;) }/,, a common setup in the classical
theory of systems identification (Ljung, 1999). The particular dependency y(t) =
g({y(t —tr_y) ), where g(-) is a general non- linear function, is modelled using
a Gaussian process prior, and the predicted value for the output y.(x) is used
as a new input for multi-step ahead prediction at times ¢;, with j > k (Kocijan
et al., 2005). Uncertainty about y.(tx) can also be incorporated for predictions
of future output values (Girard et al., 2003).

There has been a recent interest in introducing Gaussian processes in the state
space formulation of dynamical systems (Ko et al., 2007; Deisenroth et al., 2009;

Turner et al., 2010) for the representation of the possible nonlinear relationships
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between the latent space, and between the latent space and the observation space.

Going back to the formulation of the dimensionality reduction model, we have

w, = gi(u,_,) +mn,
Vi, = 82(u,) + €,

where n and £ are noise processes and g;(-) and go(-) are general non-linear
functions. Usually g;(-) and gs(+) are unknown, and research on this area has fo-
cused on developing a practical framework for inference when assigning Gaussian
process priors to both functions.

Finally, it is important to highlight here that in chapter 2 we introduced the
work of Calder (Calder, 2003, 2007, 2008) as an alternative to multiple-output

modeling. Her work can be seen in the context of state-space models,

U, = W, , +1,

Vi, = Gy, + €,

where y; and uy, are related through a discrete convolution over an independent
spatial variable. This is, for a fixed t,, yg"(s) = >, >, Gy (s — z;)ulr (z;) for a
grid of I spatial inputs {z;}/_;.

3.5 Summary

In this chapter we introduced the latent force model. A latent force model com-
bines linear differential equations with Gaussian processes to formulate a proba-
bilistic generative model of the data.

The moving-average functions G4(x) from chapter 2 were chosen in this chapter
as the Green’s functions associated to several differential equations. This is an
example of how we may introduce prior knowledge into the convolved multiple
output covariance formulation, namely, through the specification of a linear differ-
ential equation. An important point here is that we actually construct a kernel for
multiple outputs that encodes dynamical interactions between different systems,
allowing the use of non-parametric methods for prediction.

In some biology-oriented applications the differential equation is not a direct func-

tion of the latent force wu(t), but of a non-linear transformation of u(t), g(u(t)).
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Although, from the functional perspective, the solution for fy(t) is still a convo-
lution transform, the joint process {f;(¢)}L., is not a Gaussian process anymore
due to the non-linearity g(-). In those cases, the posterior distribution can be still
approximated using a Laplace approximation (Lawrence et al., 2007) or sampling
(Titsias et al., 2009).

For the above presentation of the latent force model, we assumed that the covari-
ances k,(t,t") were squared-exponential. However, more structured covariances
can be used. For example, in Honkela et al. (2010), the authors used a cas-
caded system to describe gene expression data for which a first order system, like
the one presented in equation (3.4), has as inputs u,(t) Gaussian processes with
covariance function (3.8).

In publication ii, we applied the latent force model of order M = 1 to gene
expression data with several transcription factors, as opposed to Lawrence et al.
(2007) where only a single transcription factor was considered. Additionally,
we established a physical interpretation of the multivariate Gaussian covariance
presented in section 2.1 as the latent force model covariance obtained from a Heat
equation with p input variables (Polyanin, 2002).

In the next chapter, we will present various methods that allow learning and

inference of latent force models for large values of N and D.
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Chapter 4
Efficient Approximations

In this thesis, the parameters in the covariance function for the multivariate
Gaussian processes are estimated using type II maximum likelihood. In type II
maximum likelihood, a gradient descent method is usually employed to obtain
point estimates of the parameter vector ¢. The objective function corresponds
to the logarithm of the marginal likelihood in equation (2.20), and the gradients
with respect to the parameters are computed according to (2.21). In both expres-
sions, the most computationally expensive step is the inversion of the covariance
matrix K, ,. Gradient descent methods require the iterative evaluation of both
equations (2.20) and (2.21), and, thus, the continuous evaluation of the inverse
of the covariance matrix.

The preferred method for finding the inverse of the symmetric positive definite
matrix Ky y is the Cholesky decomposition, which has computational complexity
of O(D3N?) and associated storage of O(D?*N?). The polynomial complexity in
both the computation of the inverse matrix and its storage makes that the direct
use of the matrix K , becomes prohibitively expensive for values of DN greater
than a few hundreds.

In recent years, different efforts in the GP machine learning community have
been spent in finding ways to reduce the computational complexity associated
with the inversion of Ky , for the case of a single output (see Quifionero-Candela
and Rasmussen, 2005b, for a review).

In this chapter, our main concern is reducing computational complexity for multi-
variate Gaussian processes regression in the context of type II marginal likelihood
parameter estimation. We first show how through making specific conditional in-

dependence assumptions, inspired by the model structure, we arrive at a series of
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efficient approximations that represent the covariance matrix K¢ ¢ using a reduced
rank approximation Kf7uK;1quT7 4 Plus a matrix D, where D has a specific struc-
ture that depends on the particular independence assumption made to obtain
the approximation. Approximations can reduce the computational complexity to
O(NDK?) and storage to O(NDK) with K representing a user specified value
that determines the rank of the approximation. These approximations were pre-

sented in publication i and further developed in publication v.

The entries in the covariance matrix Ky ,, which is used to obtain the reduced
rank matrix K¢ K LK/, are evaluated at a set of points Z = {z;};_, known
in the literature as the inducing points or the inducing inputs. The location
of these inducing points is obtained by maximizing the approximated marginal
likelihood. In practice, though, such maximization can lead to overfitting. Re-
cently Titsias (2009) introduced a new inducing point approximation through
a variational formalism. In this approach, the inducing points are treated as
additional variational parameters, and their locations can be optimized without
fear of overfitting. The variational lower bound obtained has a similar form to
the approximation provided by the Deterministic Training Conditional (DTC)
approximation (Csaté and Opper, 2001; Seeger et al., 2003; Quinonero-Candela
and Rasmussen, 2005b). It differs through an additional trace term that favors
configurations of inducing points for which the variance of the posterior process
at the data points is minimized. We show how the variational approach may be

extended to the multiple output case.

All the approximations described above rely on summarizing the behavior of the
base process u(x) through a set of inducing variables, u = [u(z1), ..., u(zx)]",
this is, the process u(x) evaluated at Z, the inducing inputs. If the behavior
of the base process is accurately represented by the inducing variables, then the
approximations work well. However, if the base process is rapidly fluctuating (for
example it is white noise) then it will not be well characterized by the inducing
points. Our final contribution is to extend the concept of inducing variables to
inducing functions which arise by convolving the base process with variational
inducing kernels (VIK). By applying the variational framework to the inducing
function, rather than the latent base process, we can approximate multiple output
models even for the case where the base process is white noise. In this sense, we
introduce approximations for the process convolution framework of section 2.1.2,

in particular, for Dependent Gaussian processes. The variational version of the
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DTC approximation for multiple outputs and the concepts of inducing function
and inducing kernel were presented in publication iii. More technical details can

be found in Alvarez et al. (2009).

The chapter is organized as follows. In section 4.1, we describe the set of reduced
rank approximations. In section 4.2, we illustrate the performance of these ap-
proximations over a subset of the gene expression dataset already described in
section 2.3. The variational approximation and the extension to base processes
which are white Gaussian noise are presented in section 4.3. Finally, in section
4.4, we present alternative approaches that have been used for efficient computa-

tions in multivariate Gaussian processes.

Remark. Section 4.1 and section 4.2 appear with minor modifications in pub-
lication v. Section 4.3 appears with minor modifications in publication iii and
the technical report Alvarez et al. (2009). Section 4.4 includes some additional

related work that did not appear in the publications.

4.1 Latent functions as conditional means

For notational simplicity, we restrict the analysis of the approximations to one
latent function u(x) (this is, @ = 1 and R, = 1). The key to all approximations
is based on the form we assume for the latent functions. From the perspective of
a generative model, equation (2.11) can be interpreted as follows: first we draw
a sample from the Gaussian process prior p(u(z)) and then solve the integral for
each of the outputs f;(x) involved. Uncertainty about wu(z) is also propagated

through the convolution transform.

For the following set of approximations, instead of drawing a sample from u(z), we
first draw a sample from a finite representation of u(z), uz = [u(z1), ..., u(zx)] ",
where Z = {z,},_, is the set of input vectors at which u(z) is evaluated. The
vectors Z are usually known as the inducing points, while the elements in uz are
known as the inducing variables. Due to the properties of a Gaussian process,
p(uz) follows a multivariate Gaussian distribution. Conditioning on uz, we next
sample from the conditional prior p(u(z)|uz) and use this function to solve the

1

convolution integral for each fy(x).! Under this generative approach, we can

1For simplicity in the notation, we just write u to refer to ug.
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Figure 4.1: Conditional prior and two outputs for different values of K. The first column,
figures 4.1(a), 4.1(d) and 4.1(g), shows the mean and confidence intervals of the conditional
prior distribution using one input function and two output functions. The dashed line represents
a sample from the prior. Conditioning over a few points of this sample, shown as black dots,
the conditional mean and conditional covariance are computed. The solid line represents the
conditional mean and the shaded region corresponds to 2 standard deviations away from the
mean. The second column, 4.1(b), 4.1(e) and 4.1(h), shows the solution to equation (2.11) for
output one using a sample from the prior (dashed line) and the conditional mean (solid line),
for different values of K. The third column, 4.1(c), 4.1(f) and 4.1(i), shows the solution to
equation (2.11) for output two, again for different values of K.

approximate each function fy(x) using
fa(x) =~ / Ga(x — z) E [u(z)|u] dz. (4.1)
X

Replacing u(z) for E [u(z)|u] is a reasonable approximation as long as u(z) is a
smooth function so that the infinite dimensional object u(z) can be summarized

by u. Figure 4.1 shows a cartoon example of the quality of the approximations
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4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

for two outputs as the size of the set Z increases. The first column represents the
conditional prior p (u(z)|u) for a particular choice of u(z). The second and third

columns represent the outputs fi(x) and f(x) obtained using equation (4.1).

The conditional probability function p(u(z)|u) is given as
p(u(z)[u) = N (u(z) |k, (2, Z)K; 4, k(2 2) — K, (2, 2)K, K u(2, Z)),

where k, (z,Z) is a vector with elements {k,.(z,zx)}~_,, and K, is the co-
variance matrix between the samples from the latent function ugz, with elements

given by k, .(z,2').

We use this conditional probability prior over u(x) to marginalize the latent
functions in the expression for each output {f4(x)}2_,, appearing in equation
(2.11). Under this linear model, the likelihood function for f;(x) is Gaussian, and
we need to compute Eyy [fa(x)] and covy [fa(x), fo (x')], where the expectation

and the covariance are taken under p(u(z)|u).

The expected value E, )y [fa(x)] under p(u(z)|u) is given by
Eunfa) = [ Gulx — ) Eualu(2)dz = K], (. 2K, .
x

where ky, 4(x,Z) is a vector with elements {k;, .(x,zx)}; computed through
equation (2.14).

The covariance covyy [fa(x), fo(x')] under p(u(z)|u) follows

covypu [fa(x), fo (X)] = /XGd(X — z) /X Go(x' —2') covypu(u(z), u(z')|dzdz’

= kg, 5, (x,x) — k;{hu(x, Z)K;lukfwu(xl, Z),

where ky, ¢, (x,X) is computed through equation (2.12).

Using the above expressions, for a set of input data X, the likelihood function for

f is expressed as
p(flu,Z,X, ¢) = N (FIKe oK hu, Ker — Ke oK LKL L) (4.2)

where Kg, is the cross-covariance matrix between the latent function u(z) and
the outputs fy(x), with elements cov [fq(x),u(z)] in (2.14). Given the set of

points u, we can have different assumptions about the uncertainty of the outputs
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4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

in the likelihood term. For example, we could assume that the outputs are inde-
pendent or uncorrelated, keeping only the uncertainty involved for each output
in the likelihood term. Another approximation assumes that the outputs are de-
terministic, that is K¢ = Kf7uKl_lilK;'|:u. The only uncertainty left would be due
to the conditional prior p(u|u). Next, we present different approximations of the

covariance of the likelihood that lead to a reduction in computational complexity.

Partial Independence

We assume that the individual outputs in f are independent given the latent

variable samples u, leading to the following expression for the likelihood

D
p(flu, 2, X, ¢) = [ [ p(falu, 2, X, )
d

=1
D
—1 —1 T
HN (fd|de»uKu,uuv de,fd - devuKu:qud:u) :
d=1

We rewrite this product of multivariate Gaussian distributions as a single Gaus-
sian distribution with a block diagonal covariance matrix, including the uncer-

tainty about the independent processes
p(ylu,Z,X, ¢) = N (yKruK;u,D + ), (4.3)

where D = blockdiag [Kf,f — KfMK;’lquT’u], and we have used the notation
blockdiag [G] to indicate that the block associated with each output of the matrix
G should be retained, but all other elements should be set to zero. We can also
write this as D = [Kﬂf — Kf,uKl_lLKfT u] ® M where ©® is the Hadamard product
and M = Ip ® 1y, 15 being the N x N matrix of ones. We now marginalize
the values of the samples from the latent function by using its process prior, this
means p(u|Z) = N (u|0, K, ). This leads to the following marginal likelihood,

P(y1Z.X, $) = / plylu. Z.X, ¢)p(ulZ)du,

=N (y|0,D + K¢ K W K{, + 2) . (4.4)

Notice that, compared to (2.19), the full covariance matrix K¢ ¢ has been replaced

T

¢u 10 all entries except in the diagonal

by the low rank covariance Kf7uK:lilK

80



4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

blocks corresponding to Kg, ¢,. Depending on our choice of K, the inverse of the
low rank approximation to the covariance is either dominated by a O(DN?) term
or a O(K?DN) term. Storage of the matrix is O(N?D) + O(NDK). Note that
if we set K = N, these reduce to O(N3D) and O(N2D) respectively. Rather
neatly this matches the computational complexity of modeling the data with D

independent Gaussian processes across the outputs.

The functional form of (4.4) is almost identical to that of the partially indepen-
dent training conditional (PITC) approximation (Quinonero-Candela and Ras-
mussen, 2005b) or the partially independent conditional (PIC) approximation
(Quinonero-Candela and Rasmussen, 2005b; Snelson and Ghahramani, 2007),
with the samples we retain from the latent function providing the same role as
the inducing values in the PITC or PIC.? This is perhaps not surprising given
that the PITC or PIC approximations are also derived by making conditional
independence assumptions. A key difference is that in PITC and PIC it is not
obvious which variables should be grouped together when making these condi-
tional independence assumptions; here it is clear from the structure of the model

that each of the outputs should be grouped separately.

Full Independence

We can be inspired by the analogy of our approach to the PI(T)C approximation
and consider a more radical factorization of the likelihood term. In the fully
independent training conditional (FITC) approximation or the fully independent
conditional (FIC) approximation (Snelson and Ghahramani, 2006, 2007), a fac-
torization across the data points is assumed. For us that would lead to the
following expression for the conditional distribution of the output functions given

the inducing variables,

D N
p(ﬂua 27 X7 ¢) = H Hp(fn,d‘ua Za Xa ¢)7
d=1n=1
which can be briefly expressed through (4.3) with D = diag [Kf,f — KfyuK;}quT, u]
= [Kff — Kf7uK;ilK;|-—’u:| ® M, with M = Ip ® Iy or simply M = Ipy. The

marginal likelihood, including the uncertainty about the independent processes,

2We refer to both PITC and PIC by PI(T)C.
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4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

is given by equation (4.4) with the diagonal form for D. Training with this ap-
proximated likelihood reduces computational complexity to O(K?DN) and the
associated storage to O(KDN).

Deterministic likelihood

In Quinonero-Candela and Rasmussen (2005b), the relationship between the pro-
jected process approximation (Csaté and Opper, 2001; Seeger et al., 2003) and
the FI(T)C and PI(T)C approximations is elucidated. They show that if, given
the set of values u, the outputs are assumed to be deterministic, the likelihood

term of equation (4.2) can be simplified as
p(flu, Z,X, ¢) = N (f|Kr K, ,u, 0)

Marginalizing with respect to the latent function using p(u|Z) = N (u]0,Kyu),
and including the uncertainty about the independent processes, we obtain the

marginal likelihood as

p(y|Z, X, ¢) = / p(ylu, Z, X, ¢)p(u|Z)du = NV (y]0, K¢ oK Ky, + 2) .

In other words, we approximate the full covariance K¢ ¢ using the low rank ap-
proximation KfyuK;}quTyu. Employing this new marginal likelihood to estimate
the parameters ¢ reduces computational complexity to O(K?DN) and the as-
sociated storage to O(K DN). The approximation obtained has similarities with
the projected latent variables (PLV) method also known as the projected process
approximation (PPA) or the deterministic training conditional (DTC) approx-
imation (Csaté and Opper, 2001; Seeger et al., 2003; Quinonero-Candela and
Rasmussen, 2005b; Rasmussen and Williams, 2006; Boyle, 2007).

Additional independence assumptions.

As mentioned before, we can consider different conditional independence assump-
tions for the likelihood term. One further assumption that is worth mentioning

considers conditional independencies across data points and dependence across
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4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

outputs. This would lead to the following likelihood term
N
p(flu, 2, X, ¢) = [ p(fulu, Z,X, ¢),
n=1

where f, = [f1(xn), f2(Xn), ..., fp(x,)]". We can use again equation (4.3) to
express the likelihood. In this case, though, the matrix D is a partitioned ma-
trix with blocks Dy o € RVXN and each block D, would be given as Dg g =
diag | K¢, ¢, — de,uKELKTd,,u . For cases in which D > N, that is, the number
of outputs is greater than the number of data points, this approximation may be
more accurate than the one obtained with the partial independence assumption.

For cases where D < N it may be less accurate, but faster to compute.?

4.1.1 Posterior and predictive distributions

Combining the likelihood term for each approximation with p(u|Z) using Bayes’

theorem, the posterior distribution over u is obtained as
p(uly, X, Z,¢) = N (u[KyuA'K{ (D + 3) 'y, KuuA 'Kuy) , (4.5)

where A = Ky u+K{ ,(D+X) K¢, and D follows a particular form according
to the different approximations: it equals D = blockdiag [Kf’f — Kf7uK;ileT7 u]
for partial independence, it is D = diag [Kfyf — Kf7uKl_l71uKEu} for the full inde-
pendence, and D = 0 for the deterministic likelihood. The posterior distribution

over u(x) is given by

pluly, X, Z, ) = / (ulu, Z. d)p(uly. X, Z, ¢)du
— N ()2 (x), kP97 (x, x')),

Y u,u

3Notice that if we work with the block diagonal matrices Dy, 4, we would need to invert the
full matrix D. However, since the blocks Dy 4 are diagonal matrices themselves, the inversion
can be done efficiently using, for example, a block Cholesky decomposition. Furthermore, we
would be restricted to work with isotopic input spaces. Alternatively, we could rearrange the
elements of the matrix D so that the blocks of the main diagonal are the covariances associated
with the vectors f,,.
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4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

where

pe Pt (x) =k, o ATK (D + )y,
kSSST(X7 X/) = kU,U<X7 X,) - k?;r,u(Kl_l,lu - A_1>ku,llv

where the superscript POST stands for posterior.

For computing the predictive distribution we have two options, either use the
posterior for u and the approximated likelihoods or the posterior for u and the
likelihood of equation (4.2) (plus the corresponding noise term), that corresponds
to the likelihood of the model without any approximations. The difference be-
tween both options is reflected in the covariance for the predictive distribution.
Quinonero-Candela and Rasmussen (2005b) proposed a taxonomy of different
approximations according to the type of likelihood used for the predictive distri-

bution, in the context of single output Gaussian processes.

For the multivariate case, if we choose the approximated likelihoods, the predic-

tive distribution evaluated at X, is expressed by

Byly. X, X.. 2, ) / By. 0, 2, X,. p)p(uly, X, Z, $)du

= N (y*|ljy*7Ky*7y*> 9

where

ij* = Kf*7uA'_1KEu(D + E)_ly’

Ky.y. =D, + K¢ WAT'K{ | + 5.,

and p(y«|u,Z,X,, @) refers to the approximated likelihood. The values for D,
depend again of the approximations, being D, = 0 for the deterministic like-
lihood, D, = diag [Kf*7f* — thuK;lqu’u} for full independence and D, =
blockdiag [thf* — Kf*7uK;’1lleI JJ for partial independence. For the single out-
put case, the deterministic likelihood leads to the subset of regressors approxima-
tion (Smola and Bartlett, 2001; Quinonero-Candela and Rasmussen, 2005b); the
full independence approximation leads to the fully independent conditional (FIC)
(Snelson and Ghahramani, 2006; Quinonero-Candela and Rasmussen, 2005b); and
the partial independence leads to the partially independent conditional (PIC)
(Snelson and Ghahramani, 2007; Quinonero-Candela and Rasmussen, 2005b).
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4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

If we choose the exact likelihood term in equation (4.2), the predictive distribution

follows as

(yaly, X, X, Z. ) = / p(y.u 2, X, )p(uly, X, Z, ¢)du

=N (y:lpy.. Ky.y.) (4.6)

where

Hy. = Kf*,uA_lK;l'—,u(D + E)_1Y7
K, ,. =K — thuK;luK;;u + K, wA K] at 2.

For the single output case, the assumption of the deterministic likelihood is equiv-
alent to the deterministic training conditional (DTC) approximation; the full
independence approximation leads to the fully independent training conditional
(FITC) approximation (Quinonero-Candela and Rasmussen, 2005b); and the par-
tial independence leads to the partially independent training conditional (PITC)

approximation (Quinonero-Candela and Rasmussen, 2005b).

From a comparison between Ky, and K we can notice that the entries in

the predictive covariance matrix Ky, . are higher than the entries in the covari-

AESVER

ance matrix IN{y*vy* (for the partial independence assumption, both matrices are
equal in the block-diagonal matrices and for the full independence assumption,
both matrices are equal in the diagonal), indicating that predictions made using
the predictive distribution p(y.|u,Z,X,, ¢) are usually overconfident. This is
more critical in the case of the deterministic approximation. For the fully inde-
pendence assumption and the partial independence assumption, the variance for

both predictive distributions is the same, this is ky, ,. (X, X,) = fk:vy*yy* (X, X ).

The similarities of the above approximations for multivariate GPs with respect
to the approximations presented in Quinonero-Candela and Rasmussen (2005b)
for single output GPs are such, that we find it convenient to follow the same
terminology, and also refer to above approximations as DTC, FITC and PITC

approximations for multioutput Gaussian processes.
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4.2. REGRESSION OVER GENE EXPRESSION DATA

4.1.2 Model selection in approximated models

The marginal likelihood approximations derived above are functions of both the
hyperparameters of the covariance function and the location of the inducing vari-
ables. For estimation purposes, there seems to be a consensus in the GP com-
munity that hyperparameters for the covariance function can be obtained by
maximization of the marginal likelihood.* For selecting the inducing variables,
though, there are different alternatives that can be used. A simple procedure con-
sists of grouping the input data using a clustering method like K-means and then
use the K resulting vectors as inducing variables. More sophisticated alternatives
consider that the set of inducing variables must be restricted to be a subset of
the input data (Csaté and Opper, 2001; Williams and Seeger, 2001). This set
of methods require a criterion for choosing the optimal subset of the training
points (Smola and Bartlett, 2001; Seeger et al., 2003). Such approximations are
truly sparse in the sense that only few data points are needed at the end for
making predictions. Recently, Snelson and Ghahramani (2006) suggested using
the marginal likelihood not only for the optimization of the hyperparameters in
the covariance function, but also for the optimization of the location of these
inducing variables. Although, using such procedure to find the optimal location
of the inducing inputs might look in principle like an overwhelming optimization
problem (inducing points usually appear non-linearly in the covariance function),
in practice it has been shown that performances close to the full GP model can
be obtained in a fraction of the time that it takes to train the full model (see
publication v). In that respect, the inducing points that are finally found are
optimal in the same optimality sense that the hyperparameters of the covariance

function.?

4.2 Regression over gene expression data

We now present an example of the approximations described above, for perform-
ing multiple output regression over gene expression data. The setup was described

in section 2.3. The difference with that example, is that instead of using D = 50

4As mentioned in chapter 2, full Bayesian approaches are also possible.

5Essentially, it would be possible to use any of the methods just mentioned above together
with the multiple-output GP regression models presented in chapter 2. In the software ac-
companying this thesis, though, we follow Snelson and Ghahramani (2006) and optimize the
locations of the inducing variables using the approximated marginal likelihoods.
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4.2. REGRESSION OVER GENE EXPRESSION DATA

outputs, here we use D = 1000 outputs. We then have access to gene expression
data for D = 1000 outputs and N = 12 time points per output.

We do multiple output regression using DTC, FITC and PITC fixing the number
of inducing points to K = 8, equally spaced in the interval [—0.5,11.5]. Since it
is a 1-dimensional input dataset, we do not optimize the location of the inducing
points, but fix them to equally spaced initial positions. As for the full GP model
in the example of section 2.3, we set ) = 1 and R, = 1. Covariances K¢¢ and
K, used in the approximations, are computed using the kernels ky, r, (x,x’) and
ks, (x,%'), derived in equations (2.17) and (2.18), respectively. For the diagonal
blocks of K, 4, we use a Gaussian kernel as in equation (2.15). All these kernels

have the appropriate normalization constants.

Train set Test set | Method | Average SMSE | Average MSLL

DTC | 0.5421 +0.0085 | —0.2493 £ 0.0183
Replicate 1 | Replicate 2 | FITC | 0.5469 £+ 0.0125 | —0.3124 + 0.0200
PITC | 0.5537 +0.0136 | —0.3162 4+ 0.0206
DTC | 0.5454 +0.0173 0.6499 + 0.7961
Replicate 2 | Replicate 1 | FITC | 0.5565 4 0.0425 | —0.3024 + 0.0294
PITC | 0.5713 +£0.0794 | —0.3128 +0.0138

Table 4.1: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for
the gene expression data for 1000 outputs using the efficient approximations for the convolved
multiple output GP. The experiment was repeated ten times with a different set of 1000 genes
each time. Table includes the value of one standard deviation over the ten repetitions.

Again we use a scaled conjugate gradient to find the parameters that maximize
the marginal likelihood in each approximation using the data from replicate 1.
Once we have estimated the hyperparameters of the covariance functions, we test
all the approximation methods over the outputs in replicate 2, by conditioning on
the outputs of replicate 1. We also repeated the experiment selecting the genes
for training from replicate 2 and the corresponding genes of replicate 1 for testing.
The optimization procedure runs for 100 iterations.

Table 4.1 shows the results of applying the approximations in terms of SMSE and
MSLL. DTC and FITC slightly outperforms PITC in terms of SMSE, but PITC
outperforms both DTC and FITC in terms of MSLL. This pattern repeats itself
when the training data comes from replicate 1 or from replicate 2.

In figure 4.2 we show the performance of the approximations over the same
two genes of figure 2.1, these are FBgn0038617 and FBgn0032216. The non-

instantaneous mixing effect of the model can still be observed. Performances for
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Figure 4.2: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216
(second row) using the different approximations. In the first column DTC (figures 4.2(a) and
4.2(d)), second column FITC (figures 4.2(b) and 4.2(e)) and in the third column PITC (figures
4.2(c) and 4.2(f)). The training data comes from replicate 1 and the testing data from replicate
2. The solid line corresponds to the predictive mean, the shaded region corresponds to 2
standard deviations of the prediction. Performances in terms of SMSE and MSLL are given in
the title of each figure. The crosses in the bottom of each figure indicate the positions of the
inducing points.

these particular genes are highlighted in table 4.2.

Notice that the performances are between the actual performances for the LMC
and the CMOC appearing in table 2.2. We include these figures only for illustra-
tive purposes, since both experiments use a different number of outputs. Figures
2.1 and 2.2 were obtained as part of multiple output regression problem of D = 50
outputs, while figures 4.2 and 4.3 were obtained in a multiple output regression
problem with D = 1000 outputs.

In figure 4.3, we replicate the same exercise for the genes FBgn0010531 and
FBgn0004907, that also appeared in figure 2.2. Performances for DTC, FITC
and PITC are shown in table 4.2 (last six rows), which compare favourably with
the performances for the linear model of coregionalization in table 2.2 and close
to the performances for the CMOC. In average, PITC outperforms the other

methods for the specific set of genes in both figures.

88



4.2. REGRESSION OVER GENE EXPRESSION DATA

Test replicate | Test genes | Method | SMSE | MSLL
DTC |0.2162 | —0.7015

FBgn0038617 | FITC | 0.2240 | —0.6886

Replicate 2 PITC | 0.1625 | —0.8600
DTC | 0.1845 | —0.3078

FBgn0032216 | FITC | 0.3639 | —0.5086

PITC | 0.1613 | —0.8368

DTC 0.0774 | —1.0171

FBgn0010531 | FITC | 0.1707 | —0.7423

Replicate 1 PITC | 0.0872 | —0.9899
DTC | 0.6057 | —0.2192

FBgn0004907 | FITC | 0.1512 | —0.8426

PITC | 0.2468 | —0.7176

Table 4.2: Standardized mean square error (SMSE) and mean standardized log loss (MSLL)
for the genes in figures 4.2 and 4.3 for DTC, FITC and PITC with K = 8.

FBgn0010531 MSLL -1.0171 SMSE 0.077407

FBgn0010531 MSLL -0.74235 SMSE 0.1707
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Figure 4.3: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907
(second row) using the different approximations. In the first column DTC (figures 4.3(a) and
4.3(d)), second column FITC (figures 4.3(b) and 4.3(e)) and in the third column PITC (figures
4.3(c) and 4.3(f)). The training data comes now from replicate 2 and the testing data from
replicate 1. The solid line corresponds to the predictive mean, the shaded region corresponds to
2 standard deviations of the prediction. Performances in terms of SMSE and MSLL are given
in the title of each figure. The crosses in the bottom of each figure indicate the positions of the
inducing points, which remain fixed during the training procedure.
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Train set Test set Method | Average TTPI
DTC 2.04
Replicate 1 | Replicate 2 | FITC 2.31
PITC 2.59
DTC 2.10
Replicate 2 | Replicate 1 | FITC 2.32
PITC 2.58

Table 4.3: Training time per iteration (TTPI) for the gene expression data for 1000 outputs
using the efficient approximations for the convolved multiple output GP. The experiment was
repeated ten times with a different set of 1000 genes each time.

With respect to the training times, table 4.3 shows the average training time per
iteration (average TTPI) for each approximation. To have an idea of the saving
times, one iteration of the full GP model for the same 1000 genes would take

around 4595.3 seconds. This gives a speed up factor of 1780, approximately.®

4.3 Variational approximations

In section 4.1 we introduced a series of approximations that reduce computational
complexity for performing multivariate regression with Gaussian processes. How-
ever, that reduction came at the price of introducing new parameters in the model,
namely, the inducing locations Z. Marginal likelihoods now are dependent of Z
and without additional restrictions over them, estimating these quantities and
the covariance hyperparameters using the marginal likelihood as cost function,
might lead to overfitting. In a Bayesian setup, one would be tempted to put a
prior over Z and then marginalize, but unfortunately Z appears in the inverse
of Ky and performing this integration becomes intractable. One potential de-
tour consists of approximating the marginal likelihood in equation (2.19) directly,
finding an expression of the posterior distribution through the minimization of
Kullback-Leibler divergences.

In subsection 4.3.1, we follow the lines of Titsias (2009) and propose a variational
approximation for multiple output GPs. For this new approximation, we augment
the prior over the latent functions and condition this prior on the location of

the inducing variables. We assume the posterior over the inducing variables is

6The experiments were run in workstations with 2.59 GHz, AMD Opteron’s and up to 16
GHz of RAM. Only one processor was used on each run. The speed up factor is computed as
the relation between the slower method and the faster method, using the corresponding training
times.
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unknown and we approximate it by maximizing a lower bound on the exact
marginal likelihood given by equation (2.19). This is equivalent to minimizing
the Kullback-Leibler distance between the true posterior and the approximated

one.

In subsection 4.3.2, we introduce the idea of inducing kernels, that enhance the
variational approximation for multiple outputs with the ability to deal with latent

functions which are white noise processes.

4.3.1 A variational lower bound

In section 4.1, the principle underlying the different approximations was the re-
placement of the original prior p(u) with the conditional prior p(u|u), under
the fundamental assumption that the latent function u(z) might be as well rep-
resented by the conditional mean E[u(z)|ugz|, where the uncertainty in uz is

described by p(ugz).

The above assumption modifies the initial multivariate Gaussian process model
and introduces the inducing inputs Z as extra kernel hyperparameters in the
modified GP model without any restrictions about the values that the vectors
Z might take. The maximization of the marginal likelihood for the modified
Gaussian process models (for example in equation (4.4)) with respect to (Z, @),
may be prone to overfitting especially when the number of variables in Z is large.
Moreover, fitting a modified GP model implies that the full GP model is not
approximated in a systematic and rigorous way since there is no distance or

divergence between the two models that is minimized.

We follow Titsias (2009) to establish a rigorous lower bound for the marginal
likelihood of equation (2.19). Given target data y and inputs X, the marginal

likelihood of the original model is given by integrating over the latent function”

p(y|X, @) = /p(ym,X, @)p(u)du.

u

Instead of working directly with a prior distribution p(u), as in the approxima-

tions of section 4.1, we augment the original prior as p(u,u) = p(uu)p(u) with

"Strictly speaking, the distributions associated to u correspond to random signed measures,
in particular, Gaussian measures.
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the consistency relation

pu(z)) = [ plu()wplujdu (@.1)
The augmented joint model can be expressed as

p(y,u,u) = p(y|u)p(ulu)p(u),

which can be also written as p(y|u)p(u) using the marginalization property in
(4.7) for the latent function. Using standard variational approximation techniques
(see for example Bishop, 2006, chap. 10), we establish a lower bound on the
true exact log marginal likelihood logp(y) by approximating the true posterior

p(u, u|y) with a variational distribution ¢(u,u).

The variational posterior distribution is taken to be

q(u,u) = p(ulu)p(u),

where p(u) is the unknown a posteriori distribution over the inducing variables.

The lower bound is now computed as

L(Z, ¢, p(u)) —/ g(u,u) 1og{M}dudu

u,u Q<u7 'Ll)

_ /uup(ulu)(p(U) log {p(YIU)p(UIU)p(u) } du du

pulu)p(u)

~ [ stuwyptwton {201 g,

= [ty [ ptut) {towpty1a) + 10y 22 L dwau

It can be shown that this bound is given as (see Alvarez et al., 2009, for detailed

derivations),

£(2. 6. 0(w) - |

u

I e St (2Ku).
d=1

T . _ . . .

where o = [alT, o ,ag} with ag = KoKzl u, 3, is the covariance matrix
. : . 11T

associated to the independent process wq(x), Kga = K¢, ¢, — de7uKu7qud7u, and

Y is a block-diagonal matrix with blocks given by X,,,.
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After analytically maximizing the lower bound with respect to ¢(u) (which is
equivalent to apply Jensen’s inequality in the integral over u for log(z), this is, a

concave function), we have
1 -
L(Z,¢) =log N (y/0, KeuK,WK{, +3) — s tr (S7K), (48)

with K = Kes — Kf,uK;{leT u- The approximated covariance appearing in the
lower bound, Kf,uK;}quTyu, has the same form as the Deterministic Training Con-
ditional (DTC) approximation discussed in Quinonero-Candela and Rasmussen
(2005b) for a single output. Since this approximation is obtained by applying
a variational approximation, we refer to this approximation as DTCVAR. Note
that this bound consists of two parts. The first part is the log of a GP prior
with the only difference that now the covariance matrix has a particular low rank
form. This form allows the inversion of the covariance matrix to take place in
O(NDK?) time rather than O(N3D?). The second part can be seen as a penal-
ization term that regulates the estimation of the parameters. Notice also that
only the diagonal of the exact covariance matrix K¢ ¢ needs to be computed, when
compared to PI(T)C, for which we need to compute the block covariances Kg, ¢, .
According to the complexity of cov|fs(x), for(x)] this might be an important
extra computational saving.

The approximated posterior ¢(u) is obtained by maximizing the lower bound
L(Z, ¢}, p), following a similar expression to (4.5). Equally, the expression for the

predictive distribution is similar to the one obtained in (4.6) with D = 0.

4.3.2 Variational inducing kernels

Our key assumption for the approximations in section 4.1 lies in the fact that
the latent functions can be summarized using just a few points in the latent
space. This assumption appears also implicitly in the variational approximation
in subsection 4.3.1. Indeed, when writing the factor p(u|u) in the distribution for
the joint model p(y,u,u) and in the approximated posterior g(u, u), we implicit

assume that this infinite-dimensional objects, the functions {u,(x)}“_,, may be

q=1’
abbreviated using a finite number of points {uq}gzl. If the locations of the induc-
ing points, {zk}szl, are close relative to the length scale of the latent function,
the approximations on section 4.1 will be accurate. However, if the length scale

becomes small the approximation requires very many inducing points. In the
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worst case, the latent process could be white noise (as suggested by the process
convolution constructions of chapter 2). An important class of problems where
we have to deal with white noise processes arise in linear stochastic differential
equations (Alvarez et al., 2010) where the above approximation methods do not

reflect the characteristics of the latent functions.

In this subsection, we develop the variational approximation to allow us to work
with rapidly fluctuating latent functions. This is achieved by augmenting the out-
put functions with one or more additional functions. We refer to these additional
outputs as the inducing functions. Our variational approximation is developed
through the inducing functions. There are also smoothing kernels associated with
the inducing functions. The quality of the variational approximation can be con-
trolled both through these inducing kernels and through the number and location

of the inducing inputs.

To motivate the idea, we first explain why the u variables can work when the

latent functions are smooth and fail when these functions become white noises.

In approximations like PI(T)C, we assume each latent function u,(x) is smooth
and we sparsify the GP model through introducing u,, this is, inducing variables
which are direct observations of the latent function wu,(x), at particular input
points. Because of the latent function’s smoothness, the u, variables also carry
information about other points in the function through the imposed prior over
the latent function. So, having observed u,, we can reduce the uncertainty of the

whole function wu,(x).

With the vector of inducing variables u, if chosen to be sufficiently large relative to
the length scales of the latent functions, we can efficiently represent the functions
{u, (X)}qQ:1 and subsequently variables f which are just convolved versions of the
latent functions.® When the reconstruction of f from u is perfect, the conditional
prior p(f|u) becomes a delta function and the PITC-like approximations become

exact. Figure 4.4(a) shows a cartoon example of the description of u,(x) by u,.

In contrast, when some of the latent functions are white noise processes the ap-

proximation will fail. If u,(z) is white noise,” it has a covariance function §(z—z).

8This idea is like a “soft version” of the Nyquist-Shannon sampling theorem. If the latent
functions were bandlimited, we could compute exact results given a high enough number of
inducing points. In general it won’t be bandlimited, but for smooth functions low frequency
components will dominate over high frequencies, which will quickly fade away.

9Such a process can be thought as the “time derivative” of the Wiener process.
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(c) Generation of an inducing function

Figure 4.4: With a smooth latent function as in (a), we can use some inducing variables u,
(red dots) from the complete latent process uq(x) (in black) to generate smoothed versions (for
example the one in blue), with uncertainty described by p(uq|u,). However, with a white noise
latent function as in (b), choosing inducing variables u, (red dots) from the latent process (in
black) does not give us any information about other points (for example the blue dots). In (c)
the inducing function A,(x) acts as a surrogate for a smooth function. Indirectly, it contains
information about the inducing points and it can be used in the computation of the lower
bound. In this context, the symbol * refers to the convolution integral.

Such processes naturally arise in the application of stochastic differential equa-
tions and are the ultimate non-smooth processes where two values u,(z) and
u,(z') are uncorrelated when z # z’. When we apply the approximation, a vector
of “white-noise” inducing variables u, does not carry information about w,(z)
at any input z that differs from all inducing inputs Z. In other words there is
no additional information in the conditional prior p(u,(z)|u,) over the uncondi-
tional prior p(u,(z)). Figure 4.4(b) shows a pictorial representation. The lack of

structure makes it impossible to exploit the correlations in standard methods like

PI(T)C.10

OReturning to our sampling theorem analogy, the white noise process has infinite bandwidth.
It is therefore impossible to represent it by observations at a few fixed inducing points.
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Our solution to this problem is the following. We will define a more powerful
form of inducing variable, one based not around the latent function at a point,
but one given by the convolution of the latent function with a smoothing kernel.
More precisely, let us replace each inducing vector u, with the variables A, which

are evaluated at the inputs Z and are defined according to

M (z) = / T (7 — v)uy (v)dv, (4.9)

where T},(x) is a smoothing kernel which we call the inducing kernel (IK). This
kernel is not necessarily related to the model’s smoothing kernels. Notice that
the new inducing variables A, correspond to a finite set of points taken from the
A\y(z) process, this is, A, = [A\;(z1),...,\;(zx)]". These newly defined inducing
variables can carry information about u,(z) not only at a single input location but
from the entire input space. Figure 4.4(c) shows how the inducing kernel generates
the artificial construction A,(x), that sheds some light over the, otherwise, obscure
inducing points. We can even allow a separate IK for each inducing point, this

is, if the set of inducing points is Z = {z;}&£ |, then

M) = [ Tl = vugv)av (4.10)

with the advantage of associating to each inducing point z, its own set of adaptive
parameters in 7 j.

If u,(z) has a white noise GP prior, the covariance function for \,(x) is

conlhy (), (X)) = [ Tx = )T, (¢~ )

and the cross-covariance function between f;(x) and A,(x') is

cov[fa(x), \y(X')] = /Gd,q(x —2)T,(x' — z)dz.

Notice that this cross-covariance function maintains a weighted integration over
the whole input space, unlike the case of using u as the inducing variables. This
implies that a single inducing variable \,(x) can properly propagate information
from the full-length process u,(x) into the set of outputs f.

It is possible to combine the IKs defined above with the approximations of sub-

section 4.3.1. However, we would arrive again at the problem of overfitting. We
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therefore include the inducing functions and inducing kernels within the varia-
tional framework of Titsias (2009), and refer to the functions as variational induc-
ing functions (VIFs) and to the kernels as variational inducing kernels (VIKs).
A lower bound for the multivariate Gaussian process can be obtained again by
replacing the vector of inducing variables u = {uq}qQ:1 for the vector of variables
A= {)\q}gzl. Posterior and predictive distributions are obtained in the same way

as in section 4.3.2, replacing the vector u with the vector X (Alvarez et al., 2009).

4.4 Related work

As we saw in section 4.1, assuming that the latent function u(x) can be replaced
by the conditional mean E[u(x)|uz] in the convolved multiple output covariance
and using different conditional independence assumptions for the likelihood func-
tion, we arrived to a series of approximations summarized in a reduced rank valid
covariance matrix.

Other alternatives for reducing computational complexity for multivariate Gaus-
sian processes include Ver Hoef et al. (2004) and Boyle (2007, chapter 6). In
both works, the covariance function is obtained using the process convolution
formalism of subsection 2.1.2.

Ver Hoef et al. (2004) presents a simulation example with D = 2. Prediction over
one of the variables is performed using cokriging. In cokriging scenarios, usually
one has access to a few measurements of a primary variable, but plenty of obser-
vations for a secondary variable. Following a suggestion by Stein (1999, p. 172),
the authors partition the secondary observations into subgroups of observations
and assume the likelihood function is the sum of the partial likelihood functions of
several systems that include the primary observations and each of the subgroups
of the secondary observations. In other words, the joint probability distribution
p(f1, f2) is factorised as p(fy,fp) = H;.Izl p(fz(j)\fl)p(fl), where fz(j) indicates the
observations in the subgroup j out of J subgroups of observations. It is not clear
from this method, though, how the groups in the secondary variable should be
selected. The authors recognize that this is an area than requires further research.
The authors also use a Fast Fourier Transform for computing the autocovariance
matrices Ky, r, and cross-covariance matrices K, ¢,

Boyle (2007) proposed an extension of the reduced rank approzimation method

of Quinonero-Candela and Rasmussen (2005a), to be applied to the Dependent
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Gaussian process construction. The reduced rank approximation in the single out-
put case, starts with the representation of the output using a generalised linear
model, this is, the output f; = f is represented as f = K¢, w, where w is a vector
of weights with prior distribution p(w) = NV(w[0, K, ), that define the so called
support points.'' Elements in both matrices K¢y and Ky, w are computed using,
for example, the squared-exponential kernel. The marginal likelihood for the noisy
observations y is given by p(y) = N (y|0, K¢ wK ' K¢, + 0°I), and the predic-
tive distribution by p(f.ly) = N(f|o?Ke wA'K{ Ly, Ke wAT'K{ |, 4 071),
where A = 07?K{ K¢y + Ky w. It can be noticed that if the number of
training points equals the number support points, N = K, the predictive mean
a‘sz*,WA_leT wY converges to the predictive mean of the full Gaussian process.
If the kernel used is decaying (for example, it has compact support), then the
predictive variance for test inputs away from the support points will be equal to
the noise variance. Such a behavior is inadequate, because it underestimates the
uncertainty of f,(x,) and this was not originally intended in the full Gaussian pro-
cess prior. To alleviate this problem, Quinonero-Candela and Rasmussen (2005a)
augmented the generalised linear model with a weight and a basis function local-
ized in the test input x,. The new vector of weights is given as w = [w'w,]"
and the output f; is defined as f = K¢ g w. It can be shown that for N = K, the
predictive variance for this model converges to the predictive variance of the full
GP, even for test inputs away from the training data (Boyle, 2007, chapter 5).
From the perspective of Quinonero-Candela and Rasmussen (2005b), the reduced
rank approximation is equivalent to the DTC approximation by augmenting the
set of inducing variables with an additional variable corresponding to the test
point f, (of course, we do not need access to the actual value of f,, since we are
working with kernels).

Boyle (2007) presented the development of the same idea for D = 2. The outputs

f _ Kew, Kegw,| [W1
f; Kr,a Kow,| |[Wol|’

where w, are vectors of weights associated to each output including additional

f; and f5 are defined as

weights corresponding to the test inputs, one for each output. Based on this

likelihood, a predictive distribution for the joint prediction of f; and f; can be

11 A more recent name for support points is inducing variables.
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obtained, with the characteristic that the variances approach to variances for
the full predictive of the Gaussian process for test points away from the training
data. The elements in the matrices Ky, &, are computed using the covariances
and cross-covariances developed in chapter 2. Notice that compared to the ap-
proximations presented in sections 4.1 and 4.3, where the inducing inputs are

common to all outputs, here the inducing inputs are particular to each output.

On the other hand, the idea of inducing function and inducing kernel is closely
related to sparse multiscale Gaussian process regression (Walder et al., 2008) and
inter-domain Gaussian processes (Lazaro-Gredilla and Figueiras-Vidal, 2010).
Both methods share a similar purpose, namely, augmenting the flexibility of the
inducing points in order to improve the quality of the approximations when com-
pared to the traditional defined inducing points used in Snelson and Ghahramani

(2006). In a nutshell, in Snelson and Ghahramani (2006), the entries of the
T

= f.f
where f is the vector of inducing variables, are computed using the same kernel

covariance matrices appearing in the reduced rank approximation K Ko %K

function ky ¢(x,x’) that is used to compute the full rank kernel matrix K¢g. In
other words, the inducing variables are point evaluations of the single output
f(x), this is, f = [f(z1),..., f(zk)]", where f(z) = f(x)d(x — zz). Lézaro-
Gredilla and Figueiras-Vidal (2010) defined the inducing variables f(Z) using a
similar expression to (4.9), where the process u,(x) corresponded to f(x). The
elements of K¢z and Kz are defined by the covariance between f(x) and f(x)
and the covariance between f(x) and f(x'), respectively. The inducing variables
can exist in a different domain, through the suitable selection of the feature ex-
traction function T(x,z) in equation (4.9). Walder et al. (2008) allowed each of
the inducing variables {f(z;)}X_, to be described by its own parameter vector,
0., and developed a kernel basis {k; 7. (x, z;,) HE |, where each basis function has
its own set of parameters. This is equivalent to equation (4.10), where each in-
ducing point is allowed to have its own inducing kernel. As we said before, the
two methods intend to improve performance over the pseudo-inputs approach of
Snelson and Ghahramani (2006) in sparse GP models for single outputs, using a
new definition of the pseudo-inputs. Our use of inducing functions and inducing
kernels is motivated by the need to deal with non-smooth latent functions in the

process convolution model for multiple outputs.
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4.5 Summary

In this chapter, we presented a series of methods that allow the reduction in
computational complexity for multivariate Gaussian processes when parameters
are estimated using type II maximum likelihood.

Using these approximations we can capture the correlated information among
outputs while reducing the computational overhead involved in the optimization
and prediction tasks. The computational complexity for training using the de-
terministic marginal likelihood and the fully independent marginal likelihood is
O(NDK?). The computational complexity for the PI(T)C approximation re-
duces from O(N®D?) to O(N3D). This matches the computational complexity
for modeling with independent GPs.

In publications i and v we present applications of this type of approximations
for multivariate regression of pollutant metals and exam score predictions. We
showed experimentally how the training of the models can be done in a fraction
of the time it takes to train the full Gaussian process without sacrificing the
prediction performance.

We presented also a variational version of the deterministic training conditional
approximation for multiple outputs, that allows for a rigorous measure of the
distance between the true marginal likelihood and the approximated one. We
have introduced the concept of an inducing function, which generalizes the idea
of inducing point, traditionally employed in sparse GP methods and provide
efficient mechanisms for learning in multiple output Gaussian processes when the
latent function is fluctuating rapidly.

In publication iii, we present applications of the variational approximation with
inducing functions that include a latent force model, where the latent functions
are white noise processes.

As a byproduct of seeing the linear model of coregionalization as a particular case
of the convolved multioutput covariance, we can extend all the approximations
to work under the linear model of coregionalization regime.

In the next chapter, we will go back to the latent force model framework and
present an extension that admits the modeling of non-stationary multivariate

time series by allowing changes in the parameter vector Oppy;.
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Chapter 5

Switching dynamical latent force

models

In chapter 2, we described how a flexible type of covariance function for multi-
variate Gaussian processes can be developed by convolving univariate Gaussian
processes with moving-average functions specific to each output. If the moving-
average function corresponds to a Green’s function, then the resulting covariance
function encodes the dynamics associated to the differential equation from which
the Green’s function comes from. We coined the resulting multivariate Gaussian
process with the name of latent force model in chapter 3.

In the latent force model, the parameter vector @yr\, composed of the parameters
{60c,12,, {Sdg}f:’?’q:l and {ﬁq}ff:l, remains fixed for all values of the input
variable t. In many applied scenarios, though, the parameter vector is a function
of the input variable, Oy (t), either because there is a change in the parameters of
the differential equation, {6¢,}%,, or because there is a change in the sensitivity
parameters {Sd7q}§:’cf7 4=1> O because there is a change in the length-scales of the
functions {Eq}?zl driving the set of systems or because all these parameters change
simultaneously. In this chapter we introduce an extension of the latent force
model that allows for discrete changes in the elements of the parameter vector
Orrv.t Practical motivations for this extension include the discovery of motor
primitives within a multivariate time series of angles and the augmentation of

the latent force model with the ability to incorporate discontinuous forces. Both

!The current version of the software accompanying this thesis allows discrete changes in
either the sensitivity parameters {Sdﬂ(t)}g:’?’ 41 and/or in the length-scales of the forcing

functions {Eq(t)}qul, and assumes that the parameters {0, }2_, remain constant in the time-
input domain.
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applications are explained in the following paragraphs.

First, a current line of thought in neuroscience considers that elaborated move-
ments or motor actions can be represented by the transformation of a reduced set
of building blocks known as motor primitives (Flash and Hochner, 2005). Flash
and Hochner (2005) present a recent review of definitions of motor primitives
in the neuroscience literature that include interpretations at a behavioral-level
(movements are composed of submovements, which are not further decomposed
(Vecchio et al., 2003)), at a muscle level (a motor primitive is defined as a syn-
ergy, this is, a co-activation of muscles that produce a torque or a force), and at a
neural level (a motor primitive corresponds to a particular assembly of neurons).
From a more physics-related point of view, motor primitives can be either kine-
matic (defined as strokes or submovements), dynamic (defined as a static field of

forces, time-varying synergies or control policies) or both.

The idea of motor primitive has been used in humanoid robotics with the pur-
pose of creating a vocabulary of basic motor skills that can be used to teach a
robot how to reproduce movements performed by a human teacher (Schaal et al.,
2003). Once the library of primitives has been defined, the robot can generate
more complex movements by the sequential, concurrent or hierarchical combina-
tion of the motor primitive actions (Peters, 2007). Motor primitives are learned
from a sequence of multivariate time course data that corresponds to the angles
of the several degrees of freedom of the robot. Before labeling the different motor
primitives, it is necessary to determine where a motor primitive occurred within
the multivariate time series. In other words, we need to segment the multivariate
time series into a sequence of motor primitives. This step resembles the seg-
mentation problem in a speech recognition system, in which a series of acoustic

features are first segmented, before to their identification as phonemes.

We assume that each motor primitive can be represented through a second or-
der differential equation, a traditional practice in imitation learning for humanoid
robotics (Ijspeert et al., 2003; Schaal et al., 2007; Vecchio et al., 2003) and through
the discrete changes in the parameter vector @1\ of the latent force model, where
0, correspond to the parameters of the Green’s function associated to a second

order ordinary differential equation, we identify the presence of a motor primitive.

Second, in publication ii, we introduced the latent force model of second order to

represent the movement of a human actor while performing a particular activity.
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The movements are recorded as multivariate time courses of angles referenced to
the skeleton of the actor; the resulting data is known as motion capture data.
In this context, the latent forces are seen as a reduced multivariate time series
representation of the movement that summarizes the high-dimensional multi-
variate time series of recorded angles. Furthermore, using a few set of inferred
latent forces, we can generate a diverse range of new movements. An impor-
tant restriction of this model, though, is that the latent forces are continuous
functions. However, discontinuities and segmented latent forces are omnipresent
in real-world data. For example, impact forces due to contacts in a mechanical
dynamical system (when grasping an object or when the feet touch the ground),

or a switch in an electrical circuit, result in discontinuous latent forces.

With both applications in mind, the rest of the chapter is organized as follows. In
section 5.1, we present the convolved multiple output covariance for the second
order latent force model. In contrast to publication ii and chapter 3, where we
ignored the initial conditions in the differential equations, in this section the ini-
tial conditions are included, and their role will be to allow for smooth transitions
in the outputs between two different regimes each one described by a different
latent force model. We refer to this model as the switching dynamical latent force
model. In section 5.2, we describe the extension proposed that allows for switch-
ing between sequential latent force models. Section 5.3 includes an example of
the application of the model for segmenting striking movements recorded using a
Barrett WAM robot as haptic input device. In section 5.4 we present the related

work.

Remark. This chapter is mainly based on publication iv and the supplementary
material that accompanies it. Section 5.4 includes a description of related models

that were not mentioned in publication iv.

5.1 Second order latent force models

In section 3.1 we introduced a latent force model of order two, as a generalization
of a classical latent variable model that allowed to include behaviors like inertia
and resonance, typical features in a mechanical system. The variables in the

model are described as the outputs of a set of second order ordinary differential
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equations driven by a set of forces {uq(x)}qul. The second order differential equa-
tions represent mass-spring-damper systems with masses described by the set of
parameters {mg}>_,, springs described by parameters {r4}2_, and dampers rep-
resented by parameters {vg}2_,. The solution for the output functions was given
in terms of a convolution transform and we assumed that the initial conditions
were zero, in section 3.3. In this section, we present the second order latent force
model with non-zero initial conditions, that will allow the extension of the model

to a switching regime.

The set of D functions {y4(t)}2_, in a second order LFM, with = 1, has

elements given as

Ya(t) = ya(0)ca(t) + ya(0)ea(t) + falt, u), (5.1)

where y4(0) and y4(0) are the output and the velocity at time ¢ = 0, respec-
tively, known as the initial conditions (IC). In the above solution, we delib-
erately assumed that there is not an independent process wy(x) associated to
the output. The independent process can be included later, once the switching

covariance function has been constructed. The angular frequency is given by

wg = \/(4makq — v2)/(4m32) and the remaining variables follow

—agqt
cq(t) = e @ [cos(wdt) + sin(wdt)} . eq(t) = c sin(wgt),
Wy Wd
fa(t,u) = S /t Gq(t — T)u(r)dr = S /t e~ (=) sin[(t — 7)wg]u(r)dr,
Maqwa Jo mqwda Jo

with ag = vg/(2mg). The uncertainty in the model of equation (5.1) is due to
the fact that the latent force w(t) and the initial conditions y4(0) and y4(0) are
not known. Recall that in the LFM, we assume that the latent function w(t)

is sampled from a zero mean Gaussian process prior with covariance function

Kuu(t,t).

We assume that the initial conditions, yic = [y1(0), y2(0), ..., yp(0),1(0),9=2(0),
..,yp(0)]T, are independent of u(t) and distributed as a zero mean Gaussian

with covariance K¢,

IC IC
Kic = [Ky,y Ky,}"] 7

IC IC
Kyy Kyy
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: IC IC
where the matrices Ky, KJ~,

and oy, ,, respectively, that specify the prior covariance between the elements

IC IC : . )
Km, and K”., have entries Cyags Tyaiy> Ovayy

of yic. Then, the covariance function between any two output functions, d and

d’" at any two times, ¢ and t', k,, ,(t,1'), is given by

Kypy (61) = ca(t)ca (t')0y,y, + cat)ea(t oy, , + ea(t)ca(t) oy, .,
+ Gd(t)ed/ (t/)O'yd7y'd, —+ kfd,fd/ (t, t/),

where kg, ¢, (t,1') follows

t t
by (1) = Ko / Galt — 7) / Cult — Phuult,t)drdr,  (5.2)
0 0

with Ky = SyS¢/(mamawawa). The covariance function ky, f,(t,t') depends
on the covariance function of the latent force u(t). Assuming that the covari-
ance function for the latent function follows a squared-exponential form, like in
chapter 3, ky.(t, ') = exp[—(t — t')?/¢?], then ky, s, (¢,1') can be computed ana-
lytically. The corresponding expression appears in chapter 3, section 3.3 (see also
publication ii and the supplementary material of publication iv).

In the next section we look to extend the second order LFM to the case where
there can be discontinuities in the latent functions. We do this through switching

between different Gaussian process models to drive the system.

5.2 Switching dynamical latent force models

We now consider switching the system between different latent forces. This allows
us to change the dynamical system and the driving force for each segment. By
constraining the displacement and velocity at each switching time to be the same,

the output functions remain continuous.

5.2.1 Definition of the model

We assume that the input space is divided in a series of non-overlapping intervals
[tg—1, tq]qul. During each interval, only one force u,_(t) out of @) forces is active,

that is, there are {uq,l(t)}ff:l forces.? The force u, 1(t) is activated after time

2Note that we employ the same variable Q that we used to denote the number of latent
functions in the latent force model. In the switching dynamical LFM, the variable @ refers
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5.2. SWITCHING DYNAMICAL LATENT FORCE MODELS

ty—1 (switched on) and deactivated (switched off) after time t,. We can use the
basic model in equation (5.1) to describe the contribution to the output due to
the sequential activation of these forces. A particular output z4(t) at a particular

time instant ¢, in the interval (t,_1,%,), is expressed as

zq(t) = yg(t —tg—1) = cj(t —te1)yi(te1) + eyt — te-1)yg(te—1)
+ fg(t - tq—huq—l)-

This equation is assumed to be valid for describing the output only inside the
interval (¢,-1,t,). Here we highlighted this idea by including the superscript ¢
in y3(t — t,—1) to represent the interval ¢ for which the equation holds, although
later we will omit it to keep a simpler notation. Note that for () = 1 and t5 = 0,
we recover the original latent force model given in equation (5.1). We also define

the velocity 24(t) at each time interval (t,_1,%,) as

Z4(t) = yg(t —tg1) = gg(t - tqfl)yg(tqfl) + hg(t - tqfl)l'/:i(tqfl)
+ chl(t — g1, uq—l)a

where
ga(t) = —e " sin(wat) (Qiw; ' + wa), ha(t) = —e [% sin(wgt) — cos(wqt) |,
W
Sy d !
i) = 2L [ Gute = ryatrar)

Given the parameters {{mg, vq, ka}5_,, {Sd,q,l}fz’?q:l, {Eq,l}qul}, the uncertainty
in the outputs is induced by the prior over the initial conditions y(t,—1), ya(ts—1)
for all values of t,_; and the prior over the latent force u,_;(t) that is active dur-
ing (t,—1,%,). We place Gaussian process priors over each of these latent forces

ug—1(t), assuming independence between them.

For initial conditions, y%(t,—1) and ¢3(t,—1), we could assume that they are either
parameters to be estimated or random variables with uncertainty governed by

independent Gaussian distributions with covariance matrices K{ as described in

to forces that act sequentially and in the latent force model, the @ forces act in parallel. Of
course, both type of forces can act simultaneously, but to keep the notation uncluttered, here
we assume there is only one force acting in parallel and @ refers to the forces acting in series.
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5.2. SWITCHING DYNAMICAL LATENT FORCE MODELS

the last section. However, for the class of applications we have in mind: mechan-
ical systems, the outputs should be continuous across the switching points. We
therefore assume that the uncertainty about the initial conditions for the interval
q, is proscribed by the Gaussian process that describes the outputs z4(t) and ve-
locities Z4(t) in the previous interval ¢ — 1. In particular, we assume that y3(¢,-1)
and §%(t, 1) are Gaussian-distributed with mean values given by y4'(t, 1 —
te—2) and g4 ' (t,_1 — ty_o), and covariances ks, ., (fg-1,ty—1) = cov[yd (t,_1 —
tq—Z)ayng_l(tq—l —tg-2)] and ks, s, (tg-1,tg-1) = COV[Qg_l(tq—l — tg-2), ?Jg/_l(tq—l -
ty—2)]. We also consider covariances between z4(t,—1) and Zg(ty—1), this is, be-

tween positions and velocities for different values of ¢ and d.

As an example, let us assume that we have one output (D = 1) and three switch-
ing intervals (@ = 3) with switching points ¢y, t; and t5. At ¢y, we assume that
yic follows a Gaussian distribution with mean zero and covariance Kjc. From t,
to t1, the output z(¢) is described by

2(t) =yt —to) = ' (t — to)y*(to) + e*(t — to)y (to) + f1(t — to, up).

The initial condition for the position in the interval (¢;,t5) is given by the last
equation evaluated a ty, this is, 2(t;) = y*(t1) = y*(t; — to). A similar analysis
is used to obtain the initial condition associated to the velocity, Z(t1) = 9%(t;) =
g (t; — to). Then, from ¢, to ty, the output z(t) is

At — 1)y (t) + 2t — )P (t) + f2(t —t,w),
At —t)y (b —to) +e2(t — 1)y (1 — to) + f2(t — t1,uy).

2(t) = y*(t — 1)

Following the same train of thought, the output z(¢) from ¢, is given as
2(t) = PP (t — to) = At — L)y’ (ta) + € (t — 12)3° (t2) + [2(t — ta, ua),

where y?(t2) = y?(t — t1) and §3(t2) = ¢*(t2 — t1). Figure 5.1 shows an example
of the switching dynamical latent force model scenario. To ensure the continuity
of the outputs, the initial conditions are forced to be equal to the output of the

last interval evaluated at the switching point.
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5.2. SWITCHING DYNAMICAL LATENT FORCE MODELS

Figure 5.1: Representation of an output constructed through a switching dynamical latent
force model with @ = 3. The initial conditions y9(t,—1) for each interval are matched to
the value of the output in the last interval, evaluated at the switching point ¢,_1, this is,

yq(tq—l) = yq_l(tq—l - tq—Q)-

4r

3/\(\\\/ ) !
2r |
I 1 :
I —

ol
% 2 4 6 8 10
(a) System 1. Samples from the latent force. (b) System 2. Samples from the latent force.
101 | i
5t i |

-10
0

2 4 6 8 10
(c) System 1. Samples from the output. (d) System 2. Samples from the output.

Figure 5.2: Joint samples of a switching dynamical LFM model with one output, D = 1, and

three intervals, @ = 3, for two different systems. Dashed lines indicate the presence of switching

points. While system 2 responds instantaneously to the input force, system 1 delays its reaction
due to larger inertia.
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5.2. SWITCHING DYNAMICAL LATENT FORCE MODELS

5.2.2 The covariance function

The derivation of the covariance function for the switching model is rather in-
volved. For continuous output signals, we must take into account constraints at
each switching time. This causes initial conditions for each interval to be depen-
dent on final conditions for the previous interval and induces correlations across
the intervals. This effort is worthwhile though as the resulting model is very
flexible and can take advantage of the switching dynamics to represent a range
of signals.

As a taster, figure 5.2 shows samples from a covariance function of a switching
dynamical latent force model with D =1 and ) = 3. Note that while the latent
forces (figures 5.2(a) and 5.2(b)) are discrete, the outputs (figures 5.2(c) and
5.2(d)) are continuous and have matching gradients at the switching points. The
outputs are highly nonstationary. The switching times turn out to be parameters
of the covariance function. They can be optimized along with the dynamical
system parameters to match the location of the nonstationarities. We now give
an overview of the covariance function derivation. Details are provided in the
supplementary material, in publication iv.

In general, we need to compute the covariance k., . ,(t,1') = cov[z4(t), za(t')] for
z4(t) in time interval (¢,-1, ;) and z4(t') in time interval (t,_1,¢,). By definition,

this covariance follows

cov[za(t), za (t')] = cov [y3(t — tq-1), ylh(t — ty1)].

We assume independence between the latent forces u,(t) and independence be-
tween the initial conditions yic and the latent forces u,(¢).> With these condi-

tions, it can be shown* that the covariance function® for ¢ = ¢’ is given as

C(C]l(ta tq—l)cgl/ (t/, tq—l)kzd,zd/ (tq—la tq—l) + Cgl(ta tq—l)eg/ (t/a tq—l)kzd7z'd/ (tq—b tq—l)
+€?l(t’ tqfl)cgf (', tqfl)kid,zd/ (tg—1,tq-1) + 63 (t, tqfl)egl' (t/a tqfl)kz}i,id/ (tg-1,t4-1)
R (L), (5.3)

3Derivations of these equations are rather involved. In the supplementary material of publi-
cation iv, section 2, we include a detailed description of how to obtain the equations (5.3) and
(5.4)

4See supplementary material of publication iv, section 2.2.1.

"We will write fI(t —tq—1,uq—1) as fa(t —tg—1), ch(t —tq—1) as ch(t,tq—1) and el(t —ty—1)
as €5 (t,tq—1), for notational simplicity.
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5.2. SWITCHING DYNAMICAL LATENT FORCE MODELS

where

Kzgzg (bg—1,tq—1) = cov(yg(te—1)ya (tg—1)],
Kog iy (tg—1:tq—1) = cov(yg(te—1)Jq (tg—1)],
Kgzw (tg—1,tq—1) = cov[yg(te—1)ya (tg—1)],
Kigzy (tg—1,tq—1) = cov[yg(te—1)ya (tg—1)],

S, (1) = cov[f3(t =ty 1) F3(E — ty-a)]

In expression (5.3), k.., (tg-1,t-1) = cov[yd " (tg1 — tg-2), Y ' (tgo1 — t4—2)].
Values for k., ; , (tq—1,tg—1), ks42, (tg—1,t4—1) and kz, ; , (t4—1,t4—1) can be obtained
using similar definitions. The covariance k:jﬁd’ fu (t,t') follows an analogous expres-
sion to the one for ky, ¢, (¢,t') in equation (5.2), now depending on the covariance
Ku, 1. (t,t"). We again assume that the covariances for the latent forces follow
the squared-exponential form, with length-scale /.

When ¢ > ¢/, we have to take into account the correlation between the initial con-
ditions yj(t;—1), ¥a(ts—1) and the latent force uy_1(¢'). This correlation appears
because of the contribution of uy_1(t') to the generation of the initial conditions.

It can be shown® that the covariance function cov|z4(t), z¢(t')] for ¢ > ¢’ follows

At tg1) e (s g1 kg 2y (g1, 1) + (L1 ) €l (b1 )iz 2y (b1, tgr 1)
+eb(ttg 1 )Ch (t g 1)Kz 2y (b1, t 1)+6§(t,tq Deb(t ty 1 Vksyz, (tgo1,ty1)
bt )R (g, )+ it )XTRE | (11, 1)

+€d(t,tq—1)9(3kfcdf (ty—1, ')+ ef(t, ty- 1)X4k3df (ty—1,t), (5.4)
where
Ky (g1, tg—1) = COV[yZ(tq—l)yZ;(tqul)],
ey (g1t 1> = cov[yj(te-1)g (ty—));
Feg ey (tg-1,tg 1) = COV[yg(tq—l)yg:(tq'—l)L
Zdvzd’( -1, bg—1) = Cov[yg(tq—l)yg:(tq’—l)L
kg, (1) =COV[7‘ (t —tg1)fg(t' —tg—1)],

1 92 3 4 ; 94" 1799 q—it+1
and X, X7, X7 and X are functions of the form > 7% T[720 %" (t,miv1i—tg—i),

6See supplementary material, section 2.2.2
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5.3. SEGMENTATION OF HUMAN MOVEMENT DATA

: —itl g —itl  g—itl  g—itl —it1 :
with 227" being equal to ¢4~ *, 27 27" or A2 depending on the values

of ¢ and ¢'.

An identical expression to (5.4) can be obtained for ¢’ > ¢q. Examples of these
functions for specific values of ¢ and ¢’ and more details are also given in the
supplementary material. We refer to this model as the switching dynamical latent
force model (SDLFM).

The covariance functions ks, . ,(t,t'), k., ., (t,t') and ks, ;,(t,t') appearing in
equations (5.3) and (5.4), are obtained by taking derivatives of k., ., (t,t') with
respect to ¢t and ¢ (Solak et al., 2003).

The parameters in the SDLFM comprise the parameters of the mass-spring-
damper systems, the sensitivity coefficients, the length-scales of the latent func-
tions, the switching points and the covariance matrix Kig 0, this is Osprrv =
{{ma, va, ka}2 {Sd,q—l}c[z);?,qu {€q_1}qQ:1, {tq—1}qQ:1, K).}. Given the number of
outputs D and the number of intervals (), we estimate the parameters Osprrm
by maximizing the marginal likelihood of the joint Gaussian process {zq(t)}2_,
using gradient descent methods, as explained in section 2.2.1. Alternatively, we

can use any of the efficient approximations of chapter 4.

5.3 Segmentation of human movement data

In this section, we evaluate the feasi-
bility of the model for motion segmen-
tation with possible applications in the
analysis of human movement data and
imitation learning. To do so, we had
a human teacher take the robot by the
hand and have him demonstrate strik-

ing movements in a cooperative game

of table tennis with another human be-
ing as shown in figure 5.3. We recorded Figure 5.3: Data collection was performed using
joint positions, angular velocities, and a Barrett WAM robot as haptic input device.

angular acceleration of the robot for two independent trials of the same table
tennis exercise. For each trial, we selected four output positions and train several
models for different values of @), including the latent force model without switches

(Q = 1). We evaluate the quality of the segmentation in terms of the lower bound
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Figure 5.4: Employing the switching dynamical LFM model on the human movement data
collected as in figure 5.3 leads to plausible segmentations of the demonstrated trajectories. The
first row corresponds to the lower bound, latent force and one of four outputs, humeral rotation
(HR), for trial one. Second row shows the same quantities for trial two. In this case, the output
corresponds to shoulder flexion and extension (SFE). Crosses in the bottom of the figure refer to
the number of points used for the approximation of the Gaussian process, in this case K = 50.

for the marginal likelihood appearing in equation (4.8). For computing the en-
tries in K¢ ¢, we use the covariance describe in section 5.2.2, while the elements
of covariance K¢, are computed using expressions appearing in supplementary
material in publication iv. Figure 5.4 shows the lower bound of the marginal
likelihood, the inferred latent force and one output for trial one (first row) and
the corresponding quantities for trial two (second row). Figures 5.4(a) and 5.4(d)
show peaks for the lower bound of the marginal likelihood at ) =9 for trial one
and ) = 10 for trial two. As the movement has few gaps and the data has several
output dimensions, it is hard even for a human being to detect the transitions be-
tween movements (unless it is visualized as in a movie). Nevertheless, the model
found a maximum for the lower bound of the marginal likelihood at the correct
instances in time where the human transits between two movements. At these
instances the human usually reacts due to an external stimulus with a large jerk
causing a jump in the forces. As a result, we obtained not only a segmentation of

the movement but also a generative model for table tennis striking movements.

112



5.4. RELATED WORK

5.4 Related work

The related work can be divided in different areas, namely, alternative proba-
bilistic methods to tackle the same segmentation problem, Gaussian processes
for change-point detection and nonstationary covariance functions under a pro-
cess convolution framework.

Peters (2007, chapter 2) provides a review of definitions and uses of motor primi-
tives in classical robotics. More up-to-date approaches for segmentation of motor
primitives include Williams et al. (2008) and Chiappa and Peters (2011). The
idea in both methods is to represent the multivariate time series observations as
noisy realizations of an underlying (usually Markov) process(es) with additional
parameters that control the different durations of each primitive. In Williams
et al. (2008), the probabilistic model employed is a factorial Hidden Markov
model, while in Chiappa and Peters (2011) the probabilistic model corresponds
to a linear dynamical system (see Bishop, 2006, for example). Chiappa et al.
(2009) uses a mixture of linear dynamical systems to find similarities in a set of
motion primitives that have been previously segmented. An important difference
of these methodologies with the SDLFM is that those methods are parametric
and driven only by data, while our approach is non-parametric and incorporates
prior knowledge through the second order differential equation.

There has been a recent interest in employing Gaussian processes for detection of
change points in time series analysis, an area of study that relates to some extent
to our model. Some machine learning related papers include Garnett et al. (2010,
2009); Saatgi et al. (2010). Garnett et al. (2010, 2009) deals specifically with how
to construct covariance functions in the presence of change points (see Garnett
et al. (2010), section 4). The authors propose different alternatives according
to the type of change point. From these alternatives, the closest ones to our
work appear in subsections 4.2, 4.3 and 4.4. In subsection 4.2, a mechanism to
keep continuity in a covariance function when there are two regimes described
by different GPs, is proposed. The authors call this covariance continuous condi-
tionally independent covariance function. In our switched latent force model, a
more natural option is to use the initial conditions as the way to transit smoothly
between different regimes. In subsections 4.3 and 4.4, the authors propose covari-
ances that account for a sudden change in the input scale and a sudden change in
the output scale. Both type of changes are automatically included in our model

due to the latent force model construction: the changes in the input scale are
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accounted by the different length-scales of the latent force GP process and the
changes in the output scale are accounted by the different sensitivity parameters.
Importantly, we are also concerned about multiple output systems. It is not clear
how the methods in Garnett et al. (2010) could be extended to the multivariate
case.

On the other hand, Saatci et al. (2010) proposes an efficient inference procedure
for Bayesian Online Change Point Detection (BOCPD) in which the underly-
ing predictive model (UPM) is a GP. This reference is less concerned about the
particular type of change that is represented by the model: in our application
scenario, the continuity of the covariance function between two regimes must be

assured beforehand.

In the context of single output GPs in the geostatistics literature, the process
convolution construction has been used to develop nonstationary covariances for
spatial domains, either by allowing the parameters of the smoothing kernel 84 to
depend on the input location (Higdon, 1998; Higdon et al., 1998; Paciorek and
Schervish, 2004) or by allowing convolutions with stationary Gaussian processes
such that the covariance parameters 1 of such stationary processes depend of
the input location (Fuentes, 2002a,b). A detailed description of both methods is
given by Calder and Cressie (2007).

5.5 Summary

In this chapter, we introduced an extension of the latent force model that allows
for discontinuous latent forces, while imposing continuity in the output functions
that are modeled. The continuity in the outputs is accomplished by matching
the initial conditions of positions and velocities of the current interval, with the
final values of positions and velocities in the previous interval.

A different application for the SDLFM that we might consider as future work is

the modeling of walking movements using motion capture data.
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Chapter 6
Conclusions and Future Work

This final chapter summarizes the research work carried out in the thesis and

outlines some ideas for future research.

Conclusions

In this thesis we have introduced a framework for developing covariance func-
tions for multivariate Gaussian process regression. By establishing this multi-
variate prior, we have proposed a powerful probabilistic methodology for making
simultaneous predictions providing also estimates for the uncertainty of several
correlated variables. Important features of the model are the ability to incorpo-
rate prior knowledge through the specification of sensible smoothing kernels, and
the non-parametric formulation in terms of kernel matrices.

In chapter 2 we introduced the convolved multiple output covariance as the
covariance obtained from convolving smoothing kernels specific to each output
with covariance functions common to all outputs. Alternatives that lead to valid
covariance functions for multiple outputs include the assumption of independence
of the outputs, the linear model of coregionalization and process convolutions. All
these alternatives can be seen as particular cases of the CMOC covariance. Pub-
lications i, ii, iii and v show experimental results that confirm that, in general,
making predictions with Gaussian processes that employ the CMOC covariance,
convey better performances or at least as good performances as the ones ob-
tained by making predictions with Gaussian processes that employ alternative
covariances.

In chapter 3 we proposed the use of Green’s functions associated to differential
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equations as potential smoothing kernel functions in the CMOC construction. By
knowing in advance the type of differential equation that might rule the behavior
of the outputs, we can construct a sensible covariance function that can be applied
to problem specific domains. In some real world problems, we actually have
expert-knowledge about the dynamics that govern the outputs, like applications
in systems biology, where interactions between genes and proteins can be modeled
through first order differential equations (Barenco et al., 2006; Alon, 2006). In
other scenarios, though, we just might want to include what we believe is the
approximated dynamics of the system, like in motion capture data and robotics,
where we assume the outputs follow second order differential equations. Notably,
we have encoded dynamical systems in a multivariable covariance function that,
embedded within the Gaussian process machinery, results in a generative model
for the data.

In chapter 4, we provided different efficient approximations to make the mul-
tivariate Gaussian process regression methodology practical. In a set of approx-
imations, we gain efficiency by modifying the marginal likelihood of the model
and on a further approximation, by proposing a lower bound of the marginal like-
lihood. Experimental results in publications i, iii and v show that considerable
speed-ups can be obtained by employing these approximations in the training
phase as well as in the prediction stage.

Finally in chapter 5, we extended the CMOC to deal with nonstationary multi-
variate time series. Our motivation for this extension was twofold: on one hand,
we wanted to provide the latent force model framework with the ability to han-
dle discontinuous forces, an important application for generating natural-looking
walking animated movements, and, on the other hand, we wanted to use the
model for segmenting motor primitives as a first step towards a machine learning

approach for imitation learning in robotics.

Future work

We envisage the future work following two complementary directions, the theo-

retical and the applied one.

Model selection. Free parameters in the CMOC include the number of latent pro-

Q

cesses (), whose covariance functions have distinct parameter vectors {wq}qzl,

and the number of latent functions R,, which, for a fixed value of ¢, share the
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same parameter vector ¢,. In some practical scenarios, we might know in advance
how many latent functions should we use, because those functions represent phys-
ical quantities, like in a network of genes, for which the latent functions represent
transcription factor proteins. However, in a black box problem, we might need
to use cross-validation to assess the values of () and R,, which turns out to be an
expensive procedure. One might think in proposing “information criteria” ideas,
employing concepts like Bayesian information criteria or the Akaike information
criteria (Bishop, 2006). A first attempt in that direction have been proposed by
Chai et al. (2009) for the intrinsic coregionalization model. This is an area of

research that requires further study.

Sparsity priors in latent force models. Having assumed a number of latent forces
in the latent force model framework, one wonders if the influence of the latent
forces is equal for all the outputs. The parameter that to some extent quantifies
the relative strength of a force ¢ over an output d is the sensitivity parameter
Sa,q- In the way in which we estimate these parameters in the thesis, we implic-
itly assume that they follow a uniform prior. In many applications, though, this
prior is inadequate. For example, it is well known that in a network of genes,
only certain proteins interact with certain genes, this is, the network of interac-
tions between proteins and genes is not dense. Therefore, we are interested in
exploring priors over the sensitivity parameters that encourage sparsity. These
priors could in principle be integrated in the variational approximation of chapter
4 and develop a practical system for performing sparse inference of gene networks

involving thousands of genes and hundreds of transcription factors.

Human motion capture data. The latent force model of order two was developed
in publication ii as a generative model for human movement. A thoughtful evalu-
ation of this model is yet to be completed. We would like to push the boundaries
of the model and test it in scenarios of transfer learning, for example, learning
models for walking and running and then under certain restrictions for certain
poses generate movements that look more realistic. We believe our model can
provide a rich family of movements because it incorporates ideas from the dy-

namics of the movements. This is a hot topic of research in computer animation
(Brubaker et al., 2009).
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Motor primitives. Probabilistic models for description of motor primitives are
attracting the attention from researches in the area of humanoid robotics. We
provided an extension of the latent force model, that allows for segmenting motor
primitives in a multivariate time series. Once the motor primitives are segmented,
the next step is a process of labeling them so that they can be combined to gen-
erate more complex movements. A method that admits the identification of the
motor primitives within the switching dynamical latent force model methodology

constitutes a promising area of research.
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Abstract

We present a sparse approximation approach for dependent output Gaussian pro-
cesses (GP). Employing a latent function framework, we apply the convolution
process formalism to establish dependencies between output variables, where each
latent function is represented as a GP. Based on these latent functions, we establish
an approximation scheme using a conditional independence assumption between
the output processes, leading to an approximation of the full covariance which is
determined by the locations at which the latent functions are evaluated. We show
results of the proposed methodology for synthetic data and real world applications
on pollution prediction and a sensor network.

1 Introduction

We consider the problem of modeling correlated outputs from a single Gaussian process (GP). Appli-
cations of modeling multiple outputs include multi-task learning ésg€g1]) and jointly predicting

the concentration of different heavy metal pollutants [5]. Modelling multiple output variables is a
challenge as we are required to compute cross covariances between the different outputs. In geo-
statistics this is known asokriging Whilst cross covariances allow us to improve our predictions

of one output given the others because the correlations between outputs are modelled [6, 2, 15, 12]
they also come with a computational and storage overhead. The main aim of this paper is to address
these overheads in the context of convolution processes [6, 2].

One neat approach to account for non-trivial correlations between outputs employs convolution pro-
cesses (CP). When using CPs each output can be expressed as the convolution between a smoothing
kernel and datent function [6, 2]. Let's assume that the latent function is drawn from a GP. If

we also share the same latent function across several convolutions (each with a potentially differ-
ent smoothing kernel) then, since a convolution is a linear operator on a function, the outputs of
the convolutions can be expressed as a jointly distributed GP. It is this GP that is used to model
the multi-output regression. This approach was proposed by [6, 2] who focussed on a white noise
process for the latent function.

Even though the CP framework is an elegant way for constructing dependent output processes, the
fact that the full covariance function of the joint GP must be considered results in significant storage
and computational demands. FQroutput dimensions and/ data points the covariance matrix

scales ag) N leading toO(Q3N?) computational complexity an@(N?Q?) storage. Whilst other
approaches to modeling multiple output regression are typically more constraining in the types of
cross covariance that can be expressed [1, 15], these constraints also lead to structured covariances
functions for which inference and learning are typically more efficient (typicallyNor @ these

methods have)(N3Q) computation and)(N2Q) storage). We are interested in exploiting the

richer class of covariance structures allowed by the CP framework, but without the additional com-
putational overhead they imply.



We propose a sparse approximation for the full covariance matrix involved in the multiple output
convolution process, exploiting the fact that each of the outputs is conditional independent of all oth-
ers given the input process. This leads to an approximation for the covariance matrix which keeps
intact the covariances of each output and approximates the cross-covariances terms with a low rank
matrix. Inference and learning can then be undertaken with the same computational complexity as
a set of independent GPs. The approximation turns out to be strongly related to the partially in-
dependent training conditional (PITC) [10] approximation for a single output GP. This inspires us
to consider a further conditional independence function across data points that leads to an approx-
imation which shares the form of the fully independent training conditional (FITC) approximation
[13, 10] reducing computational complexity @ NQM?) and storage t®(NQM ) with M rep-
resenting a user specified value.

To introduce our sparse approximation some review of the CP framework is required (Section 2).
Then in Section 3, we present sparse approximations for the multi-output GP. We discuss relations
with other approaches in Section 4. Finally, in Section 5, we demonstrate the approach on both
synthetic and real datasets.

2 Convolution Processes

Consider a set of) functions{fq(x)},?:l, where each function is expressed as the convolution
between a smoothing kern{altq(x)}Q

41, and a latent function(z),

fo(x) = /OC kq(x — z)u(z)dz.

— 00

More generally, we can consider the influence of more than one latent fun¢tipz)} % ,, and
corrupt each of the outputs of the convolutions with an independent process (which could also in-
clude a noise term)y, (x), to obtain

Yq(x) = fq(x) + wq(x Z/ kqr( ur(z)dz + wq(x). 1)

The covariance between two different functign$x) andy,(x’) is then recovered as

cov [yg(x), ys (x')] = cov [f4(x), fs(x)] 4 cov [wy(x), ws(x)] dgs,
where

oo

cov [ fq(x Z Z/ kgr(x — / kop(x' —2) cov [u,(2z),u,(2z')] dz'dz  (2)

r=1p=1 -
This equation is a general result; in [6, 2] the latent functiop&) are assumed as independent

white Gaussian noise processes, cov [u,(z),u,(z')] = 02 6,,0,,, SO the expression (2) is
simplified as
cov [fq(x Z o. / kor(x — 2)ksp(x' — z)dz.
— 00
We are going to relax this constraint on the latent processes, we assume that each inducing function is

an independent GPe. cov [u,(z), uy(2')] = ku,u, (2, 2')0,p, Wherek,, ., (z,2') is the covariance
function forw,.(z). With this simplification, (2) can be written as

cov [fq(x Z / kgr(x — /OO ks (x' — 2')ky,u, (2,2")dz' dz. (3)

— 00

As well as this correlation across outputs, the correlation between the latent fungtiah, and
any given outputf,(x), can be computed,

o0

cov [fq(X), ur(z))] - / qu(X - z/>kurur (Zlv Z)dZ/. (4)

— 00



3 Sparse Approximation

Given the convolution formalism, we can construct a full GP over the set of outputs. The likelihood
of the model is given by
p(y|X7 ¢) :N(O7Kf,f+z)a (5)

wherey = [y],... ,yg]T is the set of output functions witly, = [y,(x1),...,ye(xn)]";

K¢ € RON*QN js the covariance matrix relating all data points at all outputs, with elements
cov [fq(x), fs(x/)] in (3); ¥ = £ ® Iy, whereX is a diagonal matrix with elemen(srg}qQ:l; ¢

is the set of parameters of the covariance matrixXné {x;,...,xy} is the set of training input
vectors at which the covariance is evaluated.

The predictive distribution for a new set of input vect®s is [11]
Py, X, X, ) =N (Ke, ¢(Ke s + ) 'y, Kr. r. — Kr, ¢(Kes +3) 'K, +3),

where we have useH¢, ¢, as a compact notation to indicate when the covariance matrix is evalu-
ated at the inputX.., with a similar notation folK¢, ¢. Learning from the log-likelihood involves
the computation of the inverse &; s + 3, which grows with complexityO((NQ)?). Once the
parameters have been learned, predictiaf(i8/Q) for the predictive mean an@((NQ)?) for the
predictive variance.

Our strategy for approximate inference is to exploit the natural conditional dependencies in the
model. If we had observed the entire length of each latent funatida,), then from (1) we see that
eachy, (x) wouldbe independent.e. we can write,

Q

p({ye )Y, H{ur ()12 ,0) = [ plyg ) | {ur (2)},2, . 6),

q=1

where@ are the parameters of the kernels and covariance functions. Our key assumption is that this
independence will hold even if we have only obsergdédamples fromu,.(z) rather than the whole
function. The observed values of thekesamples are then marginalized (as they are for the exact
case) to obtain the approximation to the likelihood. Our intuition is that the approximation should
be more accurate for largéd and smoother latent functions, as in this domain the latent function
could be very well characterized from only a few samples.

We defineu = [uf,... ,u];,/]T as the samples from the latent function with. =
[ur(z1), ... ,uT(ZM)]T; K, u is then the covariance matrix between the samples from the latent
functionsu,(z), with elements given b¥,, .. (z,2'); K¢y = Klf are the cross-covariance ma-

trices between the latent functions(z) and the outputg, (x), with elementsov [f,(x), u,(z)] in
(4) andZ = {z,,...,z) } is the set of input vectors at which the covarialCg ,, is evaluated.

We now make the conditional independence assumption given the samples from the latent functions,

Q Q
p(y|ua Zv X7 0) = H p(y(1|u7 Z7 X7 0) = H N (Kfq,uK;,luuv Kfq,fq - Kfq.,llK:l,luKll,fq + 031) .

q=1 q=1
We rewrite this product as a single Gaussian with a block diagonal covariance matrix,
p(ylu,Z,X,6) = N (K¢ oK Lu,D + X) (6)

whereD = blockdiag [K¢ ¢ — K¢ oKy L, Ku¢], and we have used the notatibhockdiag [G] to
indicate the block associated with each output of the maf¥ishould be retained, but all other
elements should be set to zero. We can also write thi3 as [Kr ¢ — K¢ oK%, Ku ¢] ©M where

© is the Hadamard product add = I ® 1y, 15 being thelV x NV matrix of ones anc being the
Kronecker product. We now marginalize the values of the samples from the latent functions by using
their process priors,e. p(u|Z) = N(0,K, ). This leads to the following marginal likelihood,

p(y|Z,X,0) = / p(ylu,Z,X,0)p(u|Z)du = N (0,D + K¢ oK L\ Kus +3).  (7)



Notice that, compared to (5), the full covariance makix¢ has been replaced by the low rank co-
varianceK¢ K 1, K, ¢ in all entries except in the diagonal blocks corresponding ¢0r, . When

using the marginal likelihood for learning, the computation load is associated to the calculation of
the inverse oD. The complexity of this inversion i©(N3Q) + O(NQM?), storage of the matrix

is O(N%2Q) + O(NQM). Note that if we setV/ = N these reduce t@(N3Q) and O(N2Q)
respectively which matches the computational complexity of applgimgdependent GPs to model

the multiple outputs.

Combining eq. (6) withp(u|Z) using Bayes theorem, the posterior distribution avés obtained
as

p(uy, X, Z,0) = N (KuuA 'Kut(D+2) 'y, KuuA 'Ky ) (8)

whereA = Ky u + Kus(D + )" 'K . The predictive distribution is expressed through the
integration of (6), evaluated & .., with (8), giving

p(y.ly. X, X..Z,0) = / p(y.|u,Z, X, 0)p(uly, X, Z,0)du
:N (Kf*,uAilKu,f(D + 2)713’7 D* =+ Kf*,uAilKu,f* + 2) (9)

with D, = blockdiag [Kf*7f* — Kf*7uK;111Ku7f*].

The functional form of (7) is almost identical to that of the PITC approximation [10], with the
samples we retain from the latent function providing the same role amdueing valuesn the

partially independent training conditional (PITC) approximation. This is perhaps not surprising
given that the nature of the conditional independence assumptions in PITC is similar to that we have
made. A key difference is that in PITC it is not obvious which variables should be grouped together
when making the conditional independence assumption, here it is clear from the structure of the
model that each of the outputs should be grouped separately. However, the similarities are such that
we find it convenient to follow the terminology of [10] and also refer to our approximation as a PITC
approximation.

We have already noted that our sparse approximation reduces the computational complexity of multi-
output regression with GPs to that of applying independent GPs to each output. For larger data sets
the N3 term in the computational complexity and th& term in the storage is still likely to be
prohibitive. However, we can be inspired by the analogy of our approach to the PITC approximation
and consider a more radical factorization of the outputs. In the fully independent training conditional
(FITC) [13, 14] a factorization across the data points is assumed. For us that would lead to the
following expression for conditional distribution of the output functions given the inducing variables,
p(ylu,Z,X,0) = HqQ:1 HnNzlp(yqn|u, Z,X, 0) which can be briefly expressed through (6) with

D = diag I:Kf’f — Kf’uK;}uKuyf] = I:Kf’f — Kf,uKII‘luKuyf] OM, withM = IQ@IN. Similar
equations are obtained for the posterior (8), predictive (9) and marginal likelihood distributions (7)
leading to the Fully Independent Training Conditional (FITC) approximation [13, 10]. Note that
the marginal likelihood might be optimized both with respect to the parameters associated with the
covariance matrices and with respec#oln supplementary material we include the derivatives of

the marginal likelihood wrt the matricdst ¢, K, r andK,, .

4 Related work

There have been several suggestions for constructing multiple output GPs [2, 15, 1]. Under the
convolution process framework, the semiparametric latent factor model (SLFM) proposed in [15]
corresponds to a specific choice for the smoothing kernel function in (1) nakgelyt) = ¢4,-d(x).

The latent functions are assumed to be independent GPs and in such acaggx), fs(x')] =

>, Par@srku,u, (x,x'). This can be written using matrix notationks ¢ = (2 R1)K, (2 ' 1I).

For computational speed up the informative vector machine (IVM) is employed [8].

In the multi-task learning model (MTLM) proposed in [1], the covariance matrix is expressed as
Ker = K7 ® k(x,x'), with K/ being constrained positive semi-definite drfet, x') a covariance
function over inputs. The Nysim approximation is applied fo(x, x’). As stated in [1] with respect

to SLFM, the convolution process is related with MTLM when the smoothing kernel function is



given again by, (x) = ¢4-d(x) and there is only one latent function with covariakgg(x, x’') =

k(x,x’). In this way,cov [f,(x), fs(x)] = ¢40sk(x,x’) and in matrix notatioKs ¢ = ®® '™ @
k(x,x’). In [2], the latent processes correspond to white Gaussian noises and the covariance matrix
is given by eq. (3). In this work, the complexity of the computational load is not discussed. Finally,
[12] use a similar covariance function to the MTLM approach but use an IVM style approach to
sparsification.

Note that in each of the approaches detailed ab@viiaction is introduced into the integral. In the
dependent GP model of [2] it is introduced in the covariance function. Our approach considers the
more general case when neither kernel nor covariance function is given byuhetion.

5 Results

For all our experiments we considered squared exponential covariance functions for the latent pro-
cess of the fornk,, ., (x,x’) = exp [—% (x—x)" L, (x— x’)} , whereL,. is a diagonal matrix
which allows for different length-scales along each dimension. The smoothing kernel had the same

1/2 . . .
form, kg, (1) = % exp [—37 'Lg7] , whereS,, € RandL,, is a symmetric positive def-
inite matrix. For this kernel/covariance function combination the necessary integrals are tractable

(see supplementary material).

We first setup a toy problem in which we evaluate the quality of the prediction and the speed of
the approximation. The toy problem consists(pf= 4 outputs, one latent functiorR = 1, and

N = 200 observation points for each output. The training data was sampled from the full GP with
the fO”OWing parameter§11 =S5 =1, 531 =841 =5,L11 = Loy = 50, L3 = 3007 L4 = 200

for the outputs and.; = 100 for the latent function. For the independent processggx), we

simply added white noise with variance$ = o3 = 0.0125, 03 = 1.2 ando? = 1. For the sparse
approximations we usedl/ = 30 fixed inducing points equally spaced between the range of the
input andR = 1. We sought the kernel parameters through maximizing the marginal likelihood
using a scaled conjugate gradient algorithm. For test data we removed a portion of one output as
shown in Figure 1 (points in the interviat0.8, 0] were removed). The predictions shown correspond

to the full GP (Figure 1(a)), an independent GP (Figure 1(b)), the FITC approximation (Figure 1(c))
and the PITC approximation (Figure 1(d)). Due to the strong dependencies between the signals, our
model is able to capture the correlations and predicts accurately the missing information.

Table 1 shows prediction results over an independent test set. We used 300 points to compute the
standarized mean square error (SMSE) [11] and ten repetitions of the experiment, so that we also
included one standard deviation for the ten repetitions. The training times for iteration of each model
arel.45 + 0.23 secs for the full GR).29 4+ 0.02 secs for the FITC an@.48 4+ 0.01 for the PITC.

Table 1, shows that the SMSE of the sparse approximations is similar to the one obtained with the
full GP with a considerable reduction of training times.

Method | Output 1 Output 2 Output 3 Output 4

FullGP | 1.07£0.08 | 0.99 +£0.03 | 1.12+0.07 | 1.05 £ 0.07
FITC 1.08+0.09 | 1.004+0.03 | 1.13+£0.07 | 1.04 + 0.07
PITC | 1.07+0.08 | 0.994+0.03 | 1.124+0.07 | 1.05+0.07

Table 1: Standarized mean square error (SMSE) for the toy problem over an independent test set. All numbers
are to be multiplied by 0~2. The experiment was repeated ten times. Table included the value of one standard
deviation over the ten repetitions.

We now follow a similar analysis for a dataset consisting of weather data collected from a sensor net-
work located on the south coast of England. The network includes four sensors (named Bramblemet,
Sotonmet, Cambermet and Chimet) each of which measures several environmental variables [12].
We selected one of the sensors signals, tide height, and applied the PITC approximation scheme
with an additionakquared exponentiahdependent kernel for eaeh, (x) [11]. Here@ = 4 and

we choseN = 1000 of the 4320 for the training set, leaving the remaining points for testing. For
comparison we also trained a set of independent GP models. We followed [12] in simulating sensor
failure by introducing some missing ranges for these signals. In particular, we have a missing range
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(a) Output 4 using the full GP (b) Output 4 using an independent GP
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(c) Output 4 using the FITC approximatior{d) Output 4 using the PITC approximation

Figure 1: Predictive mean and variance using the full multi-output GP, the sparse approximation and an inde-

pendent GP for output 4. The solid line corresponds to the mean predictive, the shaded region corresponds to
2 standard deviations away from the mean and the dash line is the actual value of the signal without noise. The
dots are the noisy training points. There is a range of missing data in the intefk8l 0.0]. The crosses in

figures 1(c) and 1(d) corresponds to the locations of the inducing inputs.

of [0.6, 1.2] for the Bramblemet tide height sensor gad, 2.1] for the Cambermet. For the other

two sensors we used dlb00 training observations. For the sparse approximation we 3dok 100

equally spaced inducing inputs. We see from Figure 2 that the PITC approximation captures the de-
pendencies and predicts closely the behavior of the signal in the missing range. This contrasts with
the behavior of the independent model, which is not able to follow the original signal.

As another example we employ the Jura dataset, which consists of measurements of concentrations
of several heavy metals collected in the topsoil afigs km? region of the Swiss Jura. The data is
divided into a prediction se2(9 locations) and a validation set(0 locations§. In a typical situ-

ation, referred aandersamplear heterotopiccase, a few expensive measurements of the attribute

of interest are supplemented by more abundant data on correlated attributes that are cheaper to sam-
ple. We follow the experiments described in [5, p. 248,249] in whiphimary variable(cadmium

and copper) at prediction locations in conjunction with saaeondary variableénickel and zinc

for cadmium; lead, nickel and zinc for copper) at prediction and validation locations, are employed
to predict the concentration of the primary variable at validation locations. We compare results of
independent GP, the PITC approximation, the full GP and ordinary co-kriging. For the PITC ex-
periments, &-meangrocedure is employed first to find the initial locations of the inducing values

and then these locations are optimized in the same optimization procedure used for the parameters.
Each experiment is repeated ten times. The results for ordinary co-kriging were obtained from [5,
p. 248,249]. In this case, no values for standard deviation are reported. Figure 3 shows results of
prediction for cadmium (Cd) and copper (Cu). From figure 3(a), it can be noticed that using 50 in-
ducing values, the approximation exhibits a similar performance to the co-kriging method. As more

1This data is available 4ittp://www.ai-geostats.org/
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Figure 2: Predictive Mean and variance using independent GPs and the PITC approximation for the tide height
signal in the sensor dataset. The dots indicate the training observations while the dash indicates the testing

observations. We have emphasized the size of the tr
The solid line corresponds to the mean predictive.
locations of the inducing inputs.

inducing values are included, the approximation

aining points to differentiate them from the testing points.
The crosses in figures 2(b) and 2(d) corresponds to the

follows the performance of the full GP, as it would

be expected. From figure 3(b), it can be observed that, although the approximation is better that the
independent GP, it does not obtain similar results to the full GP. Summary statistics of the prediction
data ([5, p. 15]) shows higher variability for the copper dataset than for the cadmium dataset, which

explains in some extent the different behaviors.
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Figure 3: Mean absolute error and standard deviation for ten repetitions of the experiment for the Jura dataset
In the bottom of each figure, IGP stands for independent GH,)Rtands for PITC with/ inducing values,

FGP stands for full GP and CK stands for ordinary co

-kriging (see [5] for detailed description).



6 Conclusions

We have presented a sparse approximation for multiple output GPs, capturing the correlated in-
formation among outputs and reducing the amount of computational load for prediction and opti-
mization purposes. The reduction in computational complexity for the PITC approximation is from
O(N3@Q3) to O(N3Q). This matches the computational complexity for modeling with independent
GPs. However, as we have seen, the predictive power of independent GPs is lower.

Linear dynamical systems responses can be expressed as a convolution between the impulse re-
sponse of the system with some input function. This convolution approach is an equivalent way of
representing the behavior of the system through a linear differential equation. For systems involving
high amounts of coupled differential equations [4], the approach presented here is a reasonable way
of obtaining approximate solutions and incorporating prior domain knowledge to the model.

One could optimize with respect to positions of the values of the latent functions. As the input
dimension grows, it might be more difficult to obtain an acceptable response. Some solutions to this
problem have already been proposed [14].
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Abstract

Purely data driven approaches for machine
learning present difficulties when data is
scarce relative to the complexity of the model
or when the model is forced to extrapolate.
On the other hand, purely mechanistic ap-
proaches need to identify and specify all the
interactions in the problem at hand (which
may not be feasible) and still leave the is-
sue of how to parameterize the system. In
this paper, we present a hybrid approach us-
ing Gaussian processes and differential equa-
tions to combine data driven modelling with
a physical model of the system. We show how
different, physically-inspired, kernel func-
tions can be developed through sensible, sim-
ple, mechanistic assumptions about the un-
derlying system. The versatility of our ap-
proach is illustrated with three case studies
from computational biology, motion capture
and geostatistics.

1 Introduction

Traditionally, the main focus in machine learning
has been model generation through a data driven
paradigm. The usual approach is to combine a data
set with a (typically fairly flexible) class of models
and, through judicious use of regularization, make use-
ful predictions on previously unseen data. There are
two key problems with purely data driven approaches.
Firstly, if data is scarce relative to the complexity of
the system we may be unable to make accurate predic-
tions on test data. Secondly, if the model is forced to
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extrapolate, i.e. make predictions in a regime in which
data has not been seen yet, performance can be poor.

Purely mechanistic models, i.e. models which are in-
spired by the underlying physical knowledge of the
system, are common in many areas such as chem-
istry, systems biology, climate modelling and geophys-
ical sciences, etc. They normally make use of a fairly
well characterized physical process that underpins the
system, typically represented with a set of differential
equations. The purely mechanistic approach leaves us
with a different set of problems to those from the data
driven approach. In particular, accurate description
of a complex system through a mechanistic modelling
paradigm may not be possible: even if all the physical
processes can be adequately described, the resulting
model could become extremely complex. Identifying
and specifying all the interactions might not be feasi-
ble, and we would still be faced with the problem of
identifying the parameters of the system.

Despite these problems, physically well characterized
models retain a major advantage over purely data
driven models. A mechanistic model can enable ac-
curate prediction even in regions where there may be
no available training data. For example, Pioneer space
probes have been able to enter different extra terres-
trial orbits despite the absence of data for these orbits.

In this paper we advocate an alternative approach.
Rather than relying on an exclusively mechanistic
or data driven approach we suggest a hybrid system
which involves a (typically overly simplistic) mechanis-
tic model of the system which can easily be augmented
through machine learning techniques. We will start by
considering two dynamical systems, both simple latent
variable models, which incorporate first and second or-
der differential equations. Our inspiration is the work
of (Lawrence et al., 2007; Gao et al., 2008) who en-
coded a first order differential equation in a Gaussian
process (GP). However, their aim was to construct an
accurate model of transcriptional regulation, whereas
ours is to make use of the mechanistic model to in-
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corporate salient characteristics of the data (e.g. in a
mechanical system inertia) without necessarily associ-
ating the components of our mechanistic model with
actual physical components of the system. For exam-
ple, for a human motion capture dataset we develop
a mechanistic model of motion capture that does not
exactly replicate the physics of human movement, but
nevertheless captures salient features of the movement.
Having shown how first and second order dynamical
systems can be incorporated in a GP, we finally show
how partial differential equations can also be incorpo-
rated for modelling systems with multiple inputs.

2 Latent Variables and Physical
Systems

From the perspective of machine learning our approach
can be seen as a type of latent variable model. In a
latent variable model we may summarize a high dimen-
sional data set with a reduced dimensional represen-
tation. For example, if our data consists of N points
in a (@ dimensional space we might seek a linear rela-
tionship between the data, Y € RV*? and a reduced
dimensional representation, F € RN*® where R < Q.
From a probabilistic perspective this involves an as-
sumption that we can represent the data as

Y =FW +E, (1)

where E is a matrix-variate Gaussian noise: each col-
umn, €., (1 < ¢ < Q), is a multi-variate Gaussian
with zero mean and covariance X, i.e. €. 4 ~ N (0,X).
The usual approach, as undertaken in factor analysis
and principal component analysis (PCA), to dealing
with the unknowns in this model is to integrate out F
under a Gaussian prior and optimize with respect to
W € RF*Q (although it turns out that for a non-linear
variant of the model it can be convenient to do this the
other way around, see e.g. (Lawrence, 2005)). If the
data has a temporal nature, then the Gaussian prior in
the latent space could express a relationship between
the rows of F, f; = f; _, + n, where n ~ N (0,C)
and f;  is the n-th row of F, which we associate with
time ¢,,. This is known as the Kalman filter/smoother.
Normally the times, ¢,,, are taken to be equally spaced,
but more generally we can consider a joint distribution
for p(F|t), t = [t1...tn] ', which has the form of a
Gaussian process (GP),

R
p(F‘t) = HN (f37T|O7Kf:,T7f:,T) 9
r=1

where we have assumed zero mean and independence
across the R dimensions of the latent space. The GP
makes explicit the fact that the latent variables are
functions, { fT(t)}il, and we have now described them
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with a process prior. The notation used, f. ., indicates
the r-th column of F, and represents the values of
that function for the r-th dimension at the times given
by t. The matrix Ky, . . is the covariance function
associated to f,.(t) computed at the times given in t.

Such a GP can be readily implemented. Given the co-
variance functions for {f,(¢)} the implied covariance
functions for {y,(t)} are straightforward to derive. In
(Teh et al., 2005) this is known as a semi-parametric
latent factor model (SLFM), although their main fo-
cus is not the temporal case. Historically the Kalman
filter approach has been preferred, perhaps because of
its linear computational complexity in N. However,
recent advances in sparse approximations have made
the general GP framework practical (see (Quinionero
Candela and Rasmussen, 2005) for a review).

So far the model described relies on the latent variables
to provide the dynamic information. Our main contri-
bution is to include a further dynamical system with
a mechanistic inspiration. We now use a mechanical
analogy to introduce it. Consider the following phys-
ical interpretation of (1): the latent functions, f,.(t),
are R forces and we observe the displacement of @
springs, y,(t), to the forces. Then we can reinterpret
(1) as the force balance equation, YD = FS+E. Here
we have assumed that the forces are acting, for exam-
ple, through levers, so that we have a matrix of sen-
sitivities, 8 € RF*? and a diagonal matrix of spring
constants, D € R?*?. The original model is recovered
by setting W = SD~! and €., ~ N (0,D" D). The
model can be extended by assuming that the spring is
acting in parallel with a damper and that the system
has mass, allowing us to write,

FS=YM+YC+ YD +e, (2)

where M and C are diagonal matrices of masses and
damping coeflicients respectively, Y € RV*Q ig the
first derivative of Y w.r.t. time and Y is the second
derivative. The second order mechanical system that
this model describes will exhibit several characteris-
tics which are impossible to represent in the simpler
latent variable model given by (1), such as inertia and
resonance. This model is not only appropriate for
data from mechanical systems. There are many analo-
gous systems which can also be represented by second
order differential equations, e.g. Resistor-Inductor-
Capacitor circuits. A unifying characteristic for all
these models is that the system is beign forced by la-
tent functions, {f, (t)}f’:l. Hence, we refer to them as
latent force models (LFMs).

One way of thinking of our model is to consider pup-
petry. A marionette is a representation of a human
(or animal) controlled by a limited number of inputs
through strings (or rods) attached to the character.
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This limited number of inputs can lead to a wide range
of character movements. In our model, the data is the
movements of the marionette, and the latent forces are
the inputs to the system from the puppeteer.

Finally, note that it is of little use to include dynam-
ical models of the type specified in (2) if their effects
cannot be efficiently incorporated into the inference
process. Fortunately, as we will see in the case studies,
for an important class of covariance functions it is an-
alytically tractable to compute the implied covariance
functions for {yq(t)}(?:l. Then, given the data a conju-
gate gradient descent algorithm can be used to obtain
the hyperparameters of the model which minimize the
minus log-likelihood, and inference is performed based
on standard GP regression techniques.

3 First Order Dynamical System

A single input module is a biological network motif
where the transcription of a number of genes is driven
by a single transcription factor. In (Barenco et al.,
2006) a simple first order differential equation was
proposed to model this situation. Then (Lawrence et
al., 2007; Gao et al., 2008) suggested that inference of
the latent transcription factor concentration should be
handled using GPs. In effect their model can be seen as
a latent force model based on a first order differential
equation with a single latent force. Here we consider
the extension of this model to multiple latent forces.
As a mechanistic model, this is a severe over simpli-
fication of the physical system: transcription factors
are known to interact in a non linear manner. Despite
this we will be able to uncover useful information. Our
model is based on the following differential equation,
dy,(t)

i 3)

R
+ Dgyq(t) = By + Zsrqfr(t)-
r=1
Here the latent forces, f.(t), represent protein con-
centration (which is difficult to observe directly), the
outputs, y,(t), are the mRNA abundance levels for
different genes, B, and D, are respectively the basal
transcription and the decay rates of the ¢-th gene, and
Srq are coupling constants that quantify the influence
of the r-th input on the g-th output (i.e. the sensitiv-
ity of gene q to the concentration of protein r). Solving
(3) for y4(t), we obtain

R

B
valt) = 5+ 2 Lralf)(0),
q —
r=1
where we have ignored transient terms, which are eas-
ily included, and the linear operator is given by the

following linear convolution operator,

mewz&ﬁmemqéﬁmﬁmmﬂ&
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If each latent force is taken to be independent with a
covariance function given by
(t—t)?
22 ’

then we can compute the covariance of the outputs
analytically, obtaining (Lawrence et al., 2007)

kfrvf’r (t, t/) = exp (

R

S, Sra /Tl
B 1) = 32 Z25TE 1) 40,19,
r=1
where
/ exp(l/’?‘q) /
hqp(t ,t) = m exp(—Dqt ) eXp(Dqt)

" —t

X [erf(tg —qu> +erf(Z+VTq) ]
t/
—exp(—Dyt) {erf (E — qu) + erf(u,«q)} ,

here grf(m) is the real valued error function, erf(z) =
% fOL eXp(—y2)dy7 and Vrq = équ/2

Additionally, we can compute the cross-covariance be-
tween the inputs and outputs,

Sro\/ Tl
kyqfr(t’t/) = %

«Jont

3.1 p53 Data

exp(v2,) exp(— Dyt — 1)
t—t t
T — 1/7-q —+ erf E + qu .

Our data is from (Barenco et al, 2006), where
leukemia cell lines were bombarded with radiation to
induce activity of the transcription factor p53. This
transcription factor repairs DNA damage and triggers
a mechanism which pauses the cell-cycle and poten-
tially terminates the cell. In (Barenco et al., 2006)
microarray gene expression levels of known targets of
p53 were used to fit a first order differential equation
model to the data. The model was then used to pro-
vide a ranked list of 50 genes identified as regulated
by p53.

Our aim is to determine if there are additional “la-
tent forces” which could better explain the activity of
some of these genes. The experimental data consists of
measurements of expression levels of 50 genes for three
different replicas. Within each replica, there are mea-
surements at seven different time instants. We con-
structed a latent force model with six latent forces, as-
suming that each replica was independently produced
but fixing the hyperparameters of the kernel across the
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replicas'. We employed a sparse approximation, as

proposed in (Alvarez and Lawrence, 2009), with ten
inducing points for speeding up computation.

Of the six latent functions, two were automatically
switched off by the model. Two further latent func-
tions, shown in Figure 1 as latent forces 1 & 2, were
consistent across all replicas: their shapes were time
translated versions of the p53 profile as identified by
(Barenco et al., 2006; Lawrence et al., 2007; Gao et
al., 2008). This time translation allows genes to ex-
perience different transcriptional delays, a mechanism
not included explicitly in our model, but mimicked by
linear mixing of an early and a late signal. The re-
maining two latent functions were inconsistent across
the replicas (see e.g. latent force 3 in Figure 1). They
appear to represent processes not directly related to
pb3. This was backed up by the sensitivity parameters
found in the model. The known p53 targets DDB2,
p21, SESN1/hPA26, BIK and TNFRSF10b were found
to respond to latent forces 1 & 2. Conversely, the
genes that were most responsive to latent force 3 were
MAP4K4, a gene involved in environmental stress sig-
nalling, and FDXR, an electron transfer protein.

4 Second Order Dynamical System

In Section 1 we introduced the analogy of a mari-
onette’s motion being controlled by a reduced number
of forces. Human motion capture data consists of a
skeleton and multivariate time courses of angles which
summarize the motion. This motion can be modelled
with a set of second order differential equations which,
due to variations in the centers of mass induced by
the movement, are non-linear. The simplification we
consider for the latent force model is to linearize these
differential equations, resulting in the following second
order dynamical system,

deq (t)
dt?

dy,(t)
dt

R
+Dqyq(t) = BqJFZ Srqfr(t), (4)

r=1

+C

where the mass of the system, without loss of gener-
ality, is normalized to 1. Whilst (4) is not the correct
physical model for our system, it will still be help-
ful when extrapolating predictions across different mo-
tions, as we shall see in the next section. Note also
that, although similar to (3), the dynamic behavior of
this system is much richer than that of the first order
system, since it can exhibit inertia and resonance.

'The decay rates were asssumed equal within replicas.
Although this might be an important restriction for this
experiment, our purpose in this paper is to expose a gen-
eral methodology without delving into the details of each
experimental setup.
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For the motion capture data y,(t) corresponds to a
given observed angle over time, and its derivatives rep-
resent angular velocity and acceleration. The system
is summarized by the undamped natural frequency,
Wog = m, and the damping ratio, (; = %Cq/m'
Systems with a damping ratio greater than one are
said to be overdamped, whereas underdamped systems
exhibit resonance and have a damping ratio less than
one. For critically damped systems (; = 1, and finally,
for undamped systems (i.e. no friction) ¢, = 0.

Ignoring the initial conditions once more, the solution
of (4) is again given by a convolution, with the linear
operator now being

Srq
—e —at
Wy xp( q )

X/o fr(T) exp(ogT) sin(wq (t — 7))dT,
(5)

Lyq[fr](2)

where w, = /4D, — C2/2 and oy = Cy/2.

Once again, if we consider a latent force governed by
a GP with the RBF covariance function we can solve
(5) analytically, obtaining a closed-form expression for
the covariance matrix of the outputs,

SrpSrg /Tl £

YpYq
Bwpwy

R

kypyq (t, t/) = Z

r=1

(t,t).

Here kzg(];)yq (t,t") can be considered the cross-covariance
between the p-th and ¢-th outputs under the effect of
the r-th latent force, and is given by

kT (8,t)

YpYq

B (Vgs Vs t5') + T (Y, Vg s 1)

+ e (Vg Vps 6, ) + e (B, g, ' 1)
- hr(ﬁm?p’tvt,) - hr(%n%qatl’t)
= he (Vg Ypr 5 1) = B (4ps g ),

where v, = ap + jwp, Vp = ap — jwy, and

T (g, t',t) — exp(—pt) Tr (7, ', 0)
T T Va

)

hr(’}’q; Vps t, tl) =

with

2.2
g
1

) exp(—(t — )
F)
(6)

and z.4(t) = (t —t') /4, — (£r74)/2. Note that z,,4(t) €
C, and w(jz) in (6), for z € C, denotes Faddeeva’s
function w(jz) = exp(z?)erfc(z), where erfc(z) is the
complex version of the complementary error function,

TT’(’}/(N ta t/) = 2eXp (
_41\2 .
¢ Eg’,) ) W(jzrq(t)) — exp (_

X exp(—gt)W(—jzrq(0)),

e (-
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Figure 1: (a)-(c) and (d)-(f) the two latent forces associated with p53 activity. pb3 targets are sensitive to a
combination of these functions allowing them to account for transcriptional delays. (g)-(h) a latent force that
was inconsistent across the replicas. It may be associated with cellular processes not directly related to p53.

erfc(z) =1 —erf(z) = % [° exp(—v?)dv. Faddeeva’s
function is usually considered the complex equivalent
of the error function, since |w(jz)| is bounded when-
ever the imaginary part of jz is greater or equal than
zero, and is the key to achieving a good numerical sta-
bility when computing (6) and its gradients.

Similarly, the cross-covariance between latent func-
tions and outputs is given by

G

Y, (Vg t,t) — Trlvg, t, )],
]4wq [ (’be I ) ('Yq )]

key, . (t,1)
A visualization of a covariance matrix with a latent
force and three different outputs (overdamped, under-
damped and critically damped) is given in Figure 2.

4.1 Motion Capture data

Our motion capture data set is from the CMU motion
capture data base?. We considered 3 balancing mo-
tions (18, 19, 20) from subject 49. The subject starts
in a standing position with arms raised, then, over
about 10 seconds, he raises one leg in the air and low-
ers his arms to an outstretched position. Of interest
to us was the fact that, whilst motions 18 and 19 are
relatively similar, motion 20 contains more dramatic
movements. We were interested in training on motions
18 and 19 and testing on the more dramatic movement

2The CMU Graphics Lab Motion Capture Database was

created with funding from NSF EIA-0196217 and is avail-
able at http://mocap.cs.cmu.edu.
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Figure 2: Visualization of the covariance matrix asso-
ciated with the second order kernel. Three outputs and
their correlation with the latent function are shown.
Output 1 is underdamped and the natural frequency
is observable through the bars of alternating correla-
tion and anti correlation in the associated portions of
the covariance matrix. Output 2 is overdamped, note
the more diffuse covariance in comparison to Output
3 which is critically damped.

to assess the model’s ability to extrapolate. The data
was down-sampled by 32 (from 120 frames per second
to just 3.75) and we focused on the subject’s left arm.
Our objective was to reconstruct the motion of this
arm for motion 20 given the angles of the shoulder
and the parameters learned from motions 18 and 19
using two latent functions. First, we train the second
order differential equation latent force model on mo-
tions 18 and 19, treating the sequences as independent
but sharing parameters (i.e. the damping coefficients
and natural frequencies of the two differential equa-
tions associated with each angle were constrained to
be the same). Then, for the test data, we condition on
the observations of the shoulder’s orientation to make
predictions for the rest of the arm’s angles.

For comparison, we considered a regression model that
directly predicts the angles of the arm given the ori-
entation of the shoulder using standard independent
GPs with RBF covariance functions. Results are sum-
marized in Table 1, with some example plots of the
tracks of the angles given in Figure 3.

5 Partial Differential Equations and
Latent Forces

So far we have considered dynamical latent force mod-
els based on ordinary differential equations, leading to
multioutput Gaussian processes which are functions
of a single variable: time. However, the methodology
can also be applied in the context of partial differen-
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Table 1: Root mean squared (RMS) angle error for
prediction of the left arm’s configuration in the motion
capture data. Prediction with the latent force model
outperforms the prediction with regression for all apart
from the radius’s angle.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09

tial equations in order to recover multioutput Gaussian
processes which are functions of several inputs.

5.1 Diffusion in the Swiss Jura

The Jura data is a set of measurements of concentra-
tions of several heavy metal pollutants collected from
topsoil in a 14.5 km? region of the Swiss Jura. We
consider a latent function that represents how the pol-
lutants were originally laid down. As time passes, we
assume that the pollutants diffuse at different rates
resulting in the concentrations observed in the data
set. We therefore consider a simplified version of the
diffusion equation, known also as the heat equation,

d yqxt

Z :

8yqxt

where d = 2 is the dimension of x, the measured con-
centration of each pollutant over space and time is
given by y,(x,t), and the latent function f,(x) now
represents the concentration of pollutants at time zero
(i.e. the system’s initial condition). The solution to
the system (Polyanin, 2002) is then given by

R

yq(xa t) = Zsrq /Rd fr(x

r=1

Gq(x,x',t)dx’

where G,(x,x’,t) is the Green’s function given as

B zd: (zj — xj)
= 4T,

Gqy(x,x',t) = ———— exp
Qdﬂd/qu/

with T, = k4t. Again, if we take the latent function to
be given by a GP with the RBF covariance function
we can compute the multiple output covariance func-
tions analytically. The covariance function between
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(a) Inferred Latent Force
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(d) Hand Z Rotation

(e) Thumb X Rotation

5 6 7 8 9

(f) Thumb Z Rotation

Figure 3: (a) Inferred latent force for the motion capture data. The force shown is the weighted sum of the two
forces that drive the system. (b)-(f) Predictions from the latent force model (solid line, grey error bars) and from
direct regression from the shoulder angles (crosses with stick error bars). For these examples noise is high due
to the relatively small length of the bones. Despite this the latent force model does a credible job of capturing
the angle, whereas direct regression with independent GPs fails to capture the trends.

the output functions is obtained as

R

Sr Sr ‘Lr|1/2
ky y, (%, %', t) = Z p=ra
r=1

[Lirp + Lipg + L1/

1 _
X exp {—2 (x — x')T (Lyp + Ly + L) Yx—x)],

where L,,, L,; and L, are diagonal isotropic matrices
with entries 2k,t, 2r,t and 1/£2 respectively. The co-
variance function between the output and latent func-

tions is given by

1 e

!/
S PVES R

1 _
X exp —3 (x— XI)T (L +L;) ! (x —x')

5.2 Prediction of Metal Concentrations

We used our model to replicate the experiments de-
scribed in (Goovaerts, 1997, pp. 248,249) in which a
primary variable (cadmium, copper, lead and cobalt)
is predicted in conjunction with some secondary vari-
ables (nickel and zinc for cadmium; lead, nickel and
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zinc for copper; copper, nickel and zinc for lead; nickel
and zinc for cobalt).® By conditioning on the val-
ues of the secondary variables we can improve the
prediction of the primary variables. We compare re-
sults for the diffusion kernel with results from predic-
tion using independent GPs for the metals and “or-
dinary co-kriging” (as reported by (Goovaerts, 1997,
pp. 248,249)). For our experiments we made use of
10 repeats to report standard deviations. Mean abso-
lute errors and standard deviations are shown in Table
2 ((Goovaerts, 1997) does not report standard devia-
tions for the co-kriging method). Our diffusion model
outperforms co-kriging for all but one example.

6 Discussion

We have proposed a hybrid approach for the use of sim-
ple mechanistic models with Gaussian processes which
allows for the creation of new kernels with physically
meaningful parameters. We have shown how these ker-
nels can be applied to a range of data sets for the
analysis of microarray data, motion capture data and

3Data available at http://www.ai-geostats.org/.
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Table 2: Mean absolute error and standard devia-
tion for ten repetitions of the experiment for the Jura
dataset. IGPs stands for independent GPs, GPDK
stands for GP diffusion kernel, OCK for ordinary co-
kriging, Cd for Cadmium, Cu for Copper, Pb for lead
and Co for Cobalt. For the Gaussian process with dif-
fusion kernel, we learn the diffusion coefficients and the
length-scale of the covariance of the latent function.

Metals IGPs GPDK OCK
Cd 0.5823+0.0133 | 0.450540.0126 | 0.5
Cu 15.93574+0.0907 | 7.1677+0.2266 | 7.8
Pb 22.9141+0.6076 | 10.1097+0.2842 | 10.7
Co 2.073540.1070 1.7546+0.0895 1.5

geostatistical data. To do this we proposed a range of
linear differential equation models: first order, second
order and a partial differential equation. The solu-
tions to all these differential equations are in the form
of convolutions. When applied to a Gaussian process
latent function they result in a joint GP over the latent
functions and the observed outputs which provides a
general framework for multi-output GP regression.

We are not the first to suggest the use of convolu-
tion processes for multi-output regression, they were
proposed by (Higdon, 2002) and built on by (Boyle
and Frean, 2005) — the ideas in these papers have
also recently been made more computationally practi-
cal through sparse approximations suggested by (Al-
varez and Lawrence, 2009). However, whilst (Boyle
and Frean, 2005) was motivated by the general idea of
constructing multi-output GPs, our aims are different.
Our focus has been embodying GPs with the charac-
teristics of mechanistic models so that our data driven
models can exhibit well understood characteristics of
these physical systems. To maintain tractability these
mechanistic models are necessarily over simplistic, but
our results have shown that they can lead to significant
improvements on a wide range of data sets.
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Abstract

Interest in multioutput kernel methods is increas-
ing, whether under the guise of multitask learn-
ing, multisensor networks or structured output
data. From the Gaussian process perspective a
multioutput Mercer kernel is a covariance func-
tion over correlated output functions. One way of
constructing such kernels is based on convolution
processes (CP). A key problem for this approach
is efficient inference. Alvarez and Lawrence re-
cently presented a sparse approximation for CPs
that enabled efficient inference. In this paper,
we extend this work in two directions: we in-
troduce the concept of variational inducing func-
tions to handle potential non-smooth functions
involved in the kernel CP construction and we
consider an alternative approach to approximate
inference based on variational methods, extend-
ing the work by Titsias (2009) to the multiple
output case. We demonstrate our approaches
on prediction of school marks, compiler perfor-
mance and financial time series.

1 Introduction

In this paper we are interested in developing priors over
multiple functions in a Gaussian processes (GP) frame-
work. While such priors can be trivially specified by con-
sidering the functions to be independent, our focus is on
priors which specify correlations between the functions.
Most attempts to apply such priors (Teh et al., 2005; Rogers
et al., 2008; Bonilla et al., 2008) have focused on what
is known in the geostatistics community as “linear model
of coregionalization” (LMC) (Goovaerts, 1997). In these
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models the different outputs are assumed to be linear com-
binations of a set of one or more “latent functions”. GP pri-
ors are placed, independently, over each of the latent func-
tions inducing a correlated covariance function over the D

outputs { fq (X)}dD:r

We wish to go beyond the LMC framework, in particu-
lar, our focus is on convolution processes (CPs). Using
CPs for multi-output GPs was proposed by Higdon (2002)
and introduced to the machine learning audience by Boyle
and Frean (2005). Convolution processes allow the inte-
gration of prior information from physical models, such as
ordinary differential equations, into the covariance func-
tion. Alvarez et al. (2009a), inspired by Lawrence et al.
(2007), have demonstrated how first and second order dif-
ferential equations, as well as partial differential equations,
can be accommodated in a covariance function. They in-
terpret the set of latent functions as a set of latent forces,
and they term the resulting models “latent force models”
(LFM). The covariance functions for these models are de-
rived through convolution processes. In the CP framework,
output functions are generated by convolving R indepen-
dent latent processes {u,. }2_, with smoothing kernel func-
tions G4, (x), for each output d and latent force r,

R
fa(x) = ;/z Gar (x —2z)u, (z)dz. (1)

The LMC can be seen as a particular case of the CP, in
which the kernel functions G4 ,-(x) correspond to a scaled
Dirac d-function Gg,, (x — z) = aq,,0(x — z).

A practical problem associated with the CP framework is
that in these models inference has computational complex-
ity O(N3D?) and storage requirements O(N2D?). Re-
cently Alvarez and Lawrence (2009) introduced an efficient
approximation for inference in this multi-output GP model.
Their idea was to exploit a conditional independence as-
sumption over the output functions { fg (x)},_,: if the la-
tent functions are fully observed then the output functions
are conditionally independent of one another (as can be
seen in (1)). Furthermore, if the latent processes are suf-
ficiently smooth, the conditional independence assumption
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will hold approximately even for a finite number of obser-
R

vations of the latent functions {{m (z k)}le} , where
r=1

the variables {z; }X_, are usually referred to as the induc-
ing inputs. These assumptions led to approximations that
were very similar in spirit to the PITC and FITC approx-
imations of Snelson and Ghahramani (2006); Quifionero
Candela and Rasmussen (2005).

In this paper we build on the work of Alvarez and Lawrence
and extend it in two ways. First, we notice that if the
locations of the inducing points are close relative to the
length scale of the latent function, the PITC approxima-
tion will be accurate enough. However, if the length scale
becomes small the approximation requires very many in-
ducing points. In the worst case, the latent process could
be white noise (as suggested by Higdon (2002) and imple-
mented by Boyle and Frean (2005)). In this case the ap-
proximation will fail completely. To deal with such type
of latent functions, we develop the concept of an inducing
function, a generalization of the traditional concept of in-
ducing variable commonly employed in several sparse GP
methods. As we shall see, an inducing function is an arti-
ficial construction generated from a convolution operation
between a smoothing kernel or inducing kernel and the la-
tent functions u,.. The artificial nature of the inducing func-
tion is based on the fact that its construction is immersed in
a variational-like inference procedure that does not modify
the marginal likelihood of the true model. This leads us
to the second extension of the paper: a problem with the
FITC and PITC approximations can be their tendency to
overfit when inducing inputs are optimized. A solution to
this problem was given in a recent work by Titsias (2009)
who provided a sparse GP approximation that has an as-
sociated variational bound. In this paper we show how the
ideas of Titsias can be extended to the multiple output case.
Our variational approximation is developed through the in-
ducing functions and the quality of the approximation can
be controlled through the inducing kernels and the num-
ber and location of the inducing inputs. Our approxima-
tion allows us to consider latent force models with a large
number of states, D, and data points /N. The use of induc-
ing kernels also allows us to extend the inducing variable
approximation of the latent force model framework to sys-
tems of stochastic differential equations (SDEs). We apply
the approximation to different real world datasets, includ-
ing a multivariate financial time series example.

A similar idea to the inducing function one introduced
in this paper, was simultaneously proposed by Lazaro-
Gredilla and Figueiras-Vidal (2010). Lazaro-Gredilla and
Figueiras-Vidal (2010) introduced the concept of inducing
feature to improve performance over the pseudo-inputs ap-
proach of Snelson and Ghahramani (2006) in sparse GP
models. Our use of inducing functions and inducing ker-
nels is motivated by the necessity to deal with non-smooth
latent functions in the CP model of multiple outputs.
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2  Multioutput GPs (MOGPs)

Let y; € RY, where d = 1,...,D, be the observed
data associated with the output function y4(x). For sim-
plicity, we assume that all the observations associated with
different outputs are evaluated at the same inputs X (al-
though this assumption is easily relaxed). We will of-
ten use the stacked vector y = (y1,...,yp) to collec-
tively denote the data of all the outputs. Each observed
vector y4 is assumed to be obtained by adding indepen-
dent Gaussian noise to a vector of function values f; so
that the likelihood is p(yq|fs) = N (yalfs, 031), where
f; is defined via (1). More precisely, the assumption in
(1) is that a function value f;(x) (the noise-free version
of y4(x)) is generated from a common pool of R inde-
pendent latent functions {u,(x)}£_,, each having a co-
variance function (Mercer kernel) given by k.. (x,x’). No-
tice that the outputs share the same latent functions, but
they also have their own set of parameters ({aq, };,02)
where o, are the parameters of the smoothing kernel
G, (+). Because convolution is a linear operation, the co-
variance between any pair of function values f;(x) and
far(x') is given by ky, 7., (x,x") = Cov[fq(x), fa (x')]
Zle JzGar(x — 2z) [; Ga (X' — 2')k(2,2")dzdZ.
This covariance function is used to define a fully-coupled
GP prior p(f1, ..., fp) over all the function values associ-
ated with the different outputs. The joint probability dis-
tribution of the multioutput GP model can be written as
p({va, £}21) = 1171 p(valfa)p(fr, ... £p). The GP
prior p(fy,...,fp) has a zero mean vector and a (N D) x
(ND) covariance matrix K¢ ¢, where f = (fi,...,fp),
which consists of N x N blocks of the form Kg, ¢,,. Ele-
ments of each block are given by ky, ., (x,x’) for all pos-
sible values of x. Each such block is a cross-covariance (or
covariance) matrix of pairs of outputs.

Prediction using the above GP model, as well as the maxi-
mization of the marginal likelihood p(y) = N (y|0, K¢ s+
3), where ¥ = diag(o?1,...,05]1), requires O(N3D?)
time and O(N?D?) storage which rapidly becomes infea-
sible even when only a few hundred outputs and data points
are considered. Efficient approximations are needed in or-
der to make the above multioutput GP model more practi-
cal.

3 PITC-like approximation for MOGPs

Before we propose our variational sparse inference method
for multioutput GP regression in Section 4, we review
the sparse method proposed by Alvarez and Lawrence
(2009). This method is based on a likelihood approxima-
tion. More precisely, each output function y4(x) is in-
dependent from the other output functions given the full-
length of each latent function u,.(x). This means, that the
likelihood of the data factorizes according to p(y|u)
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[Ty p(yalu) = Tl p(yalfs), with uw = {u,}; the
set of latent functions. The sparse method in Alvarez and
Lawrence (2009) makes use of this factorization by as-
suming that it remains valid even when we are only al-
lowed to exploit the information provided by a finite set
of function values, u,., instead of the full-length function
u,(x) (which involves uncountably many points). Let u,,
forr = 1,..., R, be a K-dimensional vector of values
from the function w,(x) which are evaluated at the in-
puts Z = {zx} . The vector u = (uj,...,ur) de-
notes all these variables. The sparse method approximates
the exact likelihood function p(y|u) with the likelihood
plyl) = T155, p(valw) = T30 N (Yl Seaa +
oil), where pg, 1y = Kg, oKy Luand ¢, = Kg, ¢, —
de)uK;}uKu,fd are the mean and covariance matrices of
the conditional GP priors p(fy|u). The matrix Ky, is
a block diagonal covariance matrix where the rth block
Ky, u, is obtained by evaluating &, (z,2’) at the inducing
inputs Z. Further, the matrix K¢, ,, is defined by the cross-
covariance function Cov|fq(x),ur(2z)] = [;Gar(x —
z')k,.(z',z)dz’. The variables u follow the GP prior
p(u) = N(u|0,Ky ) and can be integrated out to give the
following approximation to the exact marginal likelihood:

2

Here, D is a block-diagonal matrix, where each block is
given by K¢, ¢, — K¢, oK 1, Ky, for all d. This ap-
proximate marginal likelihood represents exactly each di-
agonal (output-specific) block Ky, ¢, while each off diag-
onal (cross-output) block Ky, ¢, is approximated by the
Nystrom matrix K, oK1, Kue,, -

p(y10) = N(y|0,D + K¢ uK;  Kus + X).

The above sparse method has a similar structure to the
PITC approximation introduced for single-output regres-
sion (Quifionero Candela and Rasmussen, 2005). Because
of this similarity, Alvarez and Lawrence (2009) call their
multioutput sparse approximation PITC as well. Two of the
properties of this PITC approximation (which may some-
times be seen as limitations) are:

1. It assumes that all latent functions u are smooth.

It is based on a modification of the initial full GP
model. This implies that the inducing inputs Z are
extra kernel hyparameters in the modified GP model.

Because of point 1, the method is not applicable when
the latent functions are white noise processes. An impor-
tant class of problems where we have to deal with white
noise processes arise in linear SDEs where the above sparse
method is currently not applicable there. Because of 2, the
maximization of the marginal likelihood in eq. (2) with re-
spect to (Z, 8), where 8 are model hyperparameters, may
be prone to overfitting especially when the number of vari-
ables in Z is large. Moreover, fitting a modified sparse GP
model implies that the full GP model is not approximated
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in a systematic and rigorous way since there is no distance
or divergence between the two models that is minimized.

In the next section, we address point 1 above by introduc-
ing the concept of variational inducing kernels that allow us
to efficiently sparsify multioutput GP models having white
noise latent functions. Further, these inducing kernels are
incorporated into the variational inference method of Tit-
sias (2009) (thus addressing point 2) that treats the induc-
ing inputs Z as well as other quantities associated with the
inducing kernels as variational parameters. The whole vari-
ational approach provides us with a very flexible, robust to
overfitting, approximation framework that overcomes the
limitations of the PITC approximation.

4 Sparse variational approximation

In this section, we introduce the concept of variational in-
ducing kernels (VIKs). VIKs give us a way to define more
general inducing variables that have larger approximation
capacity than the u inducing variables used earlier and im-
portantly allow us to deal with white noise latent functions.
To motivate the idea, we first explain why the u variables
can work when the latent functions are smooth and fail
when these functions become white noises.

In PITC, we assume each latent function w,.(x) is smooth
and we sparsify the GP model through introducing, u,., in-
ducing variables which are direct observations of the latent
function, u,.(x), at particular input points. Because of the
latent function’s smoothness, the u, variables also carry
information about other points in the function through the
imposed prior over the latent function. So, having observed
u,- we can reduce the uncertainty of the whole function.

With the vector of inducing variables u, if chosen to be
sufficiently large relative to the length scales of the la-
tent functions, we can efficiently represent the functions
{u,(x)}2_, and subsequently variables f which are just
convolved versions of the latent functions.! When the re-
construction of f from u is perfect, the conditional prior
p(f|u) becomes a delta function and the sparse PITC ap-
proximation becomes exact. Figure 1(a) shows a cartoon
description of a summarization of u.,.(x) by u,..

In contrast, when some of the latent functions are white
noise processes the sparse approximation will fail. If u,.(z)
is white noise? it has a covariance function §(z — z’). Such
processes naturally arise in the application of stochastic dif-
ferential equations (see section 6) and are the ultimate non-

IThis idea is like a “soft version” of the Nyquist-Shannon sam-
pling theorem. If the latent functions were bandlimited, we could
compute exact results given a high enough number of inducing
points. In general they won’t be bandlimited, but for smooth func-
tions low frequency components will dominate over high frequen-
cies, which will quickly fade away.

2Such a process can be thought as the “time derivative” of the
Wiener process.
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(a) Latent function is smooth

(b) Latent function is noise

Figure 1: With a smooth latent function as in (a), we can use some inducing variables u, (red dots) from the complete latent process
ur(x) (in black) to generate smoothed versions (for example the one in blue), with uncertainty described by p(u,|u,). However, with a
white noise latent function as in (b), choosing inducing variables u, (red dots) from the latent process (in black) does not give us a clue

about other points (for example the blue dots).

smooth processes where two values u,(z) and u,.(z’) are
uncorrelated when z # z’. When we apply the sparse ap-
proximation a vector of “white-noise” inducing variables
u,- does not carry information about w,.(z) at any input
z that differs from all inducing inputs Z. In other words
there is no additional information in the conditional prior
p(ur(z)|u,.) over the unconditional prior p(u,(z)). Figure
1(b) shows a pictorial representation. The lack of structure
makes it impossible to exploit the correlations in the stan-
dard sparse methods like PITC.?

Our solution to this problem is the following. We will de-
fine a more powerful form of inducing variable, one based
not around the latent function at a point, but one given by
the convolution of the latent function with a smoothing ker-
nel. More precisely, let us replace each inducing vector u,.
with variables A, which are evaluated at the inputs Z and
are defined according to

/ T, (2 — V)u, (v)dv,

where T,.(x) is a smoothing kernel (e.g. Gaussian) which
we call the inducing kernel (IK). This kernel is not nec-
essarily related to the model’s smoothing kernels. These
newly defined inducing variables can carry information
about u,-(z) not only at a single input location but from
the entire input space. We can even allow a separate IK
for each inducing point, this is, if the set of inducing points
is Z = {z}}_,, then A\ (zx) = [ T0 k(21 — v)u,(v)dv,
with the advantage of associating to each inducing point zj
its own set of adaptive parameters in T} ;. For the PITC
approximation, this adds more hyperparameters to the like-
lihood, perhaps leading to overfitting. However, in the vari-
ational approximation we define all these new parameters
as variational parameters and therefore they do not cause
the model to overfit.

Ar(2) 3)

If u,(z) has a white noise* GP prior the covariance function

3Returning to our sampling theorem analogy, the white noise
process has infinite bandwidth. It is therefore impossible to rep-
resent it by observations at a few fixed inducing points.

*1t is straightforward to generalize the method for rough latent
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for A\, (x) is
Cov[\(x), A\ (X)] = /Tr(x —2)T.(x' —z)dz (4)
and the cross-covariance between fy(x) and \.(x') is

Cov[fa(x), \.(x')] = /Gd,r(x —2)T.(x' —z)dz. (5)

Notice that this cross-covariance function, unlike the case
of u inducing variables, maintains a weighted integration
over the whole input space. This implies that a single in-
ducing variable \,.(x) can properly propagate information
from the full-length process u..(x) into f.

It is possible to combine the IKs defined above with the
PITC approximation of Alvarez and Lawrence (2009), but
in this paper our focus will be on applying them within the
variational framework of Titsias (2009). We therefore refer
to the kernels as variational inducing kernels (VIKSs).

Variational inference

‘We now extend the variational inference method of Titsias
(2009) to deal with multiple outputs and incorporate them
into the VIK framework.

We compactly write the joint probability model
p({yafa}iy) as p(y.f) = p(ylf)p(f). The first
step of the variational method is to augment this model
with inducing variables. For our purpose, suitable inducing
variables are defined through VIKs. More precisely,
let A\ = (Aq,...,AR) be the whole vector of inducing
variables where each A, is a K-dimensional vector of
values obtained according to eq. (3). A,’s role is to carry
information about the latent function u,(z). Each A, is
evaluated at the inputs Z and has its own VIK, 7T;.(x), that
depends on parameters 87,. The A variables augment the
GP model according to p(y,f,A) = p(y|f)p(f|A)p(N).
Here, p(A) = N(A|0, K ») and K  is a block diagonal

functions that are not white noise or to combine smooth latent
functions with white noise.
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matrix where each block K . is obtained by evaluating
the covariance function in eq. (4) at the inputs Z. Addition-
ally, p(f|A) = /V'(f|Kf,,\K;,1A)\, Ker — Kf,/\K;,l)\K)\,f)
where the cross-covariance Ky x is computed through
eq. (5). Because of the consistency condition
J pEIX)p(N)dA p(f), performing exact inference
in the above augmented model is equivalent to performing
exact inference in the initial GP model. Crucially, this
holds for any values of the augmentation parameters
(Z,{67,} ). This is the key property that allows us
to turn these augmentation parameters into variational
parameters by applying approximate sparse inference.

Our method now proceeds along the lines of Titsias
(2009). We introduce the variational distribution g(f, A) =
p(£|A)p(N), where p(f|) is the conditional GP prior de-
fined earlier and ¢ () is an arbitrary variational distribu-
tion. By minimizing the KL divergence between ¢(f, \)
and the true posterior p(f, Aly), we can compute the fol-
lowing Jensen’s lower bound on the true log marginal like-
lihood (a detailed derivation of the bound is available in
Alvarez et al. (2009b)):

1 ~
Fy = log N (y|0,Kf,AK;}AKA7f + 2)—5 tr (2—1K)

where X is the covariance function associated with the ad-
ditive noise process and K = K ¢ —Kf,,\Kgl)‘KA7f. Note
that this bound consists of two parts. The first part is the
log of a GP prior with the only difference that now the co-
variance matrix has a particular low rank form. This form
allows the inversion of the covariance matrix to take place
in O(N DK?) time rather than O(N3D?). The second part
can be seen as a penalization term that regularizes the es-
timation of the parameters. Notice also that only the diag-
onal of the exact covariance matrix K¢ ¢ needs to be com-
puted. Overall, the computation of the bound can be done
efficiently in O(NDK?) time.

The bound can be maximized with respect to all parameters
of the covariance function; both model parameters and vari-
ational parameters. The variational parameters are the in-
ducing inputs Z and the parameters 67, of each VIK which
are rigorously selected so that the KL divergence is mini-
mized. In fact each VIK is also a variational quantity and
one could try different forms of VIKs in order to choose
the one that gives the best lower bound.

The form of the bound is very similar to the projected pro-
cess approximation, also known as DTC (Csaté and Op-
per, 2001; Seeger et al., 2003; Rasmussen and Williams,
2006). However, the bound has an additional trace term
that penalizes the movement of inducing inputs away from
the data. This term converts the DTC approximation to a
lower bound and prevents overfitting. In what follows, we
refer to this approximation as DTCVAR, where the VAR
suffix refers to the variational framework.
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5 Experiments

We present results of applying the method proposed for
two real-world datasets that will be described in short.
We compare the results obtained using PITC, the intrin-
sic coregionalization model (ICM)° employed in Bonilla et
al. (2008) and the method using variational inducing ker-
nels. For PITC we estimate the parameters through the
maximization of the approximated marginal likelihood of
equation (2) using the scaled-conjugate gradient method.
We use one latent function and both the covariance func-
tion of the latent process, k,(x,x’), and the kernel smooth-
ing function, G4, (x), follow a Gaussian form, this is
k(x,x) = NM(x — x'|0,C), where C is a diagonal ma-
trix. For the DTCVAR approximations, we maximize the
variational bound Fy,. Optimization is also performed us-
ing scaled conjugate gradient. We use one white noise la-
tent function and a corresponding inducing function. The
inducing kernels and the model kernels follow the same
Gaussian form. Using this form for the covariance or ker-
nel, all convolution integrals are solved analytically.

5.1 Exam score prediction

In this experiment the goal is to predict the exam score
obtained by a particular student belonging to a particular
school. The data comes from the Inner London Education
Authority (ILEA). It consists of examination records from
139 secondary schools in years 1985, 1986 and 1987. Itis a
random 50% sample with 15362 students. The input space
consists of features related to each student and features re-
lated to each school. From the multiple output point of
view, each school represents one output and the exam score
of each student a particular instantiation of that output.

We follow the same preprocessing steps employed in
Bonilla et al. (2008). The only features used are the
student-dependent ones (year in which each student took
the exam, gender, VR band and ethnic group), which are
categorical variables. Each of them is transformed to a bi-
nary representation. For example, the possible values that
the variable year of the exam can take are 1985, 1986 or
1987 and are represented as 100, 010 or 001. The trans-
formation is also applied to the variables gender (two bi-
nary variables), VR band (four binary variables) and ethnic
group (eleven binary variables), ending up with an input
space with dimension 20. The categorical nature of data
restricts the input space to 202 unique input feature vec-
tors. However, two students represented by the same in-
put vector x and belonging both to the same school d, can
obtain different exam scores. To reduce this noise in the

>The ICM is a particular case of the LMC with one latent func-
tion (Goovaerts, 1997).

SData is available at http://www.cmm.bristol.ac.
uk/learning-training/multilevel-m-support/
datasets.shtml
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data, we follow Bonilla ez al. (2008) in taking the mean of
the observations that, within a school, share the same in-
put vector and use a simple heteroskedastic noise model in
which the variance for each of these means is divided by
the number of observations used to compute it. The perfor-
mance measure employed is the percentage of unexplained
variance defined as the sum-squared error on the test set as
a percentage of the total data variance.” The performance
measure is computed for ten repetitions with 75% of the
data in the training set and 25% of the data in the test set.

Figure 5.1 shows results using PITC, DTCVAR with one
smoothing kernel and DTCVAR with as many inducing
kernels as inducing points (DTCVARS in the figure). For
50 inducing points all three alternatives lead to approx-
imately the same results. PITC keeps a relatively con-
stant performance for all values of inducing points, while
the DTCVAR approximations increase their performance
as the number of inducing points increases. This is consis-
tent with the expected behaviour of the DTCVAR methods,
since the trace term penalizes the model for a reduced num-
ber of inducing points. Notice that all the approximations
outperform independent GPs and the best result of the ICM
presented in Bonilla et al. (2008).
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Figure 2: Exam score prediction results for the school dataset. Re-
sults include the mean of the percentage of unexplained variance
of ten repetitions of the experiment, together with one standard
deviation. In the bottom, SM X stands for sparse method with X
inducing points, DTCVAR refers to the DTC variational approx-
imation with one smoothing kernel and DTCVARS to the same
approximation using as many inducing kernels as inducing points.
Results using the ICM model and independent GPs (appearing as
IND in the figure) have also been included.

5.2 Compiler prediction performance

In this dataset the outputs correspond to the speed-up of 11
C programs after some transformation sequence has been
applied to them. The speed-up is defined as the execution
time of the original program divided by the execution time
of the transformed program. The input space consists of
13-dimensional binary feature vectors, where the presence

"In Bonilla ef al. (2008), results are reported in terms of ex-
plained variance.
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of a one in these vectors indicates that the program has re-
ceived that particular transformation. The dataset contains
88214 observations for each output and the same number of
input vectors. All the outputs share the same input space.
Due to technical requirements, it is important that the pre-
diction of the speed-up for the particular program is made
using few observations in the training set. We compare our
results to the ones presented in Bonilla ez al. (2008) and use
N =16, 32, 64 and 128 for the training set. The remaining
88214 — N observations are used for testing, employing as
performance measure the mean absolute error. The experi-
ment is repeated ten times and standard deviations are also
reported. We only include results for the average perfor-
mance over the 11 outputs.

Figure 3 shows the results of applying independent GPs
(IND in the figure), the intrinsic coregionalization model
(ICM in the figure), PITC, DTCVAR with one inducing
kernel (DTCVAR in the figure) and DTCVAR with as many
inducing kernels as inducing points (DTCVARS in the fig-
ure). Since the training sets are small enough, we also in-
clude results of applying the GP generated using the full co-
variance matrix of the convolution construction (see FULL
GP in the figure). We repeated the experiment for different
values of K, but show results only for K = N/2. Re-
sults for ICM and IND were obtained from Bonilla et al.
(2008). In general, the DTCVAR variants outperform the
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Figure 3: Mean absolute error and standard deviation over ten
repetitions of the compiler experiment as a function of the train-
ing points. IND stands for independent GPs, ICM stands for in-
trinsic coregionalization model, DTCVAR refers to the DTCVAR
approximation using one inducing kernel, DTCVARS refers to
the DTCVAR approximation using as many inducing kernels as
inducing points and FULL GP stands for the GP for the multiple
outputs without any approximation.

ICM method, and the independent GPs for N = 16, 32 and
64. In this case, using as many inducing kernels as inducing
points improves on average the performance. All methods,
including the independent GPs are better than PITC. The
size of the test set encourages the application of the sparse
methods: for N = 128, making the prediction of the whole
dataset using the full GP takes in average 22 minutes while
the prediction with DTCVAR takes 0.65 minutes. Using
more inducing kernels improves the performance, but also



Mauricio A. Alvarez, David Luengo, Michalis K. Titsias, Neil D. Lawrence

makes the evaluation of the test set more expensive. For
DTCVARS, the evaluation takes in average 6.8 minutes.
Time results are average results over the ten repetitions.

6 Stochastic Latent Force Models

The starting point of stochastic differential equations is
a stochastic version of the equation of motion, which is
called Langevin’s equation:

df ()

dt
where f(t) is the velocity of the particle, —C'f (¢) is a sys-
tematic friction term, u(t) is a random fluctuation external
force, i.e. white noise, and S indicates the sensitivity of the
ouput to the random fluctuations. In the mathematical prob-
ability literature, the above is written more rigorously as
df(t) = —Cf(t)dt + SAW (t) where W (¢) is the Wiener
process (standard Brownian motion). Since u(t) is a GP
and the equation is linear, f(¢) must be also a GP which
turns out to be the Ornstein-Uhlenbeck (OU) process.

= _Cf(t) + Su(t)v (6)

Here, we are interested in extending the Langevin equation
to model multivariate time series. The way that the model
in (6) is extended is by adding more output signals and
more external forces. The forces can be either smooth (sys-
tematic or drift-type) forces or white noise forces. Thus,

dfa(t)

dt ™

R
= —Dafa(t) + > Sarur(t),
r=1
where f4(t) is the dth output signal. Each u,.(t) can be ei-
ther a smooth latent force that is assigned a GP prior with
covariance function k. (¢, t') or a white noise force that has
a GP prior with covariance function 6(¢ — ¢'). That is, we
have a composition of R latent forces, where R of them
correspond to smooth latent forces and R, correspond to
white noise processes. The intuition behind this combi-
nation of input forces is that the smooth part can be used
to represent medium/long term trends that cause a depar-
ture from the mean of the output processes, whereas the
stochastic part is related to short term fluctuations around
the mean. A model with R; = 1 and R, = 0 was proposed
by Lawrence et al. (2007) to describe protein transcription
regulation in a single input motif (SIM) gene network.

Solving the differential equation (7), we obtain

R t
falt) = e Pt i+ S, / e~ Palt=2)y, (),
r=1 0
where f,q arises from the initial condition. This model now
is a special case of the multioutput regression model dis-
cussed in sections 1 and 2 where each output signal y4(t)
fa(t) + € has a mean function e~P4! f;, and each model
kernel G, (x) is equal to Sy,.e Pa(t=2) The above
model can be viewed as a stochastic latent force model
(SLFM) following the work of Alvarez et al. (2009a).
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Latent market forces

The application considered is the inference of missing data
in a multivariate financial data set: the foreign exchange
rate w.r.t. the dollar of 10 of the top international curren-
cies (Canadian Dollar [CAD], Euro [EUR], Japanese Yen
[JPY], Great British Pound [GBP], Swiss Franc [CHF],
Australian Dollar [AUD], Hong Kong Dollar [HKD], New
Zealand Dollar [NZD], South Korean Won [KRW] and
Mexican Peso [MXN]) and 3 precious metals (gold [XAU],
silver [XAG] and platinum [XPT]).> We considered all the
data available for the calendar year of 2007 (251 working
days). In this data there are several missing values: XAU,
XAG and XPT have 9, 8 and 42 days of missing values re-
spectively. On top of this, we also introduced artificially
long sequences of missing data. Our objective is to model
the data and test the effectiveness of the model by imputing
these missing points. We removed a test set from the data
by extracting contiguous sections from 3 currencies asso-
ciated with very different geographic locations: we took
days 50-100 from CAD, days 100-150 from JPY and days
150-200 from AUD. The remainder of the data comprised
the training set, which consisted of 3051 points, with the
test data containing 153 points. For preprocessing we re-
moved the mean from each output and scaled them so that
they all had unit variance.

It seems reasonable to suggest that the fluctuations of the
13 correlated financial time-series are driven by a smaller
number of latent market forces. We therefore modelled
the data with up to six latent forces which could be noise
or smooth GPs. The GP priors for the smooth latent
forces are assumed to have a Gaussian covariance function,
Ku,u, (t, 1) = (1/4/2m2) exp(—((t — t')?)/2(?), where

the hyperparameter ¢, is known as the lengthscale.

We present an example with R = 4. For this value of R, we
consider all the possible combinations of R, and R,. The
training was performed in all cases by maximizing the vari-
ational bound using the scale conjugate gradient algorithm
until convergence was achieved. The best performance in
terms of achieving the highest value for Fy, was obtained
for R = 1 and R, = 3. We compared against the LMC
model for different values of the latent functions in that
framework. While our best model resulted in an standard-
ized mean square error of 0.2795, the best LMC (with R=2)
resulted in 0.3927. We plotted predictions from the latent
market force model to characterize the performance when
filling in missing data. In figure 4 we show the output
signals obtained using the model with the highest bound
(R = 1 and R, = 3) for CAD, JPY and AUD. Note
that the model performs better at capturing the deep drop
in AUD than it does for the fluctuations in CAD and JPY.

8Data is available at http://fx.sauder.ubc.ca/
data.html.
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Figure 4: Predictions from the model with R; = 1 and R, = 3 are shown as solid lines for the mean and grey bars for error bars at 2
standard deviations. For CAD, JPY and AUD the data was artificially held out. The true values are shown as a dotted line. Crosses on

the x-axes of all plots show the locations of the inducing inputs.

7 Conclusions

We have presented a variational approach to sparse approx-
imations in convolution processes. Our main focus was to
provide efficient mechanisms for learning in multiple out-
put Gaussian processes when the latent function is fluctuat-
ing rapidly. In order to do so, we have introduced the con-
cept of inducing function, which generalizes the idea of in-
ducing point, traditionally employed in sparse GP methods.
The approach extends the variational approximation of Tit-
sias (2009) to the multiple output case. Using our approach
we can perform efficient inference on latent force models
which are based around SDEs, but also contain a smooth
driving force. Our approximation is flexible enough and
has been shown to be applicable to a wide range of data
sets, including high-dimensional ones.
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Abstract

Latent force models encode the interaction between multiple related dynamical
systems in the form of a kernel or covariance function. Each variable to be mod-
eled is represented as the output of a differential equation and each differential
equation is driven by a weighted sum of latent functions with uncertainty given
by a Gaussian process prior. In this paper we consider employing the latent force
model framework for the problem of determining robot motor primitives. To deal
with discontinuities in the dynamical systems or the latent driving force we intro-
duce an extension of the basic latent force model, that switches between different
latent functions and potentially different dynamical systems. This creates a ver-
satile representation for robot movements that can capture discrete changes and
non-linearities in the dynamics. We give illustrative examples on both synthetic
data and for striking movements recorded using a Barrett WAM robot as haptic in-
put device. Our inspiration is robot motor primitives, but we expect our model to
have wide application for dynamical systems including models for human motion
capture data and systems biology.

1 Introduction

Latent force models [1] are a new approach for modeling data that allows combining dimensionality
reduction with systems of differential equations. The basic idea is to assume an observed set of
D correlated functions to arise from an unobserved set of R forcing functions. The assumption is
that the R forcing functions drive the D observed functions through a set of differential equation
models. Each differential equation is driven by a weighted mix of latent forcing functions. Sets
of coupled differential equations arise in many physics and engineering problems particularly when
the temporal evolution of a system needs to be described. Learning such differential equations has
important applications, e.g., in the study of human motor control and in robotics [6]. A latent force
model differs from classical approaches as it places a probabilistic process prior over the latent
functions and hence can make statements about the uncertainty in the system. A joint Gaussian
process model over the latent forcing functions and the observed data functions can be recovered
using a Gaussian process prior in conjunction with linear differential equations [1]. The resulting
latent force modeling framework allows the combination of the knowledge of the systems dynamics
with a data driven model. Such generative models can be used to good effect, for example in ranked
target prediction for transcription factors [5].

If a single Gaussian process prior is used to represent each latent function then the models we con-
sider are limited to smooth driving functions. However, discontinuities and segmented latent forces
are omnipresent in real-world data. For example, impact forces due to contacts in a mechanical
dynamical system (when grasping an object or when the feet touch the ground) or a switch in an
electrical circuit result in discontinuous latent forces. Similarly, most non-rhythmic natural mo-



tor skills consist of a sequence of segmented, discrete movements. If these segments are separate
time-series, they should be treated as such and not be modeled by the same Gaussian process model.

In this paper, we extract a sequence of dynamical systems motor primitives modeled by second
order linear differential equations in conjunction with forcing functions (as in [1, 6]) from human
movement to be used as demonstrations of elementary movements for an anthropomorphic robot.
As human trajectories have a large variability: both due to planned uncertainty of the human’s
movement policy, as well as due to motor execution errors [7], a probabilistic model is needed to
capture the underlying motor primitives. A set of second order differential equations is employed
as mechanical systems are of the same type and a temporal Gaussian process prior is used to allow
probabilistic modeling [1]. To be able to obtain a sequence of dynamical systems, we augment the
latent force model to include discontinuities in the latent function and change dynamics. We intro-
duce discontinuities by switching between different Gaussian process models (superficially similar
to a mixture of Gaussian processes; however, the switching times are modeled as parameters so that
at any instant a single Gaussian process is driving the system). Continuity of the observed functions
is then ensured by constraining the relevant state variables (for example in a second order differential
equation velocity and displacement) to be continuous across the switching points. This allows us
to model highly non stationary multivariate time series. We demonstrate our approach on synthetic
data and real world movement data.

2 Review of Latent force models (LFM)

Latent force models [1] are hybrid models that combine mechanistic principles and Gaussian pro-
cesses as a flexible way to introduce prior knowledge for data modeling. A set of D functions
{ya(t)}Z_, is modeled as the set of output functions of a series of coupled differential equations,
whose common input is a linear combination of R latent functions, {u,(t)}£ . Here we focus on a
second order ordinary differential equation (ODE). We assume the output y,(¢) is described by

2
T 4 W 4 yatt) = S S0,
where, for a mass-spring-damper system, A4 would represent the mass, Cy the damper and k4, the
spring constant associated to the output d. We refer to the variables S , as the sensitivity parameters.
They are used to represent the relative strength that the latent force r exerts over the output d. For
simplicity we now focus on the case where R = 1, although our derivations apply more generally.
Note that models that learn a forcing function to drive a linear system have proven to be well-suited
for imitation learning for robot systems [6]. The solution of the second order ODE follows

Ya(t) = ya(0)ca(t) + 9a(0)ea(t) + fa(t, w), )]

where y4(0) and ¢,4(0) are the output and the velocity at time ¢ = 0, respectively, known as the
initial conditions (IC). The angular frequency is given by wy = \/(444kq — C2)/(4A32) and the
remaining variables are given by

Aqg

e—adt

ca(t) = e~ @t [Cos(wdt) + X sin(wdt)}, eq(t) =

sin(wgqt),
"y (wat)

wq
Agwqg

fa(t,u) = Sa /0 Ga(t — T)u(r)dr /0 e~ a(t=T) sin[(t — T)wg|u(r)dT,

Aqwq
with ag = C4/(2A4). Note that f4(t, v) has an implicit dependence on the latent function u(t). The
uncertainty in the model of Eq. (1) is due to the fact that the latent force u(¢) and the initial conditions
y4(0) and g4(0) are not known. We will assume that the latent function «(¢) is sampled from a zero
mean Gaussian process prior, u(t) ~ GP(0, ky,(£,t')), with covariance function k., ,,(t,t’).

If the initial conditions, yr¢ = [y1(0),y2(0),...,yp(0),v1(0),v2(0),...,vp(0)]T, are indepen-
dent of u(t) and distributed as a zero mean Gaussian with covariance K¢ the covariance function
between any two output functions, d and d’ at any two times, ¢t and ', k,, ,, , (¢,1') is given by

Cd(t)cd’ (t/)gyd,yd/ + Cd(t)ed’ (tl)ayd,vd/ + ed(t)cd’ (t/)avdvyd/ + ed(t)ed’ (tl)avdﬂld/ + kfd»fd/ (tv t,)a

where oy, .y /s Oyy vy Ovgyy, a0d 0y, ., are entries of the covariance matrix K¢ and

Kt (1) = Ko [(Galt —7) [ E{Gdf (t' — 7" )kuu(t, t')dr'dr, 2)



where Ko = S4Sa /(AgAawawar). So the covariance function ky, ¢, (t,t') depends on the covari-
ance function of the latent force u(t). If we assume the latent function has a radial basis function
(RBF) covariance, ky,,(t,t') = exp[—(t — t')?/¢?], then ky, s, (t,t’) can be computed analyti-
cally [1] (see also supplementary material). The latent force model induces a joint Gaussian process
model across all the outputs. The parameters of the covariance function are given by the parameters
of the differential equations and the length scale of the latent force. Given a multivariate time series
data set these parameters may be determined by maximum likelihood.

The model can be thought of as a set of mass-spring-dampers being driven by a function sampled
from a Gaussian process. In this paper we look to extend the framework to the case where there can
be discontinuities in the latent functions. We do this through switching between different Gaussian
process models to drive the system.

3 Switching dynamical latent force models (SDLFM)

We now consider switching the system between different latent forces. This allows us to change the
dynamical system and the driving force for each segment. By constraining the displacement and
velocity at each switching time to be the same, the output functions remain continuous.

3.1 Definition of the model

We assume that the input space is divided in a series of non-overlapping intervals [¢,_1, tq}qul.

During each interval, only one force u,_1(t) out of @ forces is active, that is, there are {uq_1 (t)}?:1
forces. The force u,_1(t) is activated after time ¢,_; (switched on) and deactivated (switched off)
after time ¢,. We can use the basic model in equation (1) to describe the contribution to the output
due to the sequential activation of these forces. A particular output z4(t) at a particular time instant

t, in the interval (¢4_1, tq), is expressed as
za(t) = yg(t —tg—1) = cht —te-1)yg(tg—1) + et —te1)u3(ta—1) + fi(t — tg—1,uq-1).

This equation is assummed to be valid for describing the output only inside the interval (¢,_1,t,).
Here we highlighted this idea by including the superscript ¢ in y(t — t,—1) to represent the interval
q for which the equation holds, although later we will omit it to keep the notation uncluttered. Note
that for @@ = 1 and ¢y = 0, we recover the original latent force model given in equation (1). We also
define the velocity 4(t) at each time interval (¢,_1,1,) as

Za(t) = yg(t —tg-1) = gg(t - tq—l)yg(tq—l) + hg(t - tq—l)yg(tq—l) + mg(t —tg—1,Uq-1),
where g4(t) = —e~ ¢ sin(wgt)(aZw; ' + wq) and
gt | Od . Sq d !
hq(t) = —e~ " | = t) — t t) = — t— dr ).
a(t) e o sin(wgt) — cos(wgt) |,  ma(t) Ao, di (/0 Ga(t — T)u(T) T>

Given the parameters 8 = {{A4, Ca, ka4, Sa}?_,, {Eq_l}qul}, the uncertainty in the outputs is
induced by the prior over the initial conditions y%(¢t,—1),y3(ts—1) for all values of ¢,_; and the
prior over latent force u,_1(t) that is active during (¢,—1,%,). We place independent Gaussian
process priors over each of these latent forces w41 (t), assuming independence between them.

For initial conditions y%(t4—1),y3(tq—1), we could assume that they are either parameters to
be estimated or random variables with uncertainty governed by independent Gaussian distribu-
tions with covariance matrices K?c as described in the last section. However, for the class
of applications we will consider: mechanical systems, the outputs should be continuous across
the switching points. We therefore assume that the uncertainty about the initial conditions
for the interval ¢, y9(t4—1),95(tq—1) are proscribed by the Gaussian process that describes the
outputs z4(t) and velocities z4(t) in the previous interval ¢ — 1. In particular, we assume
y4(tg—1),9%(ty—1) are Gaussian-distributed with mean values given by y3~ ' (t,—1 — t,_2) and
93 (ty—1 — tq—2) and covariances k., ., (tg—1,tg—1) = cov[yd (te—1 — tg—2),y% (tg—1 —
tq—2)] and ks, z, (tg—1,tq—1) = cov[gd (tgo1 — tg—2), 9% (tg—1 — t4_2)]. We also consider
covariances between z,4(t,—1) and Z4 (t,/_1), this is, between positions and velocities for different
values of ¢ and d.

Example 1. Let us assume we have one output (D = 1) and three switching intervals (@) = 3)
with switching points ¢g, t; and to. At tg, we assume that y ;o follows a Gaussian distribution with



mean zero and covariance K;¢. From ¢y to ¢1, the output z(t) is described by

2(t) = y'(t — to) = ' (t — to)y' (to) + ' (t — to)y" (to) + f(t — to, uo).

The initial condition for the position in the interval (¢1, t2) is given by the last equation evaluated a
t1, this is, z(t1) = y?(t1) = y'(t1 — to). A similar analysis is used to obtain the initial condition
associated to the velocity, 2(t1) = 7?(t1) = ' (t1 — to). Then, from t; to t5, the output z(t) is

2(t) = Y2t — t1) = At — t)y?(t1) + 2(t — t1)P (t1) + f2(t — t1,u1),
=2t —t1)y'(ty — to) + €2(t — 1)y (t1 — to) + f2(t — t1,u1).
Following the same train of thought, the output z(¢) from ¢9 is given as
2(t) = 2 (t — to) = 3t — t2)y>(ta) + €3(t — t2)y3 (t2) + f3(t — ta, u2),

where y3(to) = y%(t2 — t1) and §(t2) = %(t2 — t1). Figure 1 shows an example of the switching
dynamical latent force model scenario. To ensure the continuity of the outputs, the initial condition
is forced to be equal to the output of the last interval evaluated at the switching point.

3.2 The covariance function

The derivation of the co-
variance function for the
switching model is rather
involved. For contin-
uous output signals, we
must take into account con-
straints at each switching
time. This causes initial
conditions for each inter-
val to be dependent on final
conditions for the previous
interval and induces cor-

relations across the inter- Figure 1: Representation of an output constructed through a switching dynam-
vals. This effort is worth- ical latent force model with @ = 3. The initial conditions y?(¢,—1) for each
while though as the result- interval are matched to the value of the output in the last interval, evaluated at
ing model is very flexible the switching point t—1, this is, y?(tg—1) = y** (tg—1 — tg—2).

and can take advantage of

the switching dynamics to represent a range of signals.

As a taster, Figure 2 shows samples from a covariance function of a switching dynamical latent
force model with D = 1 and Q = 3. Note that while the latent forces (a and c¢) are discrete,
the outputs (b and d) are continuous and have matching gradients at the switching points. The
outputs are highly nonstationary. The switching times turn out to be parameters of the covariance
function. They can be optimized along with the dynamical system parameters to match the location
of the nonstationarities. We now give an overview of the covariance function derivation. Details are
provided in the supplementary material.

(a) System 1. Samples (b) System 1. Samples (c¢) System 2. Samples (d) System 2. Samples
from the latent force. fr]?m the ‘OUtqu from the latent force. frsom th? output.

Figure 2: Joint samples of a switching dynamical LFM model with one output, D = 1, and three intervals,
Q = 3, for two different systems. Dashed lines indicate the presence of switching points. While system 2
responds instantaneously to the input force, system 1 delays its reaction due to larger inertia.



In general, we need to compute the covariance k., ., (t,t') = cov(zq(t), za (t')] for zq(t) in time
interval (t4_1,t,) and z4 (t') in time interval (t,/_1,t, ). By definition, this covariance follows

covlza(t), zar(t')] = cov [yg(t — tg—1),yg (t — ty—1))]-

We assumme independence between the latent forces u,(¢) and independence between the initial
conditions y ;¢ and the latent forces u,(t).! With these conditions, it can be shown? that the covari-
ance function® for ¢ = ¢ is given as

cht —tg1)eh (' —tg—1)kzy,z, (bg—1,tq—1) + At — tq—1)ed (' —tg—1)kzy 2, (tg—1,tg—1)

et —tg_1)ch (t' —tg_1)kzy 2, (g1 tq—1) + €4t — tq—1)ed (t' —tg—1)kzy 2, (bg—1,tq—1)

kG g, (1), 3)

where

kzmzd/ (tq_l,tq 1) = COV[y (tq 1

kg2 (tg—1,tq—1) = cov[yg(tg—1

}7 kzd,z'd/ (tq—lvtq—l) = COV[y (tq—l)yg' (tq—l)}z

Iy Egzy (tgo1,tg—1) = cov[yg(ty—1)y5 (tg—1)].
kf, 5, (1) = covlfi(t —tq—1)f5 (t' —tg-1)].

In expression (3), k., ., (tq—1,tq—1) = cov[yg_l(tq_l — tq_g),yg,_l(tq_l — t4—2)] and values

for k., 2, (tg—1,tq—1)s k24,2, (tq—1,t4—1) and kz, : , (t;_1,14—1) can be obtained by similar ex-
pressions. The covariance k7, ;  (t,t') follows a similar expression that the one for ky,, s, (¢,t') in

-1)
1)

equation (2), now depending on the covariance ky,_, u,_, (t,t"). We will assume that the covari-
ances for the latent forces follow the RBF form, with length-scale /,,.

When g > ¢’, we have to take into account the correlation between the initial conditions yg(tq_l),
4(tq—1) and the latent force ug —1(¢'). This correlation appears because of the contribution of
ug—1(t') to the generation of the initial conditions, y4(t;—1), y2(t4—1). It can be shown* that the
covariance function cov|z4(t), zq4 (t')] for ¢ > ¢’ follows

it —tq1)cl (t' —tg—1)kzy 2y (tg—1,tg—1) + it — tg—1)ef (' —ty—1)kzy 2, (tg—1,tg—1)
el (t — tg1)ch (' — tq/,l)kédyzd,(tq,l,tq/,l)+e3(t—tq Veq (" —ty—1)kzy 2, (tg—1,tg—1)

+Cd(t - tq—l)Xdlkq far (tq -1t ) + Cd(t )Xd kmd far (tq/—lat/)

+eg(t —tq- 1)Xdkfd o (b1, t) +ef(t —tg— 1)Xdkmd o (tr—1: 1), “)
where
Rz g (tg—1tg—1) = cov[yg(te—1)yq (ty—1)ls  Kegz, (g1, tg—1) = covyg(te—1)9q (ty—1)],
kid,zd/ (tq—la tq’—l) [yq(tq—l)yg/ (tq’—l)} kz}i,id/ (tq—lv tq’—1> = COV[yg(tq—l)yg/ (tq’—l)]»

ki’nd fur () = covlmi(t —tg1) f3, (1 = tg-1)],

and lell, X2, X3 and Xfla{e funptilons of tlhe formil:i;‘; 979 28 iy — t,_;). with
297" being equal to ¢, 47 g4 or %" depending on the values of ¢ and ¢’

A similar expression to (4) can be obtained for ¢’ > ¢. Examples of these functions for specific
values of ¢ and ¢’ and more details are also given in the supplementary material.

4 Related work

There has been a recent interest in employing Gaussian processes for detection of change points in
time series analysis, an area of study that relates to some extent to our model. Some machine learning
related papers include [3, 4, 9]. [3, 4] deals specifically with how to construct covariance functions

"Derivations of these equations are rather involved. In the supplementary material, section 2, we include a
detailed description of how to obtain the equations (3) and (4)

2See supplementary material, section 2.2.1.

SWe will write f9(t — tq—1,uq—1) as f4(t — tq—1) for notational simplicity.

4See supplementary material, section 2.2.2



in the presence of change points (see [3], section 4). The authors propose different alternatives
according to the type of change point. From these alternatives, the closest ones to our work appear
in subsections 4.2, 4.3 and 4.4. In subsection 4.2, a mechanism to keep continuity in a covariance
function when there are two regimes described by different GPs, is proposed. The authors call this
covariance continuous conditionally independent covariance function. In our switched latent force
model, a more natural option is to use the initial conditions as the way to transit smoothly between
different regimes. In subsections 4.3 and 4.4, the authors propose covariances that account for a
sudden change in the input scale and a sudden change in the output scale. Both type of changes
are automatically included in our model due to the latent force model construction: the changes in
the input scale are accounted by the different length-scales of the latent force GP process and the
changes in the output scale are accounted by the different sensitivity parameters. Importantly, we
also concerned about multiple output systems.

On the other hand, [9] proposes an efficient inference procedure for Bayesian Online Change Point
Detection (BOCPD) in which the underlying predictive model (UPM) is a GP. This reference is less
concerned about the particular type of change that is represented by the model: in our application
scenario, the continuity of the covariance function between two regimes must be assured beforehand.

S Implementation

In this section, we describe additional details on the implementation, i.e., covariance function, hy-
perparameters, sparse approximations.

Additional covariance functions. The covariance functions ks, ., (t,t'), k., :,(t,t') and
ks, :, (t, 1) are obtained by taking derivatives of k., ., (¢,t") with respect to ¢ and ¢’ [10].

Estimation of hyperparameters. Given the number of outputs D and the number of intervals
@, we estimate the parameters 8 by maximizing the marginal-likelihood of the joint Gaussian pro-
cess {zq(t)}7_, using gradient-descent methods. With a set of input points, t = {¢,})_,, the
marginal-likelihood is given as p(z|0) = N (z|0,K,, + %), where z = [z],...,z}]", with
zq = [za(t1),...,2za(tn)]T, Kz is a D x D block-partitioned matrix with blocks K., z,. The
entries in each of these blocks are evaluated using k., ., (¢,t). Furthermore, k., ., (t,t') is com-
puted using the expressions (3), and (4), according to the relative values of ¢ and ¢'.

Efficient approximations Optimizing the marginal likelihood involves the inversion of the ma-
trix K, ,, inversion that grows with complexity O(D3N?3). We use a sparse approximation based
on variational methods presented in [2] as a generalization of [11] for multiple output Gaussian
processes. The approximations establish a lower bound on the marginal likelihood and reduce com-
putational complexity to O(DN K?), being K a reduced number of points used to represent u(t).

6 Experimental results

We now show results with artificial data and data recorded from a robot performing a basic set of
actions appearing in table tennis.

6.1 Toy example

Using the model, we generate samples from the GP with covariance function as explained before.
In the first experiment, we sample from a model with D = 2, R = 1 and Q = 3, with switching
points tg = —1,¢; = 5 and t5 = 12. For the outputs, we have A; = A3 = 0.1,C; = 0.4,Cs =1,
K1 = 2,ke = 3. We restrict the latent forces to have the same length-scale value ¢y = {1 = {s =
le—3, but change the values of the sensitivity parameters as 511 = 10,521 = 1,512 = 10,522 =
5,51,3 = —10and S>3 = 1, where the first subindex refers to the output d and the second subindex
refers to the force in the interval ¢. In this first experiment, we wanted to show the ability of the
model to detect changes in the sensitivities of the forces, while keeping the length scales equal along
the intervals. We sampled 5 times from the model with each output having 500 data points and add
some noise with variance equal to ten percent of the variance of each sampled output. In each of the
five repetitions, we took N = 200 data points for training and the remaining 300 for testing.



Q=1 Q=2 Q=3 Q=4 Q=5
1 SMSE | 76.27+35.63 14.66£11.74 0.30£0.02 0.31+0.03 0.721+0.56
MSLL | —0.984+0.46 —1.79£0.26 —2.904+0.03 | —2.87+0.04 | —2.55+0.41
2 SMSE 7.27+6.88 1.08+0.05 1.10+0.05 1.06+0.05 1.10+0.09
MSLL | —1.79+£0.28 —2.26+£0.02 | —2.25+0.02 | —2.27+0.03 | —2.26+0.06

Table 1: Standarized mean square error (SMSE) and mean standardized log loss (MSLL) using different values
of Q for both toy examples. The figures for the SMSE must be multiplied by 10~2. See the text for details.

(a) Latent force toy example 1. (b) Output 1 toy example 1. (c) Output 2 toy example 1.
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(d) Latent force toy example 2.
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Figure 4: Mean and two standard deviations for the predictions over the latent force and two of the three outputs
in the test set. Dashed lines indicate the final value of the swithcing points after optimization. Dots indicate
training data.

Optimization of the hyperparameters (including ¢; and ¢5) is done
by maximization of the marginal likelihood through scaled conju-
gate gradient. We train models for Q) = 1, 2, 3, 4 and 5 and measure
the mean standarized log loss (MSLL) and the mean standarized
mean square error (SMSE) [8] over the test set for each value of Q.
Table 1, first two rows, show the corresponding average results over
the 5 repetitions together with one standard deviation. Notice that
for (Q = 3, the model gets by the first time the best performance,
performance that repeats again for () = 4. The SMSE performance
remains approximately equal for values of () greater than 3. Fig-
ures 4(a), 4(b) and 4(c) shows the kind of predictions made by the
model for @ = 3.

We generate also a different toy example, in which the length-scales of the intervals are different.
For the second toy experiment, we assume D = 3, () = 2 and switching points {y, = —2 and
t; = 8. The parameters of the outputs are A; = A = A3 = 0.1, Cy = 2,05 = 3,C3 = 0.5,
k1 = 0.4,k = 1,k3 = 1 and length scales /; = le — 3 and /; = 1. Sensitivities in this case are
Si11=1,8,1 =5,531 =1,582 = 5,57 =1and S35 = 1. We follow the same evaluation
setup as in toy example 1. Table 1, last two rows, show the performance again in terms of MLSS
and SMSE. We see that for values of @) > 2, the MLSS and SMSE remain similar. In figures 4(d),
4(e) and 4(f), the inferred latent force and the predictions made for two of the three outputs.

Figure 3: Data collection was

performed using a Barrett WAM
robot as haptic input device.

6.2 Segmentation of human movement data for robot imitation learning

In this section, we evaluate the feasibility of the model for motion segmentation with possible appli-
cations in the analysis of human movement data and imitation learning. To do so, we had a human
teacher take the robot by the hand and have him demonstrate striking movements in a cooperative
game of table tennis with another human being as shown in Figure 3. We recorded joint positions,
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Figure 5: Employing the switching dynamical LFM model on the human movement data collected as in
Fig.3 leads to plausible segmentations of the demonstrated trajectories. The first row corresponds to the log-
likelihood, latent force and one of four outputs for trial one. Second row shows the same quantities for trial two.
Crosses in the bottom of the figure refer to the number of points used for the approximation of the Gaussian
process, in this case K = 50.

angular velocities, and angular acceleration of the robot for two independent trials of the same ta-
ble tennis exercise. For each trial, we selected four output positions and train several models for
different values of (), including the latent force model without switches (2 = 1). We evaluate the
quality of the segmentation in terms of the log-likelihood. Figure 5 shows the log-likelihood, the
inferred latent force and one output for trial one (first row) and the corresponding quantities for trial
two (second row). Figures 5(a) and 5(d) show peaks for the log-likelihood at () = 9 for trial one and
@ = 10 for trial two. As the movement has few gaps and the data has several output dimensions,
it is hard even for a human being to detect the transitions between movements (unless it is visual-
ized as in a movie). Nevertheless, the model found a maximum for the log-likelihood at the correct
instances in time where the human transits between two movements. At these instances the human
usually reacts due to an external stimulus with a large jerk causing a jump in the forces. As a result,
we obtained not only a segmentation of the movement but also a generative model for table tennis
striking movements.

7 Conclusion

We have introduced a new probabilistic model that develops the latent force modeling framework
with switched Gaussian processes. This allows for discontinuities in the latent space of forces. We
have shown the application of the model in toy examples and on a real world robot problem, in
which we were interested in finding and representing striking movements. Other applications of the
switching latent force model that we envisage include modeling human motion capture data using
the second order ODE and a first order ODE for modeling of complex circuits in biological networks.
To find the order of the model, this is, the number of intervals, we have used cross-validation. Future
work includes proposing a less expensive model selection criteria.
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1 Introduction

The motor primitive idea is similar to the latent force model one. We want to use a set of templates
for basic motions in order to generate more complex ones. The analogy we can think of is the
generation of speech, in which phonemes are used to generate words and sentences.

Motor primitive model

Motor primitives employ the concept of autonomous dynamical system in which the independent
variable is first parameterized by a first order homogenous dynamical system. The output of this
system is used as the independent variable of the inducing force of a second order differential equa-
tion [2]. The first system is known as the canonical system and its form depends on the type of
movement that is to be represented: point attractive and limit cycle behaviors are the two most ba-
sic behaviors of nonlinear dynamical systems. In motor control these correspond to discrete and
rythmic movements.

Latent force model

The latent force model was first introduced in [1]. A set of coupled second order ordinary differential
equations was employed for human-balancing movement representation. Here we only review the
basic form for the covariance function in the Gaussian process formulation of the Latent force model.
More details and applications can be found in [1].

A set of D outputs {f4(¢)}1, (where each of them describes the relative position of a particle wrt
to a set of reference points in a spring-damper-mass system) is represented by a Gaussian process

with covariance function,

Q Squqd/ 7T£(21
ke )= —— VgD gy
fatw (1) ;8Adz4d/wclwd’ fdfd'(’ )

with A, the mass of system d, wy the angular frequency, S,q the relative strength of latent force
g over output d, £, the length-scale of the RBF covariance for the Gaussian process that describes
the latent force g and k:;i )fd/ (t,t'), the cross-covariance between the d-th and d’-th outputs under the

effect of the g-th latent force, and is given by

k;?i)fd, (tvt/) = hq(%i'vryd’ttl) + hq(VdvﬁdH t, t) + hq('Yd’vﬁdaﬁat,) + hq(%d/?/d’at/yt)
- hg(%dﬂﬁdat?tl) - hq(ﬁdfyidﬁt/at) - hq(’Ydu’Ydea t/) - hq(,yd>’yd'at/7t>7



where vy = ag + jwq, Va4 = g — jwq, and
1
h? (’Yd’a Yd, tv tl) = [Tq (’Yd’ ’ t/a t) - eXP(_’Ydt)Tq (’Yd’» tlv 0)] .
Yd + Yd
24,2

Y0 1,#) = 2exp (Qj) exp(=a(t = 1) ~exp (<55 ) wiiste )

Y (ygr bt CHCPRAD

N2
— exp ( (;2) > exp(—vat)w(—52(0,t"))

q

‘Pq(wd’ 7t1t/)

= quq(’yd,’ t? t/) — vt (Vd’ ) t7 tl) - SDq (’yd’v t7 t/)a
and z(t,t') = (t —t') /¢y — ({4ya)/2. Note that z(¢,t") € C, and w(jz) in the above equation, for
z € C, denotes Faddeeva’s function w(jz) = exp(z?)erfc(z), where erfc(z) is the complex version
of the complementary error function, erfc(z) = 1 — erf(z) = % J.% exp(—v?)dv. Faddeeva’s
function is usually considered the complex equivalent of the error function, since |w(jz)| is bounded
whenever the imaginary part of jz is greater or equal than zero, and is the key to achieving a good
numerical stability when computing Y9(~4,t,t') and its gradients.

2 Switching forces

Figure 1 shows a cartoon representation of output z,4(¢) switching its behavior between points ¢, t1,
to and t3. For each interval (¢;_1,t;), only the latent force u;_1(¢) is active.

t=1tg t=1 t =t t =13

Figure 1: A pictorial representation of the switching scenario for zq4(t)

2.1 Definition of the model

Taking into account the initial conditions, the solution to the second order model is given as
sin(wdt)]

—agt

alt) = (O~ cos(uat) + 2 sin(eat)] +1a0)|

t
ot [ et sl rywgutr)dr,
0



where y4(0) and y4(0) are the initial conditions. This is the basic equation we need to use to express
the covariance function for the switching model. The uncertainty in this model is due to the latent
force u(t) and the initial conditions y4(0) and ¢,4(0). For simplicity, we write the above equation as

ya(t) = ca(t)ya(0) + ea(t)ya(0) + fa(t), (D
with
ca(t) = et [Cos(wdt) 4 sin(wdt)}
wd
efozdt
eq(t) = [ o0 sm(wdt)]
¢ ¢
fa(t) = Ai:id /0 e~ =T sin[(t — T)walu(r)dr = /0 Ga(t — T)u(T)dr.
We’ll need also the velocity v,4(t), which is is given as
d
0a() =22 ,(0)04(0) + hatt)ia(0) + ma(t). @
with
galt) = dcgit) — et gin(wgt) (3‘3 + wd>
ded(t)

= —e ot [ad sin(wqt) — cos(wdt)}
wd

) = dt(/Gdt_T )

Furthermore, we also need the acceleration, given as

00() =290 — 1 (0)9a(0) + Bu0)a(0) + wat) @

with

2
= dha(t) = g~ @at (ad + wd> {ad sin(wgt) — wq cos(wdt)}
de Wy

Wd

dt?(/ Galt = rJulr)d )

The input space is divided in non-overlapping intervals [t,_1, tq];’_'):1 and for each one of these in-

e [ % ) sin(eat) ~ 2acos(ent)

tervals, only one force u,—_1(t) out of () forces is active, this is, there are {uq,l}qul forces. The

force uq—1(t) is activated after time ¢, and desactivated after time ¢,. We can use the basic model
in the equation before to describe the contribution to the output due to the sequential activation of
these forces. An output z,4(¢) at a particular time instant ¢, in the interval (t,_1,%,), is expressed as

Zd(ta tq—htq) = pd(tatq—latqauq—l); for 1<d<D,
where pq(t,tq—1,tq, ug—1) uses the model for y4(t) in equation (1) as
pa(tstg—1,tq,uq—1) = yd(t)|tq71 = ca(t —tg—1)ya(tg—1) + ealt —tg—1)Jaty—1)
+ fd(t7tq717tq7uq71)'

Notice that there are as many intervals {(¢,_1, tq)}qQ:1 as latent forces {ug(t)}%
we write z4(t, t4—1,t4) as zq4(t). In the above equation, yq(t)

g=1" For simplicity,

| .., expresses that y4(t) has to be
o

evaluated with the initial condition specified at t,_; and

t—tg_1
fd(ta tq—la tqa uq—l) = / Gd(t - tq—l - T)uq—l(T)dT' 4)
0



Expression fq(t,tq—1,tq,uqg—1) is a function of four arguments: the first argument, ¢, refers to
the independent variable inside the kernel smoothing function G4(t — 7) and in the upper limit
of the convolution transform; the second argument, ¢,_1, and third argument ¢, specify the lower
and upper limits of the time interval for which the convolution is being computed and the fourth
argument, u,_1, specifies the latent force acting in this interval. Additionally, we define a similar
function for the velocity Z4(t) as

Zd(tvtqatq—l) :gd(t7tq—1atq7uq—l)a for 1 S dg D)
where

Ca(t tg—1,tq, uq—1) = Ud(t)|tq71 = ga(t —tg-1)ya(tg—1) + ha(t — tg-1)Ja(ts—1)
+ md(tatatqfhtqauqfl%

and mq(t, tg—1,tq, uqg—1) follows

d t—tq—1
md(t,tq_l,tq,uq_l) = dt</ Gd(tftq_l T)Uq_l(T)d7'>. (5)
0

Again, for simplicity, we write 24(t, t,,t,—1) as Z4(t). The initial conditions yq(ts—1) and yq(tg—1)
can be defined again in terms of z4(¢) and Z4(¢)

yd(tqfl) = Zd(tqfl) = pd(tqfla tg—2,tq-1, uq72)7
Ya(tg—1) = Za(tg—1) = &altg—1,tq—2, tq—1,Uug—2).
Without loss of generality, we assume that the initial conditions at ¢t = ¢ for all d, are parameters of

the model. This is y4(to) and §4(to) are parameters that need to be estimated. Eventually, we might
need to put a prior over them. A similar expression is obtained for the acceleration Z4(t).

Example 1. Suppose we have ) = 3 as in figure 1. Then, the outputs z4(t) will be
given as zq(t,to,t1) = pa(t,to,t1,u0), 2a(t,t1,t2) = pa(t,ti,ta,ur) and zq(t,to,t3) =
palt,ta,t3,us). Equally, the velocities Z4(t) will follow 24(¢,to,t1) = £&a(t,to,t1,u0),
Zd(t, t1, tg) = fd(t, t1,t2, ul) and Zd(t, to, t3) = gd(ﬂ to,t3, UQ). We also have the initial condi-
tions. For ¢, the initial conditions are parameters y4(to) and y4(to). For the intervals starting at ¢;
and to, the initial conditions are given as y4(t1) = pa(t1,to,t1,uo) and yq(t2) = pa(te, t1,ta, u1).
And for the velocities 4(t1) = &q(t1,t1,t0, t1,u0) and ga(t2) = La(ta, t1,t2, ur).

2.2 Covariance for the outputs

In general, we need to compute the covariance cov[z4(t), z¢ (t')] for every time interval (t;_1,%q)
and for intervals (t;_1,tq) and (ty—1,t,). The covariance cov|zq(t), za (t')] for time interval
(tq—1,tq) is given as

!
q
COV[Zd(t)a Zd! (t/)] = cov [pd(ta tq—lv tq7 Uq—l)vpd/ (t/, tq—17 tq, Uq—l)] . (6)
And the covariance cov[zq(t), zar (t')] for time intervals (t,1,%,) and (ty 1, 1;) is given as
covza(t), za ()] = cov [palt,t, tg—1,tq, ug—1), par(t' , tg—1,te, ug—1)]. (7
2.2.1 Covariance for interval (t,_1,%,)

The covariance in equation (6), follows

covi{[ca(t — tg—1)yalteg—1) + ea(t — tg—1)9a(tg—1) + fa(t, t,tg—1,tq,uq—1)]
[Cd/ (t/ - tq—l)yd’(tq—l) + eqr (tl - tq—l)yd’ (tq—l) + far (t/atlvtq—h tq»“q—l)}

= ca(t — tg-1)ca (t' — tg-1) cov{ya(te—1)ya (tg-1)} + calt — tg—1)ea (t' — tg—1) cov{yalte—1)yar (ta—1)}
+ca(t —tg—1) cov{ya(tq—1)far (t', ' tg—1,tq, ug—1)} + ea(t — tg—1)car (t' = tg—1) cov{galtq—1)yar (tg—1)}
+ea(t —tg—1)ea (t' — tg—1) cov{ga(tq—1)gar (ta—1)} + ea(t — tg—1) cov{ga(ty—1) far (t',t' tg—1,tq, ug-1)}

t'— tg—1) cov{fa(t,t,tg—1,tq, ug—1)ya (tg—1)} + ear (t/ —tg—1) cov{fa(t,t,tq—1,tq, Ug—1)Yar (tg—1)}
+C0V{fd(t7t7tq—17tQ7uq—1)fd’ (tlvt/atq—lft(huq—l)}'

+car

—~



The terms cov{ya(tq—1)ya (tg-1)}. cov{ya(te—1)ja (tg-1)}, cov{ga(tg—1)ya (tg—1)} and
cov{a(tg—1)9a (tg—1)} are obtamed from the covariance already computed. These terms

)} ar

are equivalent as k., ., (tq—1,t4-1) = cov{ya(tg—1)ya(tg—1)} Koz (tg—1,tq-1) =
cov{ya(te-1)ga (tg-1)}s kzaep (ta-1, tg—1) = coviga(te-1)ya (tg-1)} and ks, 2, (tg-1,4-1) =

cov{¥a(tg—1)ga (tg— 1)} The  expressions  cov{ya(tq—1)far(t',t' tg—1,tq Ug—1)}s
cov{ya(ty—1)far(t', ' tg—1,tq, ug-1)}, Cov{fd(tvtatq—latqauq—l)yd’(tq—l)} and
cov{fd(t,tjq,l,tmuq,l)yd/(tq,l)} are zero. This can be seen from the fact that terms
like yq(ty—1) are a obtained as a result of terms yq(tx—1) and fq(tg—1,tk—1,tk, ug), for k < g,
and the covariance between those terms with fq(¢,¢4—1,%4,uq—1) is zero. Finally, the term

cov{fa(t,tg—1,tq, ug—1)far (' ty—1,tq, ug—1)} is denoted as k;<q 1)(t,t’).

In this way the covariance cov [pd(t, titg—1,tq, ug—1),par(t', 1, tg—1,1q, uq_l)] is equal to

ca(t —tg1)car(t' =ty 1)kzy 2y (b1, tg1) + ca(t —tg1)ea (t' —tq1)kzy s, (tg—1,tq-1)
Fea(t —tg1)ca(t' —tg1)ksy 2y (tg1,tg-1) +ealt —tg1)ea(t' —tg1)kzy 2, (tg-1,t4-1)
—1
+ R (8. 8)

The term k., ., (t,—1,%4—1) is equal to cov(zq(ty—1,tq—2,tq—1), Za' (tq—1,tq—2,tq—1)] and analog
expressions are obtained for k., : , (tq—1,%-1), k2,2, (tg—1,tq—1) and kz, : , (tg_1,14-1).

Example 1 (Continued). We continue with the example in figure 1. We need to compute the
covariance k., ., (t,t’) in the intervals (Zo, t1], (t1, t2] and (2, t3]. For the covariance in the interval
(to, t1], we have
cov[zq(t), za (t')] = covlpa(t, to, t1,u0), par (t, o, t1, uo)]
= ca(t —to)ca (t' — to)kzy,z, (to, to) + ca(t — to)ea (' —to)k=,, 2, (tos to)
+ea(t —to)ca (t' — to)kz, 2y (to, to) + ea(t — to)ea (t' — to)kz, 2, (to, to)
(0) /
Hhp g (G,
We assume the terms k., ., (to,t0). k=, z, (to, o), kz,,24(to,to) and Kz, : , (to, to) are parame-
ters that have to be estimated in the inference process. We also have access to cov|z4(t), Zq (¢')],
cov[z4(t), zq (t")] and cov([zq(t), Za(t)]. With these expressions we compute k., ., (t1,t1) =

cov[zq(t1), zar (t1)]s K2y 2, (t1,t1) = cov[za(ty), 2 (t1)], Ksy,ze(t1,t1) = cov[Zq(ty), za (t1)] and
ks, 2, (t1,t1) = covl[Zq(t1), Za (t1)], that are needed to compute the covariance in the next interval.

For the covariance in the interval (¢1, t2], we have
covzq(t), zar (t')] = covlpa(t, t1, t2, ur), par (', t1, b2, ur)], ©))
which follows the same form that equation (8)
ca(t —tr)car(t' = t1)kzy 2, (b1, 1) + calt — tr)ea (' — t1)kzy 2, (t1, 1)
+eq(t —ty)ca (t' —t1)kz, o (1, t1) + ea(t —t1)eq (t' —t1)ks, 5, (t1, 1) + kfd 1 G

With the final expression for cov(zq(t,t1,t2), 24 (t',t1,t2)], we compute k., ., (t2,t2) =
COV[Zd(t2), 24 (tg)], kzd,Z'd/ (ta, tg) = COV[Zd(ifg)7 Zq (tz)], ksyza (tz, o) = COV[Zd(tQ), 24 (tg)] and
ks, 2, (t2,t2) = covlzq(ta), Za (t2)], that are needed to compute the covariance in the next interval.

We finally need the covariance for the interval (¢, t3]. This covariance is computed as
cov(za(t), zar (t')] = covpa(t, ta, tz, uz), par (t', ta, t3, uz)l, (10)
given as
ca(t —ta)ea (t' —ta)ks, 2, (ta t2) + ca(t — ta)ea (t' —to)ks, 2, (ta, t2)
+ea(t —to)ca (t' —ta)ks, 2, (ta, t2) + eq(t — ta)ea (t' — ta)ks, 2, (ta,t2) + k:fd 1 (1)



2.2.2  Covariance for intervals (¢, 1,%,) and (t,1,t;)

For the covariance in equation (7), we have two regimes

l.g>¢q.

2. g< (.
The case for which ¢ = ¢’ was analized in the subsection before this one. We are interested in
computing the term cov [pa(t, t,tg—1,tq, ug—1), par(t', ¥, tgr—1,tq, ug—1)], for ¢ > ¢’ and ¢ < ¢'.
For g > ¢', we have
calt = tam1)ea (' =ty 1) cov{yalta— )y (ty 1)} + calt — ta)ea (' — ty—1) covlya(ta—)iar (ly 1)}
Fea(t — tg-1) covi{ya(te—1) far (¢ sty -1, tyr ug —1)} + ea(t — tg—1)ear (t' —t—1) cov{ga(te—1)ya (tg 1)}
tea(t —tg—1)ea (' —ty—1) cov{fa(tq—1)Va (tgr—1)} + ea(t — ta—1) cov{Ga(te—1) far (' ter—1,tq, Ugr—1)}

Fear (t' —tg—1) cov{falt, tg-1,tq, ug—1)ya (tgr—1)} + ear (t' — tg—1) cov{falt, tg—1,tq, ug—1)gar (ty 1)}
—+ COV{fgl(t7 tqfl, tq, uq,1)fd/ (t/, tqlfl, tq/ s uqr,l)}.

The terms cov{ya(tq—1)ya (tg—1)}. cov{ya(tq—1)ga (tg—1)}. cov{galtg—1)ya (ty—1)} and
cov{¥a(tq—1)yas(tgy—1)} are obtained from the covariance already computed. The term
cov{ fa(t,tg—1,tq, uqg—1)far(t'sty 1,1, uq—1)} is equal to zero, because there is no correlation
between u,_1 and ug 1. Also, the covariances g (t' — t4—1) cov{ fa(t, tq—1,tq Ug—1)Yar (tg—1)}
and eq (t' —tq—1) cov{ fa(t, tg—1,tq, uq—1)Ya (tyy—1)} are zero, since ¢ > ¢, there is no correlation
between force 1,1 and any force uy_; for k <= q' — 2. We can rewrite the above expression as

ca(t —tq—1)car (' —tgr—1) cov{ya(te—1)ya (tgr—1)} + calt = tg—1)ea (' = tyr—1) cov{ya(te—1)gar (ty—1)}
—|—ed(t — tq—l)Cd/ (tl — tq/,I) COV{yd(tq_l)yd/ (tq’—l)} + ed(t - tq_1)6d/ (t/ — tq/—l) COV{yd(tq_l)yd/ (tqul)}

tea(t —tq—1) covi{ya(te—1) far (t'  tgr—1,tgr, ugr—1)} + ea(t — tg—1) cov{¥a(tq—1) far (' s tgr—1,tq, Ugr—1)}

Terms like COV{yd(tq—l)fd’ (t,, t/, tq/_l, tq/, uq’—l)} and Cov{yd(tq—l)fd' (t,, t/, tq’—l» tq, uq/_l)}
requiere further analysis.

Let’s look in detail the term cov{yq(ts—1) far (t',tg'—1, 14, ug—1)}. This term is equal to

cov{ya(ty—1)far(t'sty—1,tq, ug—1)} = cov {pd(tq—la tg—astg1,ug—2)far(t' ty 1, tq, uq/—l)}
= cov { [Cd(tqfl —tq—2)ya(tg—2) + ea(tg—1 — tg—2)Yalts—2)
+ fd<tq—1atq—2’tq—1>uq—2)}fd’ (tlvtq/—latq’a“q’—l)}
= caltg—1 — tg—2) cov{ya(tg—2)fa (t' . tg -1, tg, ug—1)}
A
+ ea(ty—1 — tg—2) cov{ga(tq—2) far(t' sty —1,ty, ug 1)}
B
+ cov{fa(ty—1,tg—2,tg—1,ug—2) far (', ' tyr 1, tgr s ugr—1) .
The term cov{fq(tg—1,tq—2,tq—1,Uq—2) far(t';tg—1,tq, ug—1)} is only different from zero for
g = ¢’ + 1 and it would reduce to E;Zl);dll)(tq_l, t'). For A and B, if ¢ < ¢’ + 1, the terms in the

are zero because there is no correlation between forces uq 1 and forces uq_o, for ¢ < ¢’ + 1. For
q > q' + 1, the term in A is equal to

ca(tg—1 — tg—2) cov { [ca(tq—2 — tq—3)ya(ty—s) + ea(ty—2 — tg—3)ja(ty—s)

+ fa(tq—2,tq—3,tq—2, uq—B)] far (' ty—1,ty, “q’—l)}

= ca(tq—1 — tg—2)caltg—2 — tq—3) cov{ya(te—s) for (t', ty 1.ty ug 1)}
)t

+ caltg—1 — tg—2)ealtq—2 — tq—3) cov{ga(ty—s) far (¢, tgr—1, tq s ug—1)}
pe

+ caltg—1 — tg—2) cov{falte—2,tg—s,tq—2, ug—3) far (t' . tg—1, tg, ug—1)}-




The last term in the above equation is different from zero for ¢ = ¢’ + 2. Thus, this last term follows
Caltg-1 —tg-2)k ;2 (tg 2,1,

The terms A’ and B’ follow the same form that the terms A and B. Again, if ¢ < ¢’ + 2, then
the particular terms in are zeros. If, ¢ > ¢’ + 2, the recursion repeats until the most inner term in
cov{ya(tg—n)far(t',tg—1,tq , uq—1)} is such that ¢ = ¢’ + n. A similar expression can analysis
can be made for the term B. The final covariance would then be equal to

ca(t —tg1)car(t' —tg—1)kzy 2y (tq_l, 1) Fca(t —tg-1)ea(t' =ty 1)k s, (tg—1,tg—1)
tea(t —tg-1)ca(t' =ty 1)ksy 2, (tg1,tg—1) + ed(t - tq 1)€d’ (t" =ty —1)kzy 5, (tg1,tq—1)

"‘Cd(t_tqfl)fl(tqflvtqflv-- ) fa f’ (q nt')
et — tyo1) faltao1tg—1s - - tq— n)kfgd,‘fl,)(tq ot
teq(t —tg1)fa(ta1rtg1,- - tq— n)k}‘fh;,l)(tq wt!)
+€d(t_tq 1)f4(tq Llg—1,-- 05 tg— n)kmd 7 (tq n,t/),

where f1(+), f2(+), f3(-) and f4(-) are functions of the form

Z w(tg-1 —tg2)(tq—2 —tq-3). .. x(tgns1 —tg—n),

with x being equal to c4, €4, gq or hg, depending on the case. To compute the exact form of the
expression f1(-), f2(+), f3(-) and f4(-) we use the following set of rules

— After a cy4(+) term, only c4(-) and e4(-) terms follow.

()

— After a eq(+) term, only g4(-) and hg4(-) terms follow.

— After a g4() term, only c4(+) and e4(+) terms follow.
()

— After a hy(-) term, only hy(-) and gq(-) terms follow.

Figures 2, 3, 4 and 5 show examples of the kind of recursions that are generated. In all figures,

red indicates a term like c,(+), blue indicates a term like e4(-), green indicates a term like g4(-) and
purple indicates hg(-).

cat—t,0) [l
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/
y B
hl(fj 1 1) ya (tjs1 —t;) S N, haltyen = t5)

ca(tjn —t;) ed(tjp1 — 1) (tjvr = t5)
Galtien — t5) ga(tjr —t;)
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Figure 2: This figure represents the innermost covariances involved when computing the term A’

For ¢’ > g we can make a similar analysis (not presented here).
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ealty1 —tg2)
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Figure 3: This figure represents the innermost covariances involved when computing the term B’
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Figure 4: This figure represents the innermost covariances involved when computing the term C’

Example 1 (Continued). We continue with the example in figure 1. First, we compute the covari-
ance between intervals (¢1, t2] and (%o, t1]. For this covariance we have
cov(za(t), za (t')] = cov [palt, t1, ta, w1), par (', to, t1, uo)].
This covariance is equal to
ca(t —t1)car (¢ — to) coviya(t)yar (to)} + ca(t — t1)ear (' — to) coviya(ts)ya (o)}
+ea(t — t1)ea (t' — to) cov{ga(ti)ya (to)} + ea(t — t1)ea (t' — to) cov{ga(t1)ja (to)}
+ea(t — t1) cov{ya(tr) far (V' to, tr,u0) } + ea(t — t1) cov{ga(ts) far (', to, t1,uo0) },
which reduces to
ca(t —ty)ca (t' —to)kzy 2, (tr, to) + ca(t — t1)eq (t' — to)kz, 5, (t1,to)
teq(t —ty)ca (t' —to)kz, 2, (t1,to) + eq(t — t1)ea (t' —to)kz, 2, (t1,to)
teat — )R, () + ealt — t)RS) (b, t).

md,far
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Figure 5: This figure represents the innermost covariances involved when computing the term D’

Now we compute the covariance between intervals (¢2,t3] and (¢, t1]. For this covariance we have

cov[za(t), za ()] = cov [pa(t, t,ta, ts, u2), par (', ', to, t1, uo)]-
We then have
ca(t —ta)car (t' — to) coviya(t)yar (to)} + ca(t — t2)ear (' — to) coviya(ta)ya (o)}
+eq(t —ta)ca (t' — to) cov{ga(ta)ya (to)} + ea(t — t2)ea (t' — to) cov{ga(t2)ga (to)}
+ea(t — t2) cov{yalta) far (t's to, t1,u0) } + ealt — t2) cov{galta) far (t' to, t1,u0) }-
Using yq(t2) = 2z4(te, t1,t2) and g4(te) = 24(t2.t1,ta),
ya(te) = za(ta, t1, t2) = pa(te, t1,t2, u1) = cq(te — t1)ya(ts) + eq(ta — t1)Ya(t1) + falte, t1,t2, u1)
Ya(t2) = Za(ta, t1,t2) = Ea(ta, t1,t2,u1) = galte — t1)ya(ty) + ha(tz — t1)ya(ty) + ma(te, t1,t2, u1),
we have for cov{yq(t2) fa (t', ', to, t1,u0)} and cov{ga(tz) far (t', ', to, t1,u0)}
cov{ya(ta) far (t', to, t1,u0)} = ca(ta — t1) cov{ya(t1) far (t', to, t1,u0)}
+ ed(ta — t1) cov{ga(ts) far (', to, t1,u0)}
cov{ga(ta) far(t', ' to, t1,u0)} = galta — t1) cov{ya(tr) fa (t', to, t1,u0)}
+ halts — 1) cov{ga(t) far (¢ to, 11, )}
Furthermore,
ya(t1) = za(ti, to, t1) = palti,to, t1, uo) = ca(ts — to)ya(to) + eq(ts — to)ya(to) + fa(ti, to, t1,uo)
Ya(t1) = 2a(ta, t1,t2) = Ea(t1, to, t1,u0) = ga(ts — to)ya(to) + ha(ty — to)ga(to) + ma(ty, to, t1, uo).

Then we get cov{ya(tr) far(t',to, t1,u0)} = kY (t1,t') and cov{ga(ts) far(t' o, 11, uo)} =
5 (©

s f g (t1,t'). Putting all these expressions together, we get

ca(t —ta)ca (t' —to)kzy 2, (ta, to) + cat — ta)eq (t' — to)ks, 2, (t2, t0)
tea(t —to)ca (t' —to)k zd,zd/ (ta,t0) + eq(t — ta)eq (t' — to)k‘zd,z'd,
+eq(t —ta)cq(te — tl) 1ot t) +ca(t — t2)eq(ts — t1)k md 1t
Fea(t — ta)galts — tl)k}dffd, (t1,) + ealt — t2)ha(ts — t)kSS) |, (1,1
Next we compute the covariance between intervals (2, ¢3] and (¢1, ¢2]. For this covariance we have

cov[za(t), za ()] = cov [palt, ta, ts, u2), par (', t1, t2, us )]



We have
ca(t —ta)car (t' —t1)kz, 2, (ta, t1) + calt — to)ear (t — t1)kzy 5, (t2, 1)
+€d(t — tQ)Cd/ (tl — tl)kzd zq/ (tQ» tl) + ed(t - t2)€d/ (t/ - tl)kédﬂéd’ (tQ’ tl)
+eq(t —to) cov{ya(ta) far (t' s t1,ta,ur)} + eq(t — ta) cov{ga(ta) far (¢ t1,ta,u1)}
"y and cov{ga(t2)far (t',t1,t2,u1)} =

kfﬁi P (t2,t’). Then, the complete covariance would be equal to
LsJ d

The covariance cov{yq(t2) far (t',t1,t2,u1)} = kfd 7 (to,t

ca(t —to)ea (t' —t1)kzy 2, (ta t1) + ca(t —ta)ea (t' —t1)k., 2, (t2,t1)
teq(t —to)ca (t' —t1)kz, 2, (ta t1) + eq(t — t2)ea (' — t1)kz, 2, (ta, t1)
1 1
tealt =tk 1 (b2, ) + ealt — ta)kS) 4 (ta,1).

Suppose we need to compute the covariance between the intervals (¢4, t5] and (1, t2]. For this g = 4
and ¢’ = 1. The covariance is given as

cov{[ca(t — ta)ya(ts) + ea(t — ta)ya(ta) + fa(t,ta, t5, us)]
[car (t" = t1)yar (t1) + ear (t — t1)gar (t1) + far (', t1,t2,u1)}
= ca(t — ta)car (t' — t1) cov{ya(ta)ya (t1)} + ca(t — ta)ea (t' — t1) cov{ya(ts)ga (t1)}
+ea(t — ta)ea (t' — t1) cov{ga(ta)ya (t1)} + ea(t — ta)ea (t' — t1) cov{ga(ts)ga (t1)}
+eq(t —tg) cov{ya(ts) for (' t1, ta,u1)} + eq(t — ta) cov{ga(ta) far (t' 1, t2,u1)}

We need to compute the  covariances cov{ya(ts) far (' t1,t2,u1)} and
cov{yq(ts) far(t',t1,t2,u1)}. The expression for y4(t4) is

Ya(ts) = za(ta, t3,ta) = palts, t3,ta, uz) = ca(ts — t3)ya(ts) + eq(ts —t3)ya(ts) + fa(ts, s, ta, us)
Ya(ts) = Za(ta, t3,ta) = Eq(ta, t3,ta,u3) = ga(ts — t3)ya(ts) + ha(ts — t3)ya(ts) + ma(ta, ts, ta, us3)
Then the covariances cov{yq(t4) far (t', t1,t2,u1)} and cov{yq(ts) far (t', t1,t2,u1)} are equal to
ca(ts — t3) cov{ya(ts) far (t', t1, ta, ur) } + ealts — t3) cov{ga(ts) far (' 1, t2, 1)},
ga(ta —t3) cov{ya(ts) fa (t',t1,t2,u1)} + ha(tsa — t3) cov{ga(ts) fa (¢, t1, ta, ur)}.
At the same time, in the above expression, we have that y4(¢2) and §4(t2) follow
Ya(ts) = calts — t2)ya(te) + ealts — t2)Ja(te) + fa(ts, t2, 3, u2)
Ya(ts) = ga(ts — t2)ya(tz) + ha(ts — t2)ya(t2) + mal(ts, ta, t3, u2)

Then, we can write the expression for cov{yq(t4) far (t', t1,t2,u1)} as
ca(ts —t3) [ca(ts — t2) cov{ya(ta) far (¢, t1, b2, u1)} + eq(ts — t2) cov{ga(ta) fa (t', t1,t2,u1)}]
+ eq(ts — t3)[ga(ts — t2) cov{ya(te) far (', t1, t2,u1)} + ha(ts — t2) cov{ga(ts) far (t' 1, t2,u1)}].
The expression for cov{yq(ts) far (t',t1, t2,u1)} would follow
ga(ta —t3) [Cd(fs — ta) cov{ya(ta) far (', t1,t2,u1) } + ealts — t2) cov{galta) far (', t1, t2, Ul)}]
+ ha(ts — t3) [ga(ts — t2) cov{ya(ta) far (', t1,ta,u1)} + ha(ts — ta) cov{ga(ta) far (t', t1, t2,u1)}].
From the expression for y4(t2) and ¢4(t2), we get cov{yaq(te) far (', t1,t2,u1)} = k;i?fd, (ta,t)
and cov{ga(t2) far (' 1, b2, u1)} = KUY

ca(t —ta)ea (t' —t1)kzy 2, (tast1) + ca(t — ta)ea (t' —t1)k.y 2, (ta, t1)

+ea(t —ta)ca (t' —t1)kzy 2, (ta t1) + €q(t — ta)ea (t' — t1)kz, 2, (ta, t1)

+ ca(t — ta)[ca(ts — t3) [ca(ts — t2)k ;d)fd’ (ta,t") + eq(ts — t2) kin()i £, (25 "]

+ ea(ts — t3)[ga(ts — ta) ;i)f (t2,t') + ha(ts — t2)k, md 7 (2]
+ ea(t — ta) [galts — t3) [ca(ts — t2)k ;d)fd/ (ta, ') + ealts — ta) k,(ni 7t /)]

)
+ ha(ts — t3) [ga(ts — ta) k?;cd)f (t2,t') + halts — t2)k!

(t2,t'). The total covariance then would be equal to

t25

mdf

10



Reorganizing, we get
ca(t —ta)ea (t' —t1)kzy 2, (tast1) + ca(t — ta)ea (t' —t1)kzy 2, (ta, t1)

+ eq(t —ta)ca (t' —t1)kz, =, (ta tr) + eq(t —ta)eq (t' — tl)kzd éd, (t4, tl)
+cat —ta) [calts — ts)ca(ts — t2) + ealts — t3)galts — t2) | k. fd fd’ (2,

+ ca(t — ta) [ca(ts — t3)eq(ts — t2) + ea(ts — t3)ha(ts — t2) ] md Fur (ta,t'
+eq(t —ta) [ga(ts — t3)ca(ts — t2) + ha(ts — t3)ga(ts — ta)] g)f (t2, 1’
+ eq(t — ta) [ga(ts — t3)ealts — ta2) + ha(ta — t3)ha(ts — ta) ]kSZ o (t2st

Or in a more familiar expression,
ca(t —ta)ea (t' —t1)kzy 2 (ta tr) + ca(t — ta)ea (8 —t1)kzy 2, (ta, t1)
+ea(t —ta)ca (t" —t1)kz, 2, (ta, t1) + eq(t — ta)eq (' — t1)kz, 2, (tas tr)

+ calt — ta) f1(ta, ts, tQ)k;d)fd/ (t2,t) + calt — ta) fo(ta, 13, 2) mi 1 (t2,1)

(
+ea(t — ta) fs(tasts, t2)kS) (2, t) + ealt — ta) falta, ts, )KL, o (2, 1),

where, fi(ts,t3,t2) = ca(ts — t3)ca(ts — t2) + ea(ts — t3)ga(ts — t2), fa(ta,t3,t2) = ca(ts —
ts)eq(ts—ta)+eq(ta—ts)ha(ts—t2), f3(ta, ts,t2) = ga(ta—t3)ca(ts—ta) +ha(tsa—t3)ga(ts —t2)
and fa(ta,t3,t2) = ga(ta —t3)eq(ts — ta) + ha(ts — t3)ha(ts — ta).

2.3 Covariances between outputs and latent functions

For inference purposes, we’ll also need the cross-covariances between the ouputs zq(t,t4—1,t,) and
the latent forces ug 1 (t'). If ¢ > ¢, then this covariance is zero. We are left with the cases ¢’ = ¢
and ¢’ < q.

2.3.1 Covariance between z;(¢t,t,_1,t,) and ug, _1 ('), with ¢’ = ¢

We have
Covlza(t, b1, tq)s g1 ()] = cov [palt, b1, tar g1 )tg1 ()],
which is given as
ca(t —tg—1) cov [ya(tq—1)ug—1(t)] + ealt — tg—1) cov [Ja(tq—1)ug—1(t)]
+cov [ falt, tg—1,tg, ug—1)ug—1(t")].

From the above equation, the only term different from zero is cov [fq(t, tq—1,tq, ug—1)uq—1(t')] =
Efyu,_(t,t'). Then, we have cov [pa(t,tq—1,tq, ug—1)uqg—1(t')] = Kpyu,_, (L)

2.3.2 Covariance between z4(t,t,—1,t,) and u, _1 ('), with ¢’ < ¢

‘We have

cov[za(t, tg—1,tq), ug—1(t")] = cov [pa(t, tg—1, tq, ug—1)ug—1(t')].
It would be
ca(t —tq—1) cov [ya(tg—1)ug—1(t)] + ea(t — tg—1) cov [Ja(ts—1)ug—1(t)]
+cov [fa(t, tg—1,tq Ug—1)Ugr—1] -
Being ¢ strictly greater than ¢/, we only need to compute cov [yq(tq—1)uq—1(t")] and
cov [Ya(tg—1)uq —1(t")]. For the first term, we have

cov [ya(tg—1)ug—1(t')] = cov [(caltq—1 — tg—2)yaltq—2) + ealty—1 — tg—2)¥alty—2)
+ faltq—1,tq—2,tq—1, Uq—2))uq’—1(t/)]
= ca(tg—1 — tg—2) cov [ya(ty—2)ug -1 (t)]
A
+ ea(tg—1 — tg—2) cov [Ja(tg—2)uq—1(t")]
B
+cov [faltg—1,tg—2,tg—1, ug—2)ug -1 (t")].

11



The terms A and B, repeat again in a recursion similar to the ones in section 2.2.2. The final
expression is then equal to

ca(t —tg-1)f1(tg-1,tq—1,--- 1 >k<f‘§u (tg—n,t)
Fea(t —tq-1)f2(tg—1,tq—1, - tg— n)'lfggdjul)/ 1( g-n-t')
+ed(t_tq 1)f3(tq Lilg—1,.- tg— n) fg,;l, 1( q— nvt/)
Fea(t —tg—1)fa(tq—1,tq—1,- -, tg—n) qu,_ul)/ 1( g-nst),

where f1(-), f2(), f3(-) and f4(-) are again functions of the form

Zx(tqfl —tg—2)2(tg—2 —tg-3) .. . T(tg—nt+1 — tg—n)s

with x being equal to ¢y, eq, g4 or hg, depending on the case.

Example 1 (continued). We continue with the example. We want to compute the following terms

cov|zq(t, to, t1), uo(t')] cov]za(t, to, t1),ur (t')] cov|za(t, to, t1), uz(t')]
cov|zq(t, t1,ta), uo(t')] cov]za(t, t1,ta), ur(t')] cov|za(t, t1,ta), ua(t')]
cov|zq(t, ta, t3), uo(t')] cov]za(t, ta, t3), ui (t')] cov|zq(t, ta, t3), ua(t')]

From the above analysis, the terms cov|zq(t, to,t1),u1(t")], cov[zq(t,to,t1), ua(t'))
and cov(zq(t,t1,ta), ua(t’)] are zero. Furthermore, the terms cov[zq4(¢,%o,t1),uo(t')],
cov(zq(t, t1,t2), ur (t')] and cov|z4(t, t2, t3), uz(t/)] are

)
COV[Zd(t, tl, 2)7 U1l
)

COV[Zd(t, tg, 3), U2

We are left with the terms cov[zd(t,tl,tg) o(t)],  covlzq(t,te,t3),up(t')] and
cov(zq(t, ta, ts), w1 (t")]. The term cov|zq(t, t1, t2), ug(t')] follows as
COV[Zd(t,tl,tg),uO(t/)] = COV{[pd(t t17t2,’u,1)]u ( )}

cov{[ca(t — t1)ya(tr) + ea(t — t1)ga(ts) + fat tr, t2,u1)] uo(t')}

= cq(t —t1) cov [ya(t1)uo(t")] + eq(t — t1) cov [ga(t1)uo(t')] .
The terms cov [y4(t1)uo(t)] and cov [94(¢1)uo(t')] are
cov [ya(t1)uo(t)] = cov [(ca(ts — to)ya(to) + ea(ts — to)ga(to) + fa(t1, to, t1, u0))uo(t')]

= kfd,uo (tlﬂ t )
cov [ga(t1)uo(t')] = cov [(ga(t1 — to)ya(to) + ha(ts — to)da(to) +malti,to, t1,u0))uo(t')]
= kmd,uo(tl,t/)~
The final covariance is then
cov]za(t,t1,t2), uo(t")] = ca(t — t1)ks, ue (b1, ") + €alt — t1)kmy uo (t1,1).
Now, we compute the term cov|[z4(t, t2, t3), ug(t’)], which will be given as
cov(zq(t, ta, t3), uo(t")] = cov{[pa(t,t,ta, ts, uz)uo(t')}
= cov{[ca(t — ta)ya(t2) + ealt — t2)galts) + fa(t, t2, ts, uz)] uo(t')}
= Cd(t — t2) cov [yd(tg)uo (t/)] + ed(t — tg) cov [yd(tg)uO (t/)] .
The term cov [yq(t2)uo(t)] follows
cov(ya(tz), uo(t)] = cov{pa(ta, t1, t2,ur)uo(t')}
= caltz — t1) cov[ya(ti)uo(t')] + ea(tz — t1) cov[ga(ts)uo(t')].

12



The term cov [gq(t2)ug(t")] follows

cov[ya(ta), uo(t)] = cov{€a(ta, t1,t2, us)uo(t’)}
= gd(tg — tl) Cov[yd(tl)uo(t’)] =+ hd(tg — tl) COV[yd(tl)Uo(t/)]

Putting together all these terms, the covariance cov|[z4(t, t2, t3), ug(t')] is given as

cov[zq(t, ta, t3), ug(t)] = ca(t — t2) [calta — t1)kfuue (t1, 1) + ea(ta — 1) kmy uo (t1, )]
+eq(t —t2) [ga(te — t1)ksyue (t1, ") + ha(tas — t1)kmy uo (t1,1)] -

Or in a more familiar form

cov(za(t, ta, t3), uo(t')] = ca(t — t2) f1(ta, t1) ks u0 (t1, 1) + ca(t — t2) fota, t1)kmy,uo (t1, 1)
+ ea(t —t2) fa(ta, t1) kg u (t1, ) + ea(t — t2) fa(ta, t1)kmy o (t1: 1),
where fi(t2,t1) = ca(te — t1), fa(t2,t1) = ea(tz — t1), f3(t2,t1) = ga(t2 — t1) and fa(t2, 1) =
hd(tg — tl).
Finally, we compute cov|z4(t, t2, t3),ui(t')] as
cov(zq(t, ta, t3), ur(t")] = cov{pa(t,ta,ts, uz)us (t')}
= cov{[ca(t — ta)ya(t2) + eal(t — t2)ga(ta) + fa(t,ta, tz, uz)] ui(t')}
= Cd(t - tQ)kfdﬂJJ (t27 t,) + ed(t - tQ)k"ndﬂLl (tQa tl)'

3 Covariance for the velocities and accelerations

To get expressions for the covariances cov [zq(t), Za (t')] (Position - Velocity), cov [24(t), za (/)]
(Velocity - Position), cov [24(t), Za(t')] (Velocity - Velocity), cov [z4(t), Z¢:] (Position - Accel-
eration), cov [Z4(t), z¢(t')] (Acceleration - Position), cov [24(t), Z¢] (Velocity - Acceleration),
cov [Z4(t), Za (t')] (Acceleration - Velocity) and cov [£4(t), 24 (t')] (Acceleration - Acceleration),
we take the appropiate number of derivatives with respect to ¢ and ¢’ [3].
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Abstract

Recently there has been an increasing interest in regressithods that deal with multiple out-
puts. This has been motivated partly by frameworks like itaslk learning, multisensor networks
or structured output data. From a Gaussian processes pavspe¢he problem reduces to spec-
ifying an appropriate covariance function that, whilstrigeipositive semi-definite, captures the
dependencies between all the data points and across allithets. One approach to account for
non-trivial correlations between outputs employs controtuprocesses. Under a latent function
interpretation of the convolution transform we establigpehdencies between output variables.
The main drawbacks of this approach are the associated d¢atigmal and storage demands. In
this paper we address these issues. We present differentieftapproximations for dependent out-
put Gaussian processes constructed through the convofotimalism. We exploit the conditional
independencies present naturally in the model. This leadsform of the covariance similar in
spirit to the so called PITC and FITC approximations for ayk#routput. We show experimental
results with synthetic and real data, in particular, we shesults in school exams score prediction,
pollution prediction and gene expression data.

Keywords: Gaussian processes, convolution processes, efficiemdapmations, multitask learn-
ing, structured outputs, multivariate processes

1. Introduction

Accounting for dependencies between model outputs has important digpigcin several areas. In
sensor networks, for example, missing signals from failing sensors marelieted due to correla-
tions with signals acquired from other sensors (Osborne et al., 200§®dstatistics, prediction of
the concentration of heavy pollutant metals (for example, Copper), thagensive to measure,
can be done using inexpensive and oversampled variables (for exguHplas a proxy (Goovaerts,
1997). Within the machine learning community this approach is sometimes knownlgissku

learning. The idea in multitask learning is that information shared between #elézsls to im-
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proved performance in comparison to learning the same tasks individualtyg@a, 1997; Bonilla
et al., 2008).

In this paper, we consider the problem of modeling related outputs in a @aysscess (GP).
A Gaussian process specifies a prior distribution over functions. Whieng @ GP for multiple
related outputs, our purpose is to develop a prior that expressesatiorrdbetween the outputs.
This information is encoded in the covariance function. The class of validriamce functions is
the same as the class of reproducing kerheSsich kernel functions for single outputs are widely
studied in machine learning (see, for example, Rasmussen and Williams, R0Q@) recently the
community has begun to turn its attention to covariance functions for multiple outpotsof the
paradigms that has been considered (Teh et al., 2005; Osborne €0&;,Bbnilla et al., 2008)
is known in the geostatistics literature e linear model of coregionalizatiol.MC) (Journel
and Huijbregts, 1978; Goovaerts, 1997). In the LMC, the covariangetibn is expressed as the
sum of Kronecker products betweearegionalization matriceand a set of underlying covariance
functions. The correlations across the outputs are expressed in dggar@lization matrices, while
the underlying covariance functions express the correlation betwderedif data points.

Multitask learning has also been approached from the perspectiegudérization theoryEv-
geniou and Pontil, 2004; Evgeniou et al., 2005). Thasétitask kernelare obtained as generaliza-
tions of the regularization theory to vector-valued functions. They canleseen as examples of
LMCs applied to linear transformations of the input space.

In the linear model of coregionalization each output can be thought of Bstantaneous mix-
ing of the underlying signals/processes. An alternative approach &iracting covariance func-
tions for multiple outputs employsonvolution processg€£P). To obtain a CP in the single output
case, the output of a given process is convolved with a smoothing Kemalon. For example,
a white noise process may be convolved with a smoothing kernel to obtairadaime function
(Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998). Ver Hapfl Barry (1998) and then Hig-
don (2002) noted that if a single input process was convolved with difftesmoothing kernels
to produce different outputs, then correlation between the outputs ceuttkgressed. This idea
was introduced to the machine learning audience by Boyle and Frean)(208%an think of this
approach to generating multiple output covariance functions as a nomers@us mixing of the
base processes.

The convolution process framework is an elegant way for construcepgrtlent output pro-
cesses. However, it comes at the price of having to consider the fudrieoece function of the
joint GP. ForD output dimensions and/ data points the covariance matrix scales’a8 lead-
ing to O(N3D3) computational complexity an@ (N2 D?) storage. We are interested in exploiting
the richer class of covariance structures allowed by the CP framewatrke@ucing the additional
computational overhead they imply.

In this paper, we propose different efficient approximations for tilecvariance matrix in-
volved in the multiple output convolution process. We exploit the fact that, inctémeolution
framework, each of the outputs is conditional independent of all othéng ilhput process is fully
observed. This leads to an approximation that turns out to be stronglydétatee partially in-
dependent training conditional (PITC) (@oinero-Candela and Rasmussen, 2005) approximation
for a single output GP. This analogy inspires us to consider a furthefitemmal independence

1. In this paper we will use kernel to refer to both reproducing kernedssanoothing kernels. Reproducing kernels are
those used in machine learning that conform to Mercer’s theorem. tBingdernels are kernel functions which are
convolved with a signal to create a smoothed version of that signal.
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assumption across data points. This leads to an approximation which stef@stof the fully in-
dependent training conditional (FITC) approximation (Snelson and @hemni, 2006; Quiionero-
Candela and Rasmussen, 2005). This reduces computational compleX{¥to K 2) and storage

to O(NDK) with K representing a user specified value for the number of inducing points in the
approximation.

The rest of the paper is organized as follows. First we give a more dktaNgew of related
work, with a particular focus on relating multiple output work in machine leartongther fields.
Despite the fact that there are several other approaches to multitaskde@ee for example Caru-
ana, 1997, Heskes, 2000, Bakker and Heskes, 2003, Xue et@l.apd references therein), in this
paper, we focus our attention to those that address the problem ofadirgjrthe covariance or
kernel function for multiple outputs, so that it can be employed, for exandether with Gaus-
sian process prediction. Then we review the convolution processagpio Section 3 and Section
4. We demonstrate how our conditional independence assumptions caadwueduce the com-
putational load of inference in Section 5. Experimental results are sho®adtion 6 and finally
some discussion and conclusions are presented in Section 7.

2. Related Work

In geostatistics, multiple output models are used to model the co-occurrermirearals or pollu-
tants in a spatial field. Many of the ideas for constructing covariancditunscfor multiple outputs
have first appeared within the geostatistical literature, where they arenkas linear models of
coregionalization (LMC). We present the LMC and then review how sgweodels proposed in the
machine learning literature can be seen as special cases of the LMC.

2.1 The Linear Model of Coregionalization

The term linear model of coregionalization refers to models in which the oudpetexpressed as
linear combinations of independent random functions. If the independedbrariunctions are
Gaussian processes then the resulting model will also be a Gaussiaaspnottea positive semi-
definite covariance function. Consider a sefbutput functions{ f,(x)}7_, wherex € ®? is the
input domain. In a LMC each output functiofy(x), is expressed as (Journel and Huijbregts, 1978)

Q
fa) = aqquq(X). (1)
q=1

Under the GP interpretation of the LMC, the functie{rz@(x)}qQ:1 are taken (without loss of gener-
ality) to be drawn from a zero-mean GP witbw [u, (X), uy (X')] = kq(X,X') if ¢ = ¢’ and zero oth-
erwise. Some of these base processes might have the same covariansé,th,x') = k, (x,X'),
but they would still be independently sampled. We can group together tegobasesses that share
latent functions (Journel and Huijbregts, 1978; Goovaerts, 199@)yiag us to express a given
output as

Q Bq

Fa() =D "al ui(x), 2)

q=1i=1
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where the functiong v/ (x) }R , i=1,..., Ry, represent the latent functions that share the same
covariance functiotk,(x,x’). There are nov@ groups of functions, each member of a group shares
the same covariance, but is sampled independently.

In geostatistics it is common to simplify the analysis of these models by assumingehmbth
cesseg,(x) are stationary and ergodic (Cressie, 1993). The stationarity andieityanditions
are introduced so that the prediction stage can be realized through anldpi@aapredictor using
a single realization of the process (Cressie, 1993). Such linear pnediet®ive the general name
of cokriging The cross covariance between any two functififig) and f (X) is given in terms of
the covariance functions far! (x)

Q Q Rq Rg

covlfa¥), far (<)) = 30 D733 al i covluh (), s ()]

g=1¢'=1i=14=1
Because of the independence of the latent functigl(\x), the above expression can be reduced to

Q Iq Q

cov[fa(X), for ) =D " aly galy JFig(},X) = 0T 4 kg(x,X), (3)

g=11=1 g=1

with bg}d, = qul a’, qad,’q

For a numberV of input vectors, lef; be the vector of values from the outplievaluated at
X = {x,})_,. If each output has the same set of inputs the system is knownta@lc In general,
we can allow each output to be associated with a different set of ingifts= {xn }a | this is
known asheterotopic® For notational simplicity, we restrict ourselves to the isotopic case, but our
analysis can also be completed for heterotopic setups. The covariande fmafy; is obtained
expressing Equation (3) as

Q Rq

covlfg,far] = ZZad qad, q= Zbd &

q=11i=1

whereK , € RV has entries given by computirig(x,x’) for all combinations fronX. We now
definef to be a stacked version of the outputs so that[f],...,f]T. We can now write the
covariance matrix for the joint process ov¥exs

Q Q
Kig=Y AA, @K, =Y B,@K,, (4)
q=1 q=1

where the symbab denotes the Kronecker produgt, € 7>« has entries; , andB, =A,A; €
RP*P has entrieg , and is known as theoregionalization matrix The covariance matrik
is positive semi-definite as long as the coregionalization matBgese positive semi-definite and
kq(x,x") is a valid covariance function. By definition, coregionalization matriBgdulfill the
positive semi-definiteness requirement. The covariance functions ftatdre processes, (x,x’),
can simply be chosen from the wide variety of covariance functionsdqdeging kernels) that are

2. These names come from geostatistics.
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used for the single output case. Examples include the squared expbfsmtiatimes called the
Gaussian kernel or RBF kernel) and the Btatclass of covariance functions (see Rasmussen and
Williams, 2006, Chapter 4).

The linear model of coregionalization represents the covariance fure@sianproduct of the
contributions of two covariance functions. One of the covariance fumetioodels the dependence
between the functions independently of the input vegiathis is given by the coregionalization
matrix B,, whilst the other covariance function models the input dependence indepiy of the
particular set of functiong,(x), this is the covariance functidi, (x,x’).

We can understand the LMC by thinking of the functions having been gtatbas a two step
process. Firstly we sample a set of independent processes fromvidrgaoae functions given by
kq(x,X'), taking R, independent samples for eakh(x,x’). We now haveR = EqQ:l R, indepen-
dently sampled functions. These functions imstantaneously mixédn a linear fashion. In other
words the output functions are derived by application of a scaling anthtian to an output space
of dimensionD.

2.1.1 INTRINSIC COREGIONALIZATION MODEL

A simplified version of the LMC, known as the intrinsic coregionalization mokf&iA) (Goovaerts,
1997), assumes that the elemelffs, of the coregionalization matrig, can be written as , =
vg,qbg. In Other words, as a scaled version of the eleméghich do not depend on the particular
output functionsfy(x). Using this form forbqu,, Equation (3) can be expressed as

COV[fd fd’ Zvdd’bk XX —Udd’zbk XX

The covariance matrix fdrtakes the form
Kif =T K, (5)

whereY € RP*D, with entriesvy o, andK = 229:1 bsK, is an equivalent valid covariance func-
tion.

The intrinsic coregionalization model can also be seen as a linear modelegfi@ualization
where we havé) = 1. In such case, Equation (4) takes the form

Kif=AIA] ®K; =B @Ky, (6)

where the coregionalization matr has elements} , = 3>/, a, ,a}, |. The value ofR; deter-
mines the rank of the matrig; .

As pointed out by Goovaerts (1997), the ICM is much more restrictive theuh MiC since it
assumes that each basic covariahge,x’) contributes equally to the construction of the autoco-
variances and cross covariances for the outputs.

3. The term instantaneous mixing is taken from blind source separatioccoutde, if the underlying processes are not
temporal but spatial, instantaneous is not being used in its original selasever, it allows us to distinguish this
mixing from convolutional mixing.
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2.1.2 UNEAR MODEL OF COREGIONALIZATION IN MACHINE LEARNING

Several of the approaches to multiple output learning in machine learniegd lbaskernels can be
seen as examples of the linear model of coregionalization.

Semiparametric latent factor modé@lhe semiparametric latent factor model (SLFM) proposed
by Teh et al. (2005) turns out to be a simplified version of Equation (4)atticular, ifR, =1 (see
Equation 1), we can rewrite Equation (4) as

Q
Kf7f = Zaqa; &® Kq7

q=1

wherea, € RP*! with elements:, ,. With some algebraic manipulations that exploit the properties
of the Kronecker produtiwe can write

Q
K=Y (a,®1n)Kq(a ®ly) = (Al KA @1y),
q=1

wherel y is the N-dimensional identity matrixA € RP*@ is a matrix with columns, andK ¢
REN*QN is a block diagonal matrix with blocks given I,

The functions, (x) are considered to be latent factors and the semiparametric name comes from
the fact that it is combining a nonparametric model, this is a Gaussian pred#dss, parametric
linear mixing of the functions.,(x). The kernel for each basic procegs:,(x,x’), is assumed to
be of Gaussian type with a different length scale per input dimension.droputational speed up
the informative vector machine (IVM) is employed (Lawrence et al., 2003).

Multi-task Gaussian processed.he intrinsic coregionalization model has been employed in
Bonilla et al. (2008) for multitask learning. We refer to this approach as mski-@&aussian pro-
cesses (MTGP). The covariance matrix is expressel@sz .\ = K T @ k(x,x'), with f(x) =
[f1(X),...,fp(X)]T, Kf being constrained positive semi-definite aiig,x’) a covariance func-
tion over inputs. It can be noticed that this expression has is equal to thendb), when it is
evaluated fox,x’ € X. In Bonilla et al. (2008) K/ (equal toX in Equation 5 oB; in Equation
6) expresses the correlation between tasks or inter-task dependamti¢ s represented through a
probabilistic principal component analysis (PPCA) model. In turn, thetsgddactorization in the
PPCA model is replaced by an incomplete Cholesky decomposition to keepioahséability, so
that K/ ~LLT, whereL € RP*F1. An application of MTGP for obtaining the inverse dynamics
of a robotic manipulator was presented in Chai et al. (2009).

It can be shown that if the outputs are considered to be noise-fra¢iioa using the intrinsic
coregionalization model under an isotopic data case is equivalent to imiflemteprediction over
each output (Helterbrand and Cressie, 1994). This circumstance ikredam as autokrigeability
(Wackernagel, 2003) and it can also be seen as the cancellation dfasiteransfer (Bonilla et al.,
2008).

Multi-output Gaussian processeshe intrinsic coregionalization model has been also used in
Osborne et al. (2008). MatriX in Expression (5) is assumed to be of the spherical parametrisation
kind, Y = diag(e)S' Sdiag(e), wheree gives a description for the length scale of each output
variable andsis an upper triangular matrix whogeh column is associated with particular spherical

4. See Brookes (2005) for a nice overview.
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coordinates of points ifit? (for details see Osborne and Roberts, 2007, Section 3.4). Function
k(x,x') is represented through adern kernel, where different parametrisations of the covariance
allow the expression of periodic and non-periodic terms. Sparsificatiothi®omodel is obtained
using an IVM style approach.

Multi-task kernels in regularization theoriernels for multiple outputs have also been studied
in the context of regularization theory. The approach is based mainly ateftmtion of kernels for
multitask learning provided in Evgeniou and Pontil (2004) and Evgeniou@095), derived based
on the theory of kernels for vector-valued functions. Det {1,..., D}. According to Evgeniou
et al. (2005), the following lemma can be used to construct multitask kernels,

Lemma 1 If Gisakernelon/ x 7 and, for everyl € D there are prescribed mappings;: X — T
such that

kaa (X,X') =k((x,d), (X', d)) = G(®q(X),Px (X)), x,X €RP, d,d €D,
thenk(-) is a multitask or multioutput kernel.

A linear multitask kernel can be obtained if we §et= R™, ®,4(x) = Cyx with &, € ®™ and
G : R™ x R™ — R as the polynomial kernel (z,Z) = (2" Z)" with n = 1, leading tokg 4 (X, X') =
xTCJ CaX'. The lemma above can be seen as the result of applying kernel propettiesnapping
d,4(X) (see Genton, 2001, p. 2). Notice that this corresponds to a generaliphtibe semipara-
metric latent factor model where each output is expressed through itsasimpgyocess acting over
the linear transformatio x, this is, us(®4(X)) = uqs(CgX). In general, it can be obtained from
fa(x) = Zle aqquq(Py(X)), Wwhereaq , = 1if d = q or zero, otherwise.

A more detailed analysis of the LMC and more connections with other methodsigtistsand
machine learning can be foundAdvarez et al. (2011b).

3. Convolution Processes for Multiple Outputs

The approaches introduced above all involve some form of instantameursy of a series of
independent processes to construct correlated processestdnstaus mixing has some limitations.
If we wanted to model two output processes in such a way that one gra@ssa blurred version
of the other, we cannot achieve this through instantaneous mixing. Wekgva blurring through
convolving a base process with a smoothing kernel. If the base proee&sisssian process, itturns
out that the convolved process is also a Gaussian process. We cefot@axploit convolutions
to construct covariance functions (Barry and Ver Hoef, 1996; \eeftdnd Barry, 1998; Higdon,
1998, 2002). A recent review of several extensions of this appré@cthe single output case is
presented in Calder and Cressie (2007). Applications include the comstrof nonstationary
covariances (Higdon, 1998; Higdon et al., 1998; Fuentes, 2002adnriek and Schervish, 2004)
and spatiotemporal covariances (Wikle et al., 1998; Wikle, 2002, 2003).

Ver Hoef and Barry (1998) first, and Higdon (2002) later, suggessaty convolutions to con-
struct multiple output covariance functions. The approach was introdiecéhe machine learn-
ing community by Boyle and Frean (2005). Consider again a sdb dfinctions {fd(x)}dDzl.
Now each function could be expressed through a convolution integrakba a smoothing ker-
nel, {G4(x)}2_,, and a latent function(x),

falx) = /X Gu(x — 2)u(z)dz. @)
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More generally, and in a similar way to the linear model of coregionalizatiorcameconsider the
influence of more than one latent functim@(z), withg=1,...,Q andi =1,..., R, to obtain

Q Rq

ZZ/ qux Z)uy(2)dz.

q=11=1

As in the LMC, there aré) groups of functions, each member of the group has the same covariance
kq(x,x"), but is sampled independently. Under the same independence assumpgdnis the
LMC, the covariance betweefy(x) and f4 (x’) follows

Q Rq

cov [ fa(X), far (X ZZ/ G, (x—2) /XGQ,’q(x’—z’)kq(z,z’)dz’dz. (8)

q=11i=1

SpecifyingGZL ,(X—2) andkg(z, Z') in (8), the covariance for the outpufg(x) can be constructed
indirectly. Note that if the smoothing kernels are taken to be the Dirac deltddarsuch that,

fi,q (X - Z) - afi,qé(x - 2)7

whered(-) is the Dirac delta function, the double integral is easily solved and the lineaglrobd
coregionalization is recovered. This matches to the concdapstdntaneous mixinge introduced
to describe the LMC. In a convolutional process the mixing is more generaxample the latent
process could be smoothed for one output, but not smoothed for amdithweing correlated output
functions of different length scales.

The traditional approach to convolution processes in statistics and sigicalgsing is to assume
that the latent functions,(z) are independent white Gaussian noise proceésész') = 026(z—
Z'). This allows us to simplify (8) as

cov [ fa(X), far (X ZZO’ /qux 2)Gy (X' —2)dz.
q=11i=1

In general, though, we can consider any type of latent processxdonme, we could assume GPs
for the latent functions with general covarianégéz, z').

As well as this covariance across outputs, the covariance between ﬂrtefdmmion,ug(z), and
any given outputf;(x), can be computed,

cov [ fa(X) /qux Z)k,(Z,z)dZ. (9)

Additionally, we can corrupt each of the outputs of the convolutions with@agandent process
(which could also include a noise terna),(x), to obtain

Ya(X) = fa(X) +wq(X). (10)

The covariance between two different outpui$x) andyy (X') is then recovered as

[¢0)% [yd(x),yd/ (X/)] =COoV [fd(X), fd/ (X/)] + cov [wd(x),wd/ (X/)] 6d,d’7
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whered,  is the Kronecker delta functioh.

As mentioned before, Ver Hoef and Barry (1998) and Higdon (206&)gsed the direct use of
convolution processes for constructing multiple output Gaussian pexesawrence et al. (2007)
arrive at a similar construction from solving a physical model: a firstroddgerential equation (see
also Gao et al., 2008). This idea of using physical models to inspire multiple tayptems has
been further extended ilvarez et al. (2009) who give examples using the heat equation artd a se
ond order system. A different approach using Kalman Filtering ideas ders froposed in Calder
(2003, 2007). Calder proposed a model that incorporates dynamgitahss ideas to the process
convolution formalism. Essentially, the latent processes are of two typedomawalks and in-
dependent cyclic second-order autoregressions. With this formul#tismossible to construct a
multivariate output process using convolutions over these latent pesceRarticular relationships
between outputs and latent processes are specified using a spesi@rtrattion matrix ensuring
that the outputs are invariant under invertible linear transformations ofrttlerlying factor pro-
cesses (this matrix is similar in spirit to the sensitivity matrix of Lawrence et aD7qand it is
given a particular form so that not all latent processes affect thdéevded of outputs).

Bayesian kernel methodslhe convolution process is closely related to the Bayesian kernel
method (Pillai et al., 2007; Liang et al., 2009) for constructing reprodei¢iernel Hilbert spaces
(RKHS), assigning priors to signed measures and mapping these metasavegh integral opera-
tors. In particular, define the following space of functions,

F={1|f@ = [ G@2n). et}

for some spac& C B(X) of signed Borel measures. In Pillai et al. (2007, Proposition 1), the au-
thors show that fof’ = B(X'), the space of all signed Borel measurg&scorresponds to a RKHS.
Examples of these measures that appear in the form of stochastic pooedade Gaussian pro-
cesses, Dirichlet processes anelvlz processes. This framework can be extended for the multiple
output case, expressing the outputs as

fd(ac)—/XGd(x,z)’y(dz).

The analysis of the mathematical properties of such spaces of functioegasdthe scope of this
paper and is postponed for future work.

Other connections of the convolution process approach with methods inissadisd machine
learning are further explored ilvarez et al. (2011b).

A general purpose convolution kernel for multiple outpuéssimple general purpose kernel
for multiple outputs based on the convolution integral can be constructathagsthat the kernel
smoothing functionG, ,(x), and the covariance for the latent functidg,x,x’), follow both a
Gaussian form. A similar construction using a Gaussian fornGfor) and a white noise process
for u(x) has been used in Paciorek and Schervish (2004) to propose a norstatiovariance
function in single output regression. It has also been used in Boyle r&ash £2005) as an example
of constructing dependent Gaussian processes.

The kernel smoothing function is given as

Gaq(x) = SagN(x0,P5"),

5. We have slightly abused of the delta notation to indicate the Kronecker deltistrete arguments and the Dirac
function for continuous arguments. The particular meaning should therstood from the context.
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wheresS, , is a variance coefficient that depends both on the outautd the latent function and
P4 is the precision matrix associated to the particular outpufhe covariance function for the
latent process is expressed as

kg(%,X) =N (x—x'|0,A; 1),

with A, the precision matrix of the latent functign
Expressions for the kernels are obtained applying systematically the idemtityef product of
two Gaussian distributions. L&t (x|u,P~1) denote a Gaussian fay then

N (X1, PN (X[ 2, Py 1) = N (| po, Pyt + Py DN (X[ e, P, (11)

wherep, = (P1 +Py) (P11 +Popo) andP; !t = (P, +P;) ™', For all integrals we assume that
X = RP. Using these forms fof; ,(x) andk,(x,X’), expression (8) (witl?, = 1) can be written
as

Q
kfmfd,(x,x’):Zdequlyq/X/\/'(x—zm,Pd1)/){N(x’—z’|0,Pd,l)/\/'(z—z’|O,Aq_1)dz’dz.

q=1

Since the Gaussian covariance is stationary, we can writd\i(@as-x'|0,P~1) = N'(x' —x|0,P~1) =
N (x|x',P~1) = N (X'|x,P~1). Using the identity in Equation (11) twice, we get

Q
kpop, (XX) = Z SaqSa N (x—X[0,P; 1+ P+ A1), (12)
g=1

For a high value of the input dimensiop, the term1/[(27)P/2|P; ! +P' + A71[*/?] in each of
the Gaussian’s normalization terms will dominate, making values go quickly to\Aérgan fix this
problem, by scaling the outputs using the factgf§2r)?/42P; ' + A1 [/4] and1/[(2m)P/4|2P, " +
Aq—1 |1/4]. Each of these scaling factors correspond to the standard deviatomiedss tdt/, 1, (X,X)
andky,, 1, (X,X).

Equally for the covarianceov [ f,;(x), us(X))] in Equation (9), we obtain

g 0X) = SaN (= X0, +A7).

Again, this covariance must be standardized when working in higher diorens

4. Hyperparameter Learning

Given the convolution formalism, we can construct a full GP over the sattpiuts. The likelihood
of the model is given by
p(yIX,0) = N(y|0,Ks s+ X), (13)

wherey = [yf,...y},]T is the set of output functions withhy = [ya(X1),...,ya(xn)] " ; Kig €
RPNXDN is the covariance matrix arising from the convolution. It expresses thariemce of each
data point at every other output and data point and its elements are given [ff;(X), fo (X')] in
(8). The termX represents the covariance associated with the independent praogd€gsw (x).

It could contain structure, or alternatively could simply represent noeeishindependent across
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the data points. The vectérrefers to the hyperparameters of the model. For exposition we will
focus on the isotopic case (although our implementations allow heterotopic ng)dstrwe have a
matrix X = {Xy,...,Xx } which is the common set of training input vectors at which the covariance
is evaluated.

The predictive distribution for a new set of input vectirsis (Rasmussen and Williams, 2006)

PV, X, X, 0) = N (ya|Ks, 1 (Kis + )7y, K, 1, —Ki, 1(Ke 4+ 2) 7 Kep, +5.),

where we have uselds, ¢, as a compact notation to indicate when the covariance matrix is evalu-
ated at the inputX,, with a similar notation foK;, . Learning from the log-likelihood involves
the computation of the inverse &f; ¢ + X giving the problematic complexity ad(N3D3). Once

the parameters have been learned, predictian( & D) for the predictive mean and(N?2D?) for

the predictive variance.

As we have mentioned before, the main focus of this paper is to presenteftiorent approxi-
mations for the multiple output convolved Gaussian Process. Given the rsgihesknted before,
we now show an application that benefits from the non-instantaneous mieimgiet brought by
the convolution process framework.

Comparison between instantaneous mixing and non-instantaneous mixinggfession in
genes expression dataMicroarray studies have made the simultaneous measurement of mMRNA
from thousands of genes practical. Transcription is governed by #sepce or absence of tran-
scription factor (TF) proteins that act as switches to turn on and off fhession of the genes. Most
of these methods are based on assuming that there is an instantaneoulatiesuship between
the gene expression and the protein concentration. We compare theng@rée of the intrinsic
coregionalization model (Section 2.1.1) and the convolved GPs for two émdiemt time series or
replicas of 12 time points collected hourly throughout Drosophila embryexgieim wild-type em-
bryos (Tomancak et al., 2002). For preprocessing the data, we foltmvkéfa et al. (2010). We
concentrate on a particular transcription factor protein, namelyand the genes associated with it.
The information about the network connections is obtained from the GhifPexperiments. This
particular TF is key regulator of mesoderm and muscle development in phids@Zinzen et al.,
2009).

After preprocessing the data, we end up with a data s&éé2f genes with expression data for
N =12time points. Itis believed that this set of genes are regulated by at leasi the&anscription
factor. For each one of these genes, we have access to 2 repliceandenly selecD = 50 genes
from replica 1 for training a full multiple output GP model based on either theCLfkhmework
or the convolved GP framework. The correspondiiiggenes of replica 2 are used for testing
and results are presented in terms of the standardized mean squareSkt8#)(and the mean
standardized log loss (MSLL) as defined in Rasmussen and Williams (8006¢. parameters of
both the LMC and the convolved GPs are found through the maximization of ttgémabikelihood
in Equation (13). We repeated the experiméfttimes using a different set df0 genes each
time. We also repeated the experiment selectingsthgenes for training from replica 2 and the
corresponding0 genes of replica 1 for testing.

6. The definitions for the SMSE and the MSLL we have used here are slidiffidyent from the ones provided in
Rasmussen and Williams (2006). Instead of comparing against a i@auwgth a global mean and variance com-
puted from all the outputs in the training data, we compare against a Gaugttidocal means and local variances
computed from the training data associated to each output.
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We are interested in a reduced representation of the data so we assuethandR, =1,
for the LMC and the convolved multiple output GP in Equations (2) and (8peetively. For the
LMC model, we follow Bonilla et al. (2008) and assume an incomplete Cholesggrdposition
for B = LL", where L € R5°*! and as the basic covarianég(x,x’) we assume the squared
exponential covariance function (p. 83, Rasmussen and Williams, 2B066ihe convolved multiple
output GP we employ the covariance described in Section 3, EquationwitR)the appropriate
scaling factors.

Train set| Testset | Method | Average SMSE| Average MSLL
LMC | 0.6069=+0.0294 | —0.2687 +0.0594
CMOC | 0.4859£0.0387 | —0.3617+0.0511
LMC | 0.619440.0447 | —0.2360+ 0.0696
CMOC | 0.4615+0.0626 | —0.38114+0.0748

Replica 1| Replica 2

Replica 2| Replica 1

Table 1: Standardized mean square error (SMSE) and mean standdeodjzess (MSLL) for the
gene expression data f80 outputs. CMOC stands for convolved multiple output covari-
ance. The experiment was repeated ten times with a different $étgénes each time.
Table includes the value of one standard deviation over the ten repetitias. ridgative
values of MSLL indicate better models.

Table 1 shows the results of both methods over the test set for the twediffeplicas. It can be
seen that the convolved multiple output covariance (appearing as CMOE ialile), outperforms
the LMC covariance both in terms of SMSE and MSLL.

Figure 1 shows the prediction made over the test set (replica 2 in this gati®) two models
for two particular genes, namely FBgn0038617 (Figure 1, first rowl) RiBgn0032216 (Figure 1,
second row). The black dots in the figures represent the gene sikpresta of the particular genes.
Figures 1(a) and 1(c) show the response of the LMC and Figuread)(d) show the response of
the convolved multiple output covariance. It can be noticed from the dat#avo genes differ
in their responses to the action of the transcription factor, that is, while EBga0038617 has
a rapid decay around tinzand becomes relatively constant for the rest of the time interval, gene
FBgn0032216 has a smoother response within the time frame. The linearohodetgionalization
is driven by a latent function with a length-scale that is shared acrossutpets. Notice from
Figures 1(a) and 1(c) that the length-scale for both responses isrtige €mn the other hand, due-
to the non-instantaneous mixing of the latent function, the convolved multiple tongpuework,
allows the description of each output using its own length-scale, whick givadded flexibility for
describing the data.

Table 2 (first four rows) shows the performances of both models fogémes of Figure 1.

CMOC outperforms the linear model of coregionalization for both genes imstef SMSE and
MSLL.

A similar analysis can be made for Figures 2(a), 2(b), 2(c) and 2(dhidrcase, the test set is
replica 1 and we have chosen two different genes, FBgn001053EBga0004907 with a similar
behavior. Table 2 (last four rows) also highlights the performancestbfimodels for the genes of
Figure 2. Again, CMOC outperforms the linear model of coregionalizatiomédh genes and in
terms of SMSE and MSLL.
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FBgn0038617 MSLL -0.60185 SMSE 0.27299 FBgn0038617 MSLL -1.3965 SMSE 0.056511
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Figure 1: Predictive mean and variance for genes FBgn003861t#¢firsand FBgn0032216 (sec-
ond row) using the linear model of coregionalization in Figures 1(a) anpd(d the
convolved multiple-output covariance in Figures 1(b) and 1(d), @ite 1 andR, = 1.
The training data comes from replica 1 and the testing data from replica Zoliddine
corresponds to the predictive mean, the shaded region correspoRdsaiodard devia-
tions of the prediction. Performances in terms of SMSE and MSLL are givére title
of each figure and appear also in Table 2. The adjectives “short”lang™given to the
length-scales in the captions of each figure, must be understood likeee¢tagach other.

Having said this, we can argue that the performance of the LMC model eamgroved by
either increasing the value ¢f or the valueR,, or both. For the intrinsic coregionalization model,
we would fix the value of) = 1 and increase the value &f;. Effectively, we would be increasing
the rank of the coregionalization matiB¢, meaning that more latent functions sampled from the
same covariance function are being used to explain the data. In a extreenia g#ich each output
has its own length scale, this translates into equating the number of latent ignitithe number
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Testreplica| Testgenes | Method| SMSE | MSLL
LMC | 0.2729 | —0.6018

Reolica 2 FBOn0038617 ~vioc | 0.0565 | —1.3965
P CBan00azate LMC | 07621 | —0.0998

9 CMOC | 0.1674 | —0.8443

LMC | 0.2572 | —0.5699

Reblica 1 FBgN001053L ~\15c | 0.0446 | —1.3434
P FBan0004007 MC | 04981 | ~0.3069

9 CMOC | 0.0971 | —1.0841

Table 2: Standardized mean square error (SMSE) and mean standdodjzess (MSLL) for the
genes in Figures 1 and 2 for LMC and CMOC. Genes FBgn0038617 Bgdd®10531
have a shorter length-scale when compared to genes FBgn003221B@m@04907.

of outputs, or in other words assuming a full rank for the maBix This leads to the need of
estimating the matri8; € RP*P, that might be problematic iD is high. For the semiparametric
latent factor model, we would fix the value Bf, = 1 and increase€), the number of latent functions
sampled from) different GPs. Again, in the extreme case of each output having its owthleng
scale, we might need to estimate a matix RP*P, which could be problematic for a high value
of outputs. In a more general case, we could also combine valugs-of andR, > 1. We would
need then, to find values ¢f and R, that fit the different outputs with different length scales.

In practice though, we will see in the experimental section, that both the Imedel of core-
gionalization and the convolved multiple output GPs can perform equally welhime data sets.
However, the convolved covariance could offer an explanation of dltee ttirough a simpler model
or converge to the LMC, if needed.

5. Efficient Approximations for Convolutional Processes

Assuming that the double integral in Equation (8) is tractable, the principléeenlge for the con-
volutional framework is computing the inverse of the covariance matrix &gedowith the outputs.
For D outputs, each havinyy data points, the inverse has computational compleX{tp? N?) and
associated storage 6f(D?N?). We show how through making specific conditional independence
assumptions, inspired by the model structukivgrez and Lawrence, 2009), we arrive at a efficient
approximation similar in form to the partially independent training conditional m@d@C, see
Quiflonero-Candela and Rasmussen, 2005). The relationship with PITGngres us to make
further conditional independence assumptions.

5.1 Latent Functions as Conditional Means

For notational simplicity, we restrict the analysis of the approximations to o fatectionw(x).
The key to all approximations is based on the form we assume for the latesiioius. From the
perspective of a generative model, Equation (7) can be interpretetiasd: first we draw a sample
from the Gaussian process prigfu(z)) and then solve the integral for each of the outpfytisc)
involved. Uncertainty about(z) is also propagated through the convolution transform.
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Figure 2: Predictive mean and variance for genes FBgn001053Ir¢frsand FBgn0004907 (sec-
ond row) using the linear model of coregionalization in Figures 2(a) any a0d the
convolved multiple-output covariance in Figures 2(b) and 2(d), @ite 1 andR, = 1.
The difference with Figure 1 is that now the training data comes from replidail2 the
testing data comes from replica 1. The solid line corresponds to the prediotian, the
shaded region corresponds to 2 standard deviations of the predictoforrRances in
terms of SMSE and MSLL are given in the title of each figure.

For the set of approximations, instead of drawing a sample fr¢an, we first draw a sample
from a finite representation af{z), u(Z) = [u(z,),...,u(zx)] ', whereZ = {z,}1-_, is the set of in-
put vectors at which(z) is evaluated. Due to the properties of a Gaussian propas& )) follows
a multivariate Gaussian distribution. Conditioning wfZ ), we next sample from the conditional
prior p(u(z)|u(Z)) and use this function to solve the convolution integral for eAglx).” Under

7. For simplicity in the notation, we just writeto refer tou(Z).

1439



ALVAREZ AND LAWRENCE

this generative approach, we can approximate each fungion using
fu¥) =~ [ Galx-2)Elu@)luldz. (14)
X

Replacingu(z) for E [u(z)|u] is a reasonable approximation as long.&s) is a smooth function
so that the infinite dimensional objeetz) can be summarized hy. Figure 3 shows a cartoon
example of the quality of the approximations for two outputs as the size of tlZeiseteases. The
first column represents the conditional prigiu(z)|u) for a particular choice ofi(z). The second
and third columns represent the outpyitéx) and f2(x) obtained when using Equation (14).

Using expression (14), the likelihood function fdiollows

p(flu,Z,X,0) = N (nyf,uK;j,u, Krf— Kf,uKujaKfTu) , (15)

whereK, , is the covariance matrix between the samples from the latent funetioy with ele-
ments given bys, ., (z,2') andK , = K [ ; is the cross-covariance matrix between the latent function
u(z) and the outputg,(x), with elementsov [fa(X),u(2)] in (9).

Given the set of points, we can have different assumptions about the uncertainty of the out-
puts in the likelihood term. For example, we could assume that the outputs apeftdst or
uncorrelated, keeping only the uncertainty involved for each output ilikiléhood term. Another
approximation assumes that the outputs are deterministic, thigsis= Kty K, iK{,. The only
uncertainty left would be due to the pripfu). Next, we present different appro>’<imations of the
covariance of the likelihood that lead to a reduction in computational complexity.

5.1.1 RARTIAL INDEPENDENCE

We assume that the individual outputsfiare independent given the latent functipnleading to
the following expression for the likelihood

D D
p(f|u7z7x70) = Hp(fd\u,Z,X,B) = HN(f|de7uK;3]u7de7fd - de,UKJ,lIJKU,fd) :
d=1 d=1

We rewrite this product of multivariate Gaussians as a single Gaussian wititcladiagonal co-
variance matrix, including the uncertainty about the independent pexess

p(y|u,Z,X,0) =N (y|Ks Ky ju,D+ %) (16)

whereD = blockdiag {Kf,f — KLUK;}JKIU} , and we have used the notatiblockdiag [G] to indi-
cate that the block associated with each output of the m@&rshould be retained, but all other
elements should be set to zero. We can also write thid as[K¢ — K¢ K Kyt ©M where
© is the Hadamard product atd = | p ® 1y, 1y being the N x N matrix of ones. We now
marginalize the values of the samples from the latent function by using itsgarpder, this means
p(u|Z) = N (u|0,Ky ). This leads to the following marginal likelihood,

p(y|Z,X,0) = /p(ylu,Z,X,H)p(UIZNu =N (y0,D+Ks K, (Kus+2). (17)
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Figure 3: Conditional prior and two outputs for different valueskaf The first column, Figures

3(a), 3(d) and 3(g), shows the mean and confidence intervals of tiditiomal prior

distribution using one input function and two output functions. The dakhedepresents
one sample from the prior. Conditioning over a few points of this sample, rstasv

black dots, the conditional mean and conditional covariance are compuitex solid
line represents the conditional mean and the shaded region correspodgandard
deviations away from the mean. The second column, 3(b), 3(e) and S{bys the
solution to Equation (7) for output one using the sample from the prior édbkife) and
the conditional mean (solid line), for different valuesf The third column, 3(c), 3(f)
and 3(i), shows the solution to Equation (7) for output two, again for iiffevalues of

K.

Notice that, compared to (13), the full covariance malttpx has been replaced by the low rank co-
variancd(tuKlI},Ku,f in all entries except in the diagonal blocks correspondingsa,. Depend-
ing on our choice off, the inverse of the low rank approximation to the covariance is either dom-

inated by aO(DN?) term or aO(K2DN) term. Storage of the matrix ©(N?D) + O(NDK).
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Note that if we sefk = NV these reduce t®(N3D) andO(N2D) respectively. Rather neatly this
matches the computational complexity of modeling the data vithdependent Gaussian processes
across the outputs.

The functional form of (17) is almost identical to that of the partially indejeen training
conditional (PITC) approximation (Q@onero-Candela and Rasmussen, 2005) or the partially inde-
pendent conditional (PIC) approximation (Qanero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2007), with the samples we retain from the latent function jmgwice same role as
the inducing valuesn the PITC or PICE This is perhaps not surprising given that the PI(T)C ap-
proximations are also derived by making conditional independence asusipA key difference
is that in PI(T)C it is not obvious which variables should be grouped tegetthen making these
conditional independence assumptions; here it is clear from the strudttire model that each of
the outputs should be grouped separately.

5.1.2 FULL INDEPENDENCE

We can be inspired by the analogy of our approach to the PI(T)C ajppatinn and consider a more
radical factorization of the likelihood term. In the fully independent trainiogditional (FITC) ap-
proximation or the fully independent conditional (FIC) approximation (Swmelnd Ghahramani,
2006, 2007), a factorization across the data points is assumed. Fot usthd lead to the follow-
ing expression for the conditional distribution of the output functionsrgthe inducing variables,

p(flu,Z,X,0) = Hprndyuzxm

d=1n=1

which can be expressed through (16) with= diag |:Kf’f — Kf,uK;ﬁKfTu} = |:Kf,f — Kf,uKJ,LIJKIu] o

M, withM =1p®Iy or simplyM =1 pn. The marginal likelihood, including the uncertainty about
the independent processes, is given by Equation (17) with the diafgsnafor D. Training with
this approximated likelihood reduces computational complexit® t&2DN) and the associated
storage taO (K DN).

5.1.3 DETERMINISTIC LIKELIHOOD

In Quifionero-Candela and Rasmussen (2005), the relationship betweernjiwetqu process ap-
proximation (Csdi and Opper, 2001; Seeger et al., 2003) and the FI(T)C and PI@p@ama-
tions is elucidated. They show that if, given the set of valugthe outputs are assumed to be
deterministic, the likelihood term of Equation (15) can be simplified as

p(flu,Z,X,0) = N (f|K¢uK 4u,0).

Marginalizing with respect to the latent function usip@|Z) = N (u|0,K, ) and including the
uncertainty about the independent processes, we obtain the margifhhblikeas

pY1Z.X.0) = [ plyluZ X.0)p(ulZ)du = A7 (YIOKruK i KT, + )

8. We refer to both PITC and PIC by PI(T)C.
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In other words, we can approximate the full covariakgg using the low rank approximation
Kf,uKJ}JKfTU. Using this new marginal likelihood to estimate the parameflersduces computa-
tional complexity toO(K2DN). The approximation obtained has similarities with the projected
latent variables (PLV) method also known as the projected processxappiamn (PPA) or the de-
terministic training conditional (DTC) approximation (C8and Opper, 2001; Seeger et al., 2003;
Quinonero-Candela and Rasmussen, 2005; Rasmussen and Williams, 2006).

5.1.4 ADDITIONAL INDEPENDENCEASSUMPTIONS

As mentioned before, we can consider different conditional indeperedessumptions for the like-
lihood term. One further assumption that is worth mentioning considers coraitimiependencies
across data points and dependence across outputs. This would leatbltothieg likelihood term

N
p(flu.2,X,0) = [ p(fnlu,Z,X.0),

n=1

wheref,, = [f1(X,), f2(Xn), ..., fp(X,)] . We can use again Equation (16) to express the likelihood.
In this case, though, the matrixis a partitioned matrix with blockB, o € R*V*" and each block
Dy, would be given a®, o = diag [Kr, 1, —Kr, Ky Kug, |. For cases in whicth > N, that

is, the number of outputs is greater than the number of data points, this apptiaa may be more
accurate than the one obtained with the partial independence assumpti@as€s wheré® < N

it may be less accurate, but faster to compute.

5.2 Posterior and Predictive Distributions

Combining the likelihood term for each approximation witlu|Z) using Bayes’ theorem, the pos-
terior distribution oveu is obtained as

p(uly,X,Z,0) =N (u[KyuA ' Kyi(D+ )y, KuuA ' Kuy), (18)

whereA = Ky y + KfTu(D + %)~ 'Kt andD follows a particular form according to the different
approximations: for partial independence it equals- blockdiag [Kr — Kt Ky Kys]; for full
independence it iB = diag Ky — Ky 4K {Kyt] and for the deterministic likelihood) = 0.

For computing the predictive distribution we have two options, either use gtenmr foru and
the approximated likelihoods or the posterior toand the likelihood of Equation (15), that cor-
responds to the likelihood of the model without any approximations. Therglifée between both
options is reflected in the covariance for the predictive distribution ighéro-Candela and Ras-
mussen (2005) proposed a taxonomy of different approximationsaingdo the type of likelihood
used for the predictive distribution, in the context of single output Gangsiacesses.

In this paper, we opt for the posterior forand the likelihood of the model without any approx-
imations. If we choose the exact likelihood term in Equation (15) (includinghtise term), the

9. Notice that if we work with the block diagonal matrid®g 4, we would need to invert the full matriz. However,
since the block®, 4 are diagonal matrices themselves, the inversion can be done efficisintty, or example, a
block Cholesky decomposition. Furthermore, we would be restricted tk with isotopic input spaces. Alterna-
tively, we could rearrange the elements of the makrigo that the blocks of the main diagonal are the covariances
associated with the vectofs.
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predictive distribution is expressed through the integration of the likelihood éealuated ak,,
with (18), giving

PO Y XX Z.0) = [ 01U 2. X, O)p(Uly. X.Z,0)du =N (v 1y, K. ).
where
py, =Ke, JATK{(D+3) Yy,
Ky, y. =Kt 1. — K oKgdKe g + K bATIK L+ 3,

For the single output case, the assumption of the deterministic likelihood is Emuiva the de-
terministic training conditional (DTC) approximation, the full independenga@pmation leads

to the fully independent training conditional (FITC) approximation {@@umero-Candela and Ras-
mussen, 2005) and the partial independence leads to the partially inéepéraining conditional
(PITC) approximation (Quiionero-Candela and Rasmussen, 2005). The similarities of our approx-
imations for multioutput GPs with respect to approximations presented ifloQero-Candela and
Rasmussen (2005) for single output GPs are such, that we find it ientdo follow the same
terminology and also refer to our approximations as DTC, FITC and PIp@apations for mul-
tioutput Gaussian processes.

5.3 Discussion: Model Selection in Approximated Models

The marginal likelihood approximation for the PITC, FITC and DTC variangsfisnction of both
the hyperparameters of the covariance function and the location of theimgdvariables. For es-
timation purposes, there seems to be a consensus in the GP community thabrympeters for
the covariance function can be obtained by maximization of the marginal likeliréar selecting
the inducing variables, though, there are different alternatives thahgainciple be used. Simpler
methods include fixing the inducing variables to be the same set of input data poigrouping
the input data using a clustering method likemeans and then use tli€ resulting vectors as in-
ducing variables. More sophisticated alternatives consider that thé setugzing variables must
be restricted to be a subset of the input data (@€aatl Opper, 2001; Williams and Seeger, 2001).
This set of methods require a criteria for choosing the optimal subset tifatihég points (Smola
and Bartlett, 2001; Seeger et al., 2003). Such approximations are tanyesip the sense that only
few data points are needed at the end for making predictions. Recerglgo8rand Ghahramani
(2006) suggested using the marginal likelihood not only for the optimizatitimediyperparameters
in the covariance function, but also for the optimization of the location of timekecing variables.
Although, using such procedure to find the optimal location of the inducingtsnmight look in
principle like an overwhelming optimization problem (inducing points usually appen-linearly
in the covariance function), in practice it has been shown that perfamsaciose to the full GP
model can be obtained in a fraction of the time that it takes to train the full modethalnre-
spect, the inducing points that are finally found are optimal in the same optimatiég skat the
hyperparameters of the covariance function.

Essentially, it would be possible to use any of the methods just mentioned tg®iber with
the multiple-output GP regression models presented in Sections 2.1, 2.1.2 dndis paper,
though, we follow Snelson and Ghahramani (2006) and optimize the locatidins inducing vari-
ables using the approximated marginal likelihoods and leave the compariseeebehe different
model selection methods for inducing variables for future work.
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In appendix A we include the derivatives of the marginal likelihood wrt thérices Ky ¢, Ky ¢
andKy y.

6. Experimental Evaluation

In this section we present results of applying the approximations in exara peediction, pol-
lutant metal prediction and the prediction of gene expression behavior émexmgetwork. When
possible, we first compare the convolved multiple output GP method againstttimsic model

of coregionalization and the semiparametric latent factor model. Then, weacertige different
approximations in terms of accuracy and training times. First, though, we ilestr@performance
of the approximation methods in a toy examfle.

6.1 A Toy Example

For the toy experiment, we employ the kernel constructed as an exampletianS&c The toy
problem consists ab = 4 outputs, one latent functio® = 1 andR, = 1 and one input dimension.
The training data was sampled from the full GP with the following paramefgrs= Sz 1 = 1,
S31=2541=>5, P11 = FPo1 =50, P31 =300,FP; =200 for the outputs and\; = 100 for the
latent function. For the independent processegx), we simply added white noise separately to
each output so we have varianegs= o5 = 0.0125, 0 = 1.2 ando? = 1. We generatéV = 500
observation points for each output and 268 observation points (per output) for training the full
and the approximated multiple output GP and the remaiB@igobservation points for testing. We
repeated the same experiment setup ten times and compute the standardizeduasagrror and
the mean standardized log loss. For the approximations w&use&0 inducing inputs. We sought
the kernel parameters and the positions of the inducing inputs through maxjntlienmarginal
likelihood using a scaled conjugate gradient algorithm. Initially the inducingtinpte equally
spaced between the interyall, 1].

Figure 4 shows the training result of one of the ten repetitions. The praticsioown corre-
spond to the full GP in Figure 4(a), the DTC approximation in Figure 4(b)IFtRE€ approximation
in Figure 4(c) and the PITC approximation in Figure 4(d).

Tables 3 and 4 show the average prediction results over the test set3 Eloles that the SMSE
of the approximations is similar to the one obtained with the full GP. Howeveeg #rerimportant
differences in the values of the MSLL shown in Table 4. DTC offers thestygerformance. It gets
better for FITC and PITC since they offer a more precise approximatioretiuthcovariance.

The training times for iteration of each model ar@7 secs for the full GR).20 secs for DTC,
0.41 for FITC and0.59 for the PITC, on average.

As we have mentioned before, one important feature of multiple output picadis that we can
exploit correlations between outputs to predict missing observations. deausimple example to
illustrate this point. We removed a portion of one output betwiedng, 0] from the training data in
the experiment before (as shown in Figure 5) and train the differentisteredict the behavior of
y4(x) for the missing information. The predictions shown correspond to the fulhGiRyure 5(a),
an independent GP in Figure 5(b), the DTC approximation in Figure 5J;IthC approximation in

10. Code to run all simulations in this section is availablehtatp:// st af f ww. dcs. shef . ac. uk/ peopl e/ N.
Law ence/ nul ti gp/ .
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Figure 4: Predictive mean and variance using the full multi-output GP anapjmeximations for
output 4. The solid line corresponds to the predictive mean, the shagiexh ieorre-
sponds ta2 standard deviations of the prediction. The dashed line corresponds to the
ground truth signal, that is, the sample from the full GP model without nois¢hdse
plots the predictive mean overlaps almost exactly with the ground truth. Tisead®
the noisy training points. The crosses in Figures 4(b), 4(c) and 4{d@smond to the
locations of the inducing inputs after convergence. Notice that the DT@x=ipmation
in Figure 4(b) captures the predictive mean correctly, but fails in remmiod the correct
predictive variance.

Method | SMSEy;(x) | SMSEys(x) | SMSEys(x) | SMSEy,(x)
FullGP| 1.064+0.08 | 0.994+0.06 | 1.10£0.09 | 1.054+0.09
DTC 1.06£0.08 | 0.99+0.06 | 1.12£0.09 | 1.05+0.09
FITC 1.06£0.08 | 0.99+0.06 | 1.10£0.08 | 1.05+0.08
PITC 1.06£0.08 | 0.99+0.06 | 1.10£0.09 | 1.05+0.09

Table 3: Standardized mean square error (SMSE) for the toy problenttevtest set. All numbers
are to be multiplied byi0~2. The experiment was repeated ten times. Table includes the
value of one standard deviation over the ten repetitions.

Figure 5(d) and the PITC approximation in Figure 5(e). The training of pipecximation methods
is done in the same way than in the experiment before.
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Method | MSLL y;(z) | MSLL y2(z) | MSLL y3(x) | MSLL y4(x)
FullGP | —2.274+0.04 | —2.304+0.03 | —2.25+0.04 | —2.27+0.05
DTC —0.98+0.18 | —=0.98£0.18 | —1.25+0.16 | —1.25+0.16
FITC | —2.26£0.04 | —2.29£0.03 | —2.16+0.04 | —2.23£0.05
PITC | —2.27+£0.04 | —2.30£0.03 | —2.234+0.04 | —2.26£0.05

Table 4: Mean standardized log loss (MSLL) for the toy problem over thiestt. More negative
values of MSLL indicate better models. The experiment was repeated ten tifabke
includes the value of one standard deviation over the ten repetitions.

Due to the strong dependencies between the signals, our model is ablaute ¢hpe correlations
and predicts accurately the missing information.

6.2 Exam Score Prediction

In the first experiment with real data that we consider, the goal is to prtb@iexam score obtained
by a particular student belonging to a particular school. The data commastHi® Inner London
Education Authority (ILEA)!! It consists of examination records from 139 secondary schools in
years 1985, 1986 and 1987. It is a randd6¥ sample with 15362 students. The input space
consists of four features related to each student (year in which eatdnstiook the exam, gender,
performance in a verbal reasoning (VR) tésind ethnic group) and four features related to each
school (percentage of students eligible for free school meals, gageeof students in VR band
one, school gender and school denomination). From the multiple outputgiaiew, each school
represents one output and the exam score of each student a paitistdatiation of that output or
D =139.

We follow the same preprocessing steps employed in Bonilla et al. (2008) ofilly features
used are the student-dependent ones, which are categorial varigblds of them is transformed
to a binary representation. For example, the possible values that theleasa of the exam can
take are 1985, 1986 or 1987 and are representdd@d10 or 001. The transformation is also
applied to the variables gender (two binary variables), VR band (foarpivariables) and ethnic
group (eleven binary variables), ending up with an input space20itimensions. The categorial
nature of the data restricts the input spacéte= 202 unique input feature vectors. However, two
students represented by the same input vegtand belonging both to the same schagkan obtain
different exam scores. To reduce this noise in the data, we take the rhéenadservations that,
within a school, share the same input vector and use a simple heteroskadasimodel in which
the variance for each of these means is divided by the number of obeasmsed to compute 1
The performance measure employed is the percentage of explainedceadieiined as the total
variance of the data minus the sum-squared error on the test set aeatpgecof the total data
variance. It can be seen as the percentage version of the coeftitiéatermination between the

11. This data is available attp://www. cnm bristol.ac.uk/learning-training/nultilevel-m support/
dat asets.shtm .

12. Performance in the verbal reasoning test was divided in thressbBand 1 corresponds to the highgs¥, band 2
corresponds to the ne%0% and band 3 the bottor26% (Nuttall et al., 1989; Goldstein, 1991).

13. Different noise models can be used. However, we employed this@that we can compare directly to the results
presented in Bonilla et al. (2008).
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Figure 5: Predictive mean and variance using the full multi-output GP, theosimations and
an independent GP for output 4 with a range of missing observations in tdrdh
[—0.8,0.0]. The solid line corresponds to the mean predictive, the shaded region cor
responds t® standard deviations away from the mean and the dash line is the actual
value of the signal without noise. The dots are the noisy training points. ciidsses
in Figures 5(c), 5(d) and 5(e) correspond to the locations of the ingunjputs after
convergence.

test targets and the predictions. The performance measure is computenl fegpetitions withy5%
of the data in the training set aRd% of the data in the testing set.

We first compare different methods without including the efficient agprattons. These meth-
ods are independent GPs, multi-task GPs (Bonilla et al., 2008), the intriaggégionalization
model, the semiparametric latent factor model and convolved multiple output &€sults are
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Method Explained variance%)
Independent GPs (Bonilla et al., 2008) 31.12+1.33
Multi-task GP (Nystom, R; = 2) (Bonilla et al., 2008) 36.16 +0.99
Intrinsic coregionalization modeR; = 1) 52.54+2.46
Intrinsic coregionalization modeR; = 2) 51.94+1.84
Intrinsic coregionalization modeR; = 5) 45.31+£1.63
Semiparametric latent factor modé)} & 2) 51.824+1.93
Semiparametric latent factor modé) & 5) 44.87+£1.15
Convolved Multiple Outputs GP$X=1, R, = 1) 53.84+2.01

Table 5: Average percentage of explained variance and standaedioleor the exam score pre-
diction on the ILEA data set computed over 10 repetitions. The indepei@enesult
and the multi-task GP result were taken from Bonilla et al. (2008). The \wlé® in the
multi-task GP and in the intrinsic coregionalization model indicates the rank of ttrexma
B in Equation (6). The value @ in the semiparametric latent factor model indicates the
number of latent functions. The value Bf; in the convolved multiple output GP refers to
the number of latent functions that share the same number of parame&Es)(saion 8).
Refer to the text for more details.

presented in Table 5. The results for the independent GPs and the mulBRaskere taken from
Bonilla et al. (2008). The multi-task GP result uses a maisixvith rank R, = 2. For the intrinsic
model of coregionalization, we use an incomplete Cholesky decompoBiii@nEET, and include
results for different values of the rark;. The basic covarianck,(x,x’) in the ICM is assumed

to follow a Gaussian form. For the semiparametric latent factor model, all the fatestions use
covariance functions with Gaussian forms. For SLFM, we include resuitdifferent values of
the number of latent functiong)X= 2 and@ = 5). Note that SLFM with) = 1 is equivalent to
ICM with R; = 1. For the convolved multiple output covariance result, the kernel employesd w
introduced in Section 3. For all the models we estimate the parameters maximizingethe bki
through scaled conjugate gradient and run the optimization algorithm for smaxof 1000 iter-
ations. Table 5 shows that all methods outperform the independent GEa.tltough multi-task
GPs withR; = 2 and ICM with R; = 2 are equivalent methods, the difference of results might be
explained because the multi-task GP method uses a dysipproximation for the matrik; in
Equation (6). Results for ICM wittR; = 1, SLFM with @) = 2 and the convolved covariance are
similar within the standard deviations. The convolved GP was able to recavbett performance
using only one latent functiod{ = 1). This data set was also employed to evaluate the performance
of the multitask kernels in Evgeniou and Pontil (2004). The best residepted in this work was
34.37+0.3. However, due to the averaging of the observations that we employeditiernot fair

to compare directly against those results.

We present next the results of using the efficient approximations foxdra echool prediction
example. In Figure 6, we have included the results of Table 5 alongsidegshks of using DTC,
FITC and PITC fors, 20 and50 inducing points. The initial positions of the inducing points are
selected using the-meansalgorithm with the training data points as inputs to the algorithm. The
positions of these points are optimized in a scaled conjugate gradient prededether with the
parameters of the model. We notice that using the approximations we obtain siemfiampances
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Figure 6: Mean and standard deviation of the percentage of explainede®for exam score pre-
diction results on the ILEA data set. The experiment was repeated ten timeke In
bottom of the figure, IND stands for independent GPs, MT stands for naski-GPs,
ICR; stands for intrinsic coregionalization model with raRk, SQ stands for semipara-
metric latent factor model witld) latent functions, CM1 stands for convolved multiple
output covariance witld) = 1 and R, = 1 and DK, FK, PK stands for DTC, FITC and
PITC with K inducing points, respectively. The independent GPs and multi-task GPs
results were obtained from Bonilla et al. (2008).

to the full models with as few a$inducing points. FITC and PITC slightly outperform the DTC
method, although results are within the standard deviation.

Table 6 shows the training times for the different methbd€learly, the efficient approxima-
tions are faster than the full methods. This is particularly true when comptmingaining times
per iteration (second column). The approximations were run i@’ iterations, but the results for
100 iterations were pretty much the same. For the ICM and SLFM results, definiteby timan100
iterations were needed. WittD00 iterations DTC with5 inducing points offers a speed up factor
of 24 times over the ICM withR; = 1 and a speed up factor 87 over the full convolved multiple
output method?® On the other hand, with000 iterations, PITC withs0 inducing points offers a
speed up 09.8 over ICM with R; = 1 and a speed up &b over the full convolved GP method.

14. All experiments with real data were run in workstations Witsp GHz, AMD Opteron’s and up té6 GHz of RAM.
Only one processor was used on each run.

15. The speed up factor is computed as the relation between the slowednaettthe faster method, using the training
times of the third column in Table 6.
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Method Time per iter. (secs) Training time (secs
ICM(R;1=1) 83.60 16889
ICM (R; =2) 85.61 47650
ICM (R; =5) 88.02 64535
SLFM (Q =2) 97.00 58564
SLFM (Q = 5) 130.23 130234
CMOGP @ =1,R,=1) 95.55 95510
DTC5@=1,R,=1) 0.69 694
DTC20@=1,R,=1) 0.80 804
DTC50@=1,R,=1) 1.04 1046
FITC5@=1,R,=1) 0.94 947
FITC20Q =1, R,=1) 1.02 1026
FITCS0@=1,R,=1) 1.27 1270
PTC5@=1,R,=1) 1.13 1132
PITC20Q=1,R,=1) 1.24 1248
PITC50Q =1, R,=1) 1.71 1718

Table 6: Training times for the exam score prediction example. In the tabl€@®Ristands for
convolved multiple outputs GP. The first column indicates the training time per iteratio
of each method while the second column indicates the total training time. All the msmbe
presented are average results over the ten repetitions.

As mentioned before, the approximations reach similar performances 1&iriterations, in-
creasing the speed up factors by ten.

To summarize this example, we have shown that the convolved multiple outpuf&ssasim-
ilar performance to the ICM and SLFM methods. We also showed that thieaffapproximations
can offer similar performances to the full methods and by a fraction of thairitig times. More-
over, this example involved a relatively high-input high-output dimensidatd set, for which the
convolved covariance has not been used before in the literature.

6.3 Heavy Metals in the Swiss Jura

The second example with real data that we consider is the prediction ofribertoation of several
metal pollutants in a region of the Swiss Jura. This is a relatively low-inpuotput dimensional
data set that we use to illustrate the ability of the PITC approximation to reactetfiemance of
the full GP if the enough amount of inducing points is used. The data caisistasurements of
concentrations of several heavy metals collected in the topsoilldfsakm? region of the Swiss
Jura. The data is divided into a prediction s&Ylocations) and a validation set(0 locations)®
In a typical situation, referred to as undersampled or heterotopic cde®, expensive measure-
ments of the attribute of interest are supplemented by more abundant daierelated attributes
that are cheaper to sample. We follow the experiment described in Gtoya@87, p. 248, 249)
in which aprimary variable(cadmium) at prediction locations in conjunction with sogeeondary
variables(nickel and zinc) at prediction and validation locations, are employed tigiréhe con-

16. This data is available att p: // www. ai - geostats. org/ .
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Cadmium concentration (ppm)

Spatial coordinate 2 (Km) Spatial coordinate 1 (Km)

Figure 7: Cadmium concentration for the Swiss Jura example. The bluescigfler to the pre-
diction set (training data for cadmium) and the red squares are the cataargrfor the
validation set (testing data for cadmium).

centration of the primary variable at validation locations. Figure 7 showstimicim concentration
for the particular set of input locations of the prediction set (blue cirdesl)the particular set of
input locations of the validation set (red squares). As in the exam scedicpon example, we
first compare the performances of the full GP methods and later we indtlecperformances
of the approximations. We compare results of independent GPs, ordiokriging, the intrinsic
coregionalization model, the semiparametric latent factor model and the cedvalitiple output
covariance. For independent GPs we use Gaussian covariancedfgrénd length-scales for each
input dimension. Before describing the particular setup for the other metippasaring in Table 7,
we first say a few lines about the cokriging method. The interested readdind details in several
geostatistics books (see Cressie, 1993; Goovaerts, 1997; Wagkkr2@03).

Cokriging is the generalization of kriging to multiple outputs. It is an unbiaseadiipeedictor
that minimizes the error variance between the data and the predicted valifiieserid cokriging
methods assume that each output can be decomposed as a sum of & cesmhazaent with zero
mean and non-zero covariance function and a trend component. Téeedde between the cokrig-
ing estimators is based on the assumed model for the trend component. While I sikiging
the mean is assumed to be constant and known, in ordinary cokriging itisyadso be constant,
but unknown, leading to a different set of equations for the predittichever cokriging method
is used implies using the values of the covariance for the residual comparnéetequations for
the prediction, making explicit the need for a positive semidefinite covarifamotion. In the geo-
statistics literature, the usual practice is to use the linear model of coregatiwiizo construct a
valid covariance function for the residual component and then usefahg cokriging estimators
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Method Average Mean absolute error
Independent GPs 0.5739+0.0003
Ordinary cokriging (p. 248, 249 Goovaerts, 1997) 0.51
Intrinsic coregionalization modeR; = 2) 0.4608 £0.0025
Semiparametric latent factor modé) & 2) 0.4578 +0.0025
Convolved Multiple Outputs GP$X=2, R, =1) 0.4552+0.0013

Table 7: Average mean absolute error and standard deviation for fingdilbe concentration of
metal cadmium with the full dependent GP model and different forms fordkarance
function. The result for ordinary cokriging was obtained from Goowaé. 248, 249
1997) and it is explained in the text. For the intrinsic coregionalization modkize
semiparametric latent factor model we use a Gaussian covariance witterliffength-
scales along each input dimension. For the convolved multiple output covariave use
the covariance described in Section 3. See the text for more details.

for making predictions. A common algorithm to fit the linear model of coregioatdin minimizes
some error measure between a sample or experimental covariance matimedlbtam the data
and the particular matrix obtained from the form chosen for the linear mddsregionalization
(Goulard and Voltz, 1992).

Let us go back to the results shown in Table 7. The result that appeardinary cokriging
was obtained with the ordinary cokriging predictor and a LMC with= 3 and R, = 3 (p. 119
Goovaerts, 1997). Two of the basic covariankg, x’) have a particular polynomial form, while
the other corresponds to a bias terfrEor the prediction stage, only the closéétdata locations
in the primary and secondary variables are employed. Also in Table 7,esemtrresults using the
intrinsic coregionalization with a rank twa?{ = 2) for B, the semiparametric latent factor model
with two latent functions @ = 2) and the convolved multiple output covariance with two latent
functions (7 = 2 and R, = 1). The choice of eitheR?; = 2 or Q = 2 for the methods was due to
the cokriging setup for which two polynomial-type covariances were u$kd.basic covariances
for ICM and SLFM have a Gaussian form with different length scales ah eaput dimension.
For the CMOC, we employ the covariance from Section 3. Parameters fepéndent GPs, ICM,
SLFM and CMOC are learned maximizing the marginal likelihood in Equation (s3)g a scaled
conjugate gradient procedure. We run the optimization algorithm for @ptdaerations. Since the
prediction and location sets are fixed, we repeat the experiment ten tinregirdpghe initial values
of the parameters.

Table 7 shows that all methods, including ordinary cokriging, outperfoihependent GPs.
ICM, SLFM and CMOC outperform cokriging. Results for SLFM and CM@&e similar, although
CMOC outperformed ICM in every trial of the ten repetitions. The bettergoarnce for the
SLFM and the CMOC over the ICM would indicate the need for a second |&ection with
different parameters to the first one. Using a non-instantaneousaabpnaay slightly increase the
performance. However, results overlap within one standard deviation.

17. In fact, the linear model of coregionalization employed is constructid) variograms as basic tools that account for
the dependencies in the input space. Variograms and covariand®fsare related tools used in the geostatistics
literature to describe dependencies between variables. A precise defofitite concept of variogram is out of the
scope of this paper.
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Figure 8: Average mean absolute error and standard deviation facfoadf the pollutant metal
cadmium. The experiment was repeated ten times. In the bottom of the figur& B,
PK stands for DTC, FITC and PITC witR inducing values, CM2 stands for convolved
multiple output covariance with) = 2 and R, = 1, S2 stands for semiparametric latent
factor model with) = 2 latent functions, IC2 stands for intrinsic coregionalization model
with rank R; = 2, CO stands for the cokriging method explained in the text and IND
stands for independent GPs.

We next include the performances for the efficient approximations. eoretbults of the ap-
proximations, ak-meansprocedure is employed first to find the initial locations of the inducing
values and then these locations are optimized in the same optimization proceddr®uthe pa-
rameters. Each experiment is repeated ten times changing the initial valuepaf#imeeters. Figure
8 shows the results of prediction for cadmium for the different approximatath varying number
of inducing points (this is, different values &f). We also include in the figure the results for the
convolved multiple output GP (CM2), semiparametric latent factor model {82y)sic coregion-
alization model (IC2), ordinary cokriging (CO) and independent GRB]!

Notice that DTC and PITC outperform cokriging and independent GRafpvalue of. Also
for K =200 and K = 359, DTC and PITC reach the performance of the full GP methods, either
in average (forKK = 200) or within one standard deviation (fdf = 359). K = 200 might be a
considerable amount of inducing points when compared to the total amoungutftraining data
(359 for nickel and zinc an@59 for cadmium). The need of that amount of inducing points could
be explained due to the high variability of the data: mean values for the doatien of pollutant
metals ard .30, 20.01 and75.88 for cadmium, nickel and zinc, while standard deviations(a$e,
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Method | Time per iter. (secs) Training time (secs
ICM 3.84 507
SLFM 4.14 792
CMOGP 4.47 784
DTC 50 0.28 20
DTC 100 0.80 64
DTC 200 1.95 185
DTC 359 4.24 551
FITC 50 0.81 69
FITC 100 1.14 159
FITC 200 2.12 244
FITC 359 5.76 691
PITC 50 1.78 268
PITC 100 2.46 320
PITC 200 4.06 385
PITC 359 7.94 1191

Table 8: Training times for the prediction of the cadmium pollutant metal. In the,t&NEOGP
stands for convolved multiple outputs GP. The first column indicates the trainiegoer
iteration of each method and the second column indicates the total training timeeAll th
numbers presented are average results over the ten repetitions.

8.09 and30.81 giving coefficients of variation 0f0.00%, 40.42% and40.60%.18 Variability in
cadmium can be observed intuitively from Figure 7. Notice also that FITiBesiorms cokriging

and independent GPs fdt = 200 and K = 359. The figure also shows that DTC outperforms
FITC for all values ofi. However, the measure of performance employed, the mean absolute erro
does not take into account the predictive variance of the approximatedl@ihg as measures the
standardized mean absolute error and the mean standardized log-liketimattke into account
the predictive variance, FITC outperforms DTC: DTC in average hasShlMof 0.4544 and a
SMSE 0f0.9594 while FITC in average has a MSLL 6f0.0637 with a SMSE 0f0.9102. PITC in
average has a MSLL o6f0.1226 and SMSH).7740. Averages were taken over the different values
of K.

Finally, Table 8 shows the timing comparisons for the pollutant example. Thégaimes for
DTC with 200 inducing points and PITC witB00 inducing points, which are the first methods that
reach the performance of the full GP, are less than any of the times of lti@Hunethods. For
DTC with 200 inducing points, the speed up factor is abd when compared to ICM antl23
when compared to CMOGP. For PITC wi2h0 inducing points, the speed up factorli$1 when
compared to ICM an@.03 when compared to CMOGP. Notice also that all methods are less or
equally expensive than the different full GP variants, except folCPNith 359 inducing variables.
For this case, however, 4 out of the 10 repetitions reached the aymegemance in 00 iterations,
given a total training time of approximatef94.12 secs., atime much closer to CMOGP and SLFM.

18. The coefficient of variation is defined as the standard deviationtbeemean. It could be interpreted also as the
inverse of the signal-to-noise ratio.

1455



ALVAREZ AND LAWRENCE

6.4 Regression Over Gene Expression Data

We now present a third example with real data. This time we only include therpehces for

the approximations. The goal is to do multiple output regression over ggmession data. The
setup was described in Section 4. The difference with that example, is steddhof using) = 50
outputs, here we usP = 1000 outputs. We do multiple output regression using DTC, FITC and
PITC fixing the number of inducing points t§ = 8 equally spaced in the interval0.5,11.5].

Since it is a 1-dimensional input data set, we do not optimize the location of theimgdpoints,

but fix them to the equally spaced initial positions. As for the full GP model imgta of Section

4, we makeR = 1 andR, = 1. Again we use scaled conjugate gradient to find the parameters that
maximize the marginal likelihood in each approximation. The optimization proceduossfor 100
iterations.

Train set| Testset | Method | Average SMSE| Average MSLL | Average TTPI
DTC | 0.5421+£0.0085 | —0.24934+0.0183 2.04

Replica 1| Replica2| FITC | 0.5469+0.0125 | —0.312440.0200 2.31
PITC | 0.5537+0.0136 | —0.3162 4 0.0206 2.59
DTC | 0.5454+£0.0173 0.6499+£0.7961 2.10

Replica 2| Replical| FITC | 0.5565+0.0425 | —0.3024 +0.0294 2.32
PITC | 0.5713+£0.0794 | —0.3128 +0.0138 2.58

Table 9: Standardized mean square error (SMSE), mean standardjzesdddMSLL) and training
time per iteration (TTPI) for the gene expression datalfifl0 outputs using the efficient
approximations for the convolved multiple output GP. The experiment wasategp ten
times with a different set of000 genes each time. Table includes the value of one standard
deviation over the ten repetitions.

Table 9 shows the results of applying the approximations in terms of SMSE 8hdl f¢olumns
4 and 5). DTC and FITC slightly outperforms PITC in terms of SMSE, but®Pdéttperforms both
DTC and FITC in terms of MSLL. This pattern repeats itself when the trainirig dames from
replica 1 or from replica 2.

In Figure 9 we show the performance of the approximations over the sangetves of Figure

1, these are FBgn0038617 and FBgn0032216. The non-instantamexing effect of the model

can still be observed. Performances for these particular genes atiglhigd in Table 10. Notice
that the performances are between the actual performances for theabthe CMOC appearing

in Table 2. We include these figures only for illustrative purposes, sintie éxperiments use a
different number of outputs. Figures 1 and 2 were obtained as part kipfawutput regression
problem of D = 50 outputs, while Figures 9 and 10 were obtained in a multiple output regression
problem withD = 1000 outputs.

In Figure 10, we replicate the same exercise for the genes FBgn0010&EBgn0004907, that
also appeared in Figure 2. Performances for DTC, FITC and PITGhemen in Table 10 (last six
rows), which compare favourably with the performances for the linearehmfdcoregionalization
in Table 2 and close to the performances for the CMOC. In average, 8liffierforms the other
methods for the specific set of genes in both figures above.
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Figure 9: Predictive mean and variance for genes FBgn003861t#¢firsand FBgn0032216 (sec-
ond row) using the different approximations. In the first column DTC in fagd(a)
and 9(d), second column FITC in Figures 9(b) and 9(e), and in the tbiwim PITC in
Figures 9(c) and 9(f). The training data comes from replica 1 and thededxita from
replica 2. The solid line corresponds to the predictive mean, the shagiea i@orre-
sponds to 2 standard deviations of the prediction. Performances in tef&dS% and
MSLL are given in the title of each figure. The adjectives “short” and glogiven to
the length-scales in the captions of each figure, must be understoodléiieer¢o each
other. The crosses in the bottom of each figure indicate the positions ofdheing
points, which remain fixed during the training procedure.

With respect to the training times, the Table 9 in the column 6 shows the averagegtime
per iteration (average TTPI) for each approximation. To have an ideheo$aving times, one
iteration of the full GP model for the sam®00 genes would take arountb95.3 seconds. This
gives a speed up factor 6780, approximately.

7. Conclusions

In this paper we first presented a review of different alternativesrfoltiple output regression
grouped under a similar framework known as the linear model of corégatian. Then we
illustrated how the linear model of coregionalization can be interpreted asstanianeous mix-
ing of latent functions, in contrast to a convolved multiple output framewatiere the mixing
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Figure 10: Predictive mean and variance for genes FBgn0010531 rfiv) and FBgn0004907
(second row) using the different approximations. In the first column DTEigures
10(a) and 10(d), second column FITC in Figures 10(b) and 10(d)nethe third column
PITC in Figures 10(c) and 10(f). The training data comes now from r@@iand the
testing data from replica 1. The solid line corresponds to the predictive, tieashaded
region corresponds to 2 standard deviations of the prediction. Periocaan terms of
SMSE and MSLL are given in the title of each figure. The crosses in therbaifo
each figure indicate the positions of the inducing points, which remain fixedgltihe
training procedure.

is not necessarily instantaneous. Experimental results showed thatémsywith a presence of
some dynamics (for example, the gene expression data set), having tiisred@lement of non-
instantaneous mixing can lead to simpler explanations of the data. While, in syistentsch the
dynamics is not so obvious (for example, the exam score prediction datéhsebenefit of using
the non-instantaneous mixing was less noticeable.

We have also presented different efficient approximations for multipleub@p's, in the con-
text of convolution processes. Using these approximations we can eapwircorrelated infor-
mation among outputs while reducing the amount of computational load for poedend op-
timization purposes. The computational complexity for the DTC and the FITCoajppations
is O(NDK?). The reduction in computational complexity for the PITC approximation is from
O(N3D3?)to O(N3D). This matches the computational complexity for modeling with independent
GPs. However, as we have seen, the predictive power of indepeGmnis lower. Also, since
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Testreplica| Testgenes | Method| SMSE | MSLL
DTC | 0.2162 | —0.7015
FBgn0038617] FITC | 0.2240 | —0.6886
PITC | 0.1625 | —0.8600

Replica 2 DTC | 0.1845 | —0.3078

FBgn0032216 FITC | 0.3639 | —0.5086

PITC | 0.1613 | —0.8368

DTC | 0.0774 | —1.0171

FBgn0010531 FITC | 0.1707 | —0.7423

. PITC | 0.0872 | —0.9899
Replica 1

DTC | 0.6057 | —0.2192
FBgn0004907| FITC | 0.1512 | —0.8426
PITC | 0.2468 | —0.7176

Table 10: Standardized mean square error (SMSE) and mean starddedjzoss (MSLL) for the
genes in Figures 9 and 10 for DTC, FITC and PITC wikh= 8. Genes FBgn0038617
and FBgn0010531 have a shorter length-scale when compared to ERge8032216
and FBgn0004907.

PITC makes a better approximation of the likelihood, the variance of the resulsially lower
and approaches closely to the performance of the full GP, when cochfm2TC and FITC. As a
byproduct of seeing the linear model of coregionalization as a particasar af the convolved GPs,
we can extend all the approximations to work under the linear model oficoi@gation regime.

With an appropriate selection of the kernel smoothing function we have amedhdvay to
generate different forms for the covariance function in the multiple outgupséiMe showed an
example with Gaussian kernels, for which a suitable standardization of thelkean be made,
leading to competitive results in high-dimensional input regression probbsregen in the school
exam score prediction problem. The authors are not aware of oth&rimahich this convolution
process framework has been applied in problems with high input dimensions.

As shown with the Swiss Jura experiment, we might need a considerable tafdnducing
points compared to the amount of training data, when doing regressiorvemenoisy outputs.
This agrees to some extent with our intuition in Section 5, where we conditiomedattdity of
the approximations to the smoothness of the latent functions. However favéns case, we
can obtain the same performances in a fraction of the time that takes to trainGPfulloreover,
the approximations allow multiple output regression over a large amount ofteufpiscenarios
where training a full GP become extremely expensive. We showed an &xafripis type with the
multiple output regression over the gene expression data.

Linear dynamical systems responses can be expressed as a convodfti@en the impulse
response of the system with some input function. This convolution appiean equivalent way of
representing the behavior of the system through a linear differentiatiequ For systems involving
high amounts of coupled differential equatio%@rez etal., 2009Alvarez etal., 2011a; Honkela
et al., 2010), the approach presented here is a reasonable way inirghtgpproximate solutions
and incorporating prior domain knowledge to the model.
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Recently, Titsias (2009) highlighted how optimizing inducing variables canrbblgmatic
as they introduce many hyperparameters in the likelihood term. Titsias (28@8)ged a varia-
tional method with an associated lower bound where inducing variablesaational parameters
Following the ideas presented here, we can combine easily the method of ([BG0&83 and propose
a lower bound for the multiple output case. We have followed a first attempatrdifection and
some results have been presenteélirarez et al. (2010).
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Appendix A. Derivatives for the Approximations

In this appendix, we present the derivatives needed to apply the gratk¢hods in the optimization
routines. We present the first order derivatives of the log-likelihodt vespect taKs s, Kt and
Kuu. These derivatives can be combined with the derivatives;ef K, s andK y with respect to
6 and employ these expressions in a gradient-like optimization procedure.

We follow the notation of Brookes (2005) obtaining similar results to Lawr¢@687). This
notation allows us to apply the chain rule for matrix derivation in a straightdadvmanner. Let's
defineG: = vec G, wherevec is the vectorization operator over the mat@x For a functionl the

equivalence betweef§ and 2% is given throughs = ((2%) :)T. The obtain the hyperparame-

ters, we maximize the following log-likelihood function,
1 -1 1 -1 1T
£(Z,6) o< — log D+ KK g K| -  trace [(D+Kf,uKu7uKu,f) vy } (19)

where we have redefindd asD = [Kf7f — Kf7uKu_jKu7f} ®M + X, to keep a simpler notation.
Using the matrix inversion lemma and its equivalent form for determinantsession (19) can be
written as

1 1 1 1
L£(Z,0) o<510g|Ku,u| — 510g|A] - §log]D| — itrace [D_lyy—r}

1
+ itrace |:D_1Kf7uA_1Ku,fD_1ny} :

We can find2s and2% applying the chain rule té obtaining expressions fcg%f, 6%,” an a?ﬁu
and combining those with the derivatives of the covariancegwarndZ,

oL - E)EA OA: 0D: 8£D oD: E)EA OA: 8£G

9G: ~ OA: 9D: 9G: | aD: 9G: [(‘9A: 9G: T 9G: } o6k, (20)
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where the subindex idg stands for those terms @f which depend oiE, G is eitherKs¢, K ¢ or
Kuu andicr is zero ifG is equal toK¢ s and one in other case. Next we present expressions for
each partial derivative

oL 1 OA: _ _ oL 1 _ o T
T;:—§(C3)T7 ﬁ:_(Ku,fD '@KyD™), TDI:DZ_i((D 'HD 1))
oD: =dia (M) ﬂ:_dia (M) [(|®K K_l)—i-(K K_1®|)T ]
OKi ! SR oKy g\ fufvuu fuluu D/,

8D . _ _ 8A _ B
Ky :dlag(M:)(Kf,uKu,a®Kf,uKu,a),aK7u7f: = (Ku,fD 1®|)—|—(| ®@KysD I)TA
oA. LKy —1 T\ T 9Lkew L AT
oKy u: =1 oKyt - ((A KurD™yy D )) Ky D) ((Ku,u)') )

whereC =A~1 +A~1K, D lyy "D~ K¢y AL, Tp andT s arevectorized transpose matricésee,
e.g., Brookes, 2005) artd =D —yy " + K¢ A~ 1K Dlyy T + (Kf’uA_lKu,fD_lny)T. We can
replace the above expressions in (20) to find the correspondingtiess, so

aiff: =3 {((c) )" (KuiD™ ©KyD™) — (D HD ) 1)T] diag(M:) — (21)
_ % ((D_IJD_l) :)Tdiag(MI) — _% (diag(MZ ) (D—IJD—I) ;)T (22)
:—%((Dfl\]D”@M):)T:—%(Q:)T (23)
or simply
oL 1
oKy~ 2%

whereJ = H — Kt ,CK ¢ andQ = (D~'JD~' ©M). We have used the propert:) " (F® P) =
((PTBF) :)T in (21) and the propertytiag(B:)F: = (B®F):, to go from (22) to (23). We also have

L 1
O = @) [(1KeuKGh) + (KruKgh @) To] — £ ()]
6Ku7f. 2 ) , 5 o0
-
[(KuD'@l)+ (1K D) Ta] + ((A*lKu’folnyDfl) :)
T
- ((KiﬁKuqu —CKy D™ ‘|‘A_1Ku,fD_1nyD_1> :>
or simply
oL . L L
WM:Ku,uKu,fQ—CKU’fD +A"'KyDlyy' DT

where in (24)(Q))T (Fe)To=(Q:) To(1®F) = (T5Q:) ' (1 ©F) = (Q:)" (1 ®F). Asimilar
analysis is formulated for the term involvifigy. Finally, results for&—ff andg—é are obtained as
oL 1

TR =5 (Kud— C—KalKuiQK1uK )

oL 1

ax - 2%
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