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Abstract

In this thesis we address the problem of modeling correlated outputs using Gaus-

sian process priors. Applications of modeling correlated outputs include the joint

prediction of pollutant metals in geostatistics and multitask learning in machine

learning. Defining a Gaussian process prior for correlated outputs translates into

specifying a suitable covariance function that captures dependencies between the

different output variables. Classical models for obtaining such a covariance func-

tion include the linear model of coregionalization and process convolutions. We

propose a general framework for developing multiple output covariance functions

by performing convolutions between smoothing kernels particular to each output

and covariance functions that are common to all outputs. Both the linear model

of coregionalization and the process convolutions turn out to be special cases

of this framework. Practical aspects of the proposed methodology are studied

in this thesis. They involve the use of domain-specific knowledge for defining

relevant smoothing kernels, efficient approximations for reducing computational

complexity and a novel method for establishing a general class of nonstationary

covariances with applications in robotics and motion capture data.

Reprints of the publications that appear at the end of this document, report case

studies and experimental results in sensor networks, geostatistics and motion

capture data that illustrate the performance of the different methods proposed.
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Chapter 1

Introduction

Accounting for dependencies between related processes has important applica-

tions in several areas. In sensor networks, for example, missing signals from

certain sensors may be predicted by exploiting their correlation with observed

signals acquired from other sensors (Osborne et al., 2008), as shown in figure

1.1(a). Figure 1.1(a) represents a sketch of the south coast of England, where

several sensors (the red dots in the figure), that keep track of different environ-

mental variables, such as temperature and air pressure, have been placed along

the coastline. In a normal scenario, we have access to the readings of all these

devices at all time instants. However, at some random points in time, a num-

ber of sensors can fail or segments of the sensor network can suffer disruptions,

rendering inaccessible the information of certain environmental variables. Given

that the sensors are located sufficiently close to each other and many of them

make similar readings, we can make use of the signals obtained from the unbro-

ken sensors (in figure 1.1(a), sensors b, c and d) to predict the missing signals for

the broken ones (in figure 1.1(a), sensor a).

In geostatistics, predicting the concentration of heavy pollutant metals, which are

expensive to measure, can be done using inexpensive and oversampled variables

as a proxy (Goovaerts, 1997). Figure 1.1(b) illustrates a region of the Swiss Jura,

for which we would like to know when the concentration of certain heavy metals,

goes beyond a toxic threshold that can be risky for human health. It is usually

cheaper to measure the level of pH in the soil (the green dots in the figure)

than the concentration of Copper or Lead (the blue and read dots in the figure).

We can exploit the correlations between the metals and pH level learned from

different locations to predict, for example, the value of Lead in input location a,
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a

cd

b

(a) A network of sensors

Lead
pH level

Copper

b

a

(b) Pollutant metals concentrations

Figure 1.1: Examples of the type of problems that we consider in this thesis.

(a) Walking movement with missing poses (b) Frames have been filled with plausible poses

Figure 1.2: An example of a walking exercise. In 1.2(a), there are missing poses that are filled
in 1.2(b).

shown in figure 1.1(b) or the value of Copper in input location b.

In computer graphics, a common theme is the animation and simulation of phys-

ically plausible humanoid motion. As shown in figure 1.2(a), given a set of poses

that delineate a particular movement (for example, walking), we are faced with

the task of completing a sequence by filling in the missing frames with natural-

looking poses, as in figure 1.2(b). Human movement exhibits a high-degree of

correlation. Think, for example, of the way we walk. When moving the right

leg forward, we unconsciously prepare the left leg, which is currently touching

the ground, to start moving as soon as the right leg reaches the floor. At the

same time, our hands move synchronously with our legs. We can exploit these im-

plicit correlations for predicting new poses and for generating new natural-looking

walking sequences.

In the examples above, it would be possible to assume that we do not have
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access to secondary information (in the geostatistics example, pH levels) and

consequently employ models that make predictions individually for each variable

(Copper and Lead). However, these examples share an underlying principle: it is

possible to exploit the interaction between the different variables to improve their

joint prediction. Within the machine learning community this type of modeling is

sometimes referred to as multitask learning. The idea in multitask learning is that

information shared between different tasks can lead to improved performance in

comparison to learning the same tasks individually. It also refers to systems that

learn by transferring knowledge between different domains, for example, what

can we learn about running through seeing walking? Therefore it is also known

as “transfer learning” (Thrun, 1996; Caruana, 1997; Bonilla et al., 2008).

There are plenty of methods in the literature that have been used to approach

the type of problems we have described, including neural networks (Caruana,

1997), Bayesian neural networks (Bakker and Heskes, 2003), Dirichlet process

priors (Xue et al., 2007) and support vector machines (Evgeniou et al., 2005).

Essentially, this sort of problems conform to a multivariate regression analysis.1

If we assume that the variables are independent given the inputs, then, the simul-

taneous regression transforms to a series of single variable regression problems.

Nowadays, the most established technology for univariate regression, within the

machine learning community, corresponds to Gaussian process (GP) regression

(Rasmussen and Williams, 2006).

A Gaussian process specifies a prior distribution over functions f(x), with x ∈ <p.
The distribution is defined in terms of a positive semidefinite function k(x,x′),

known as the covariance function, that encodes the degree of similarity or corre-

lation between f(x) and f(x′) as a function of the inputs x and x′. Covariance

functions for single outputs are widely studied in machine learning (see, for ex-

ample, Rasmussen and Williams, 2006) and some examples include the squared-

exponential or the Matérn class of covariance functions. From a Bayesian statis-

tics point of view, the Gaussian process specifies our prior beliefs about the prop-

erties of the functions we are modeling. Our beliefs are updated in the presence of

data by means of a likelihood function, that relates our prior assumptions to the

actual observations, leading to an updated distribution, the posterior distribution,

that can be used, for example, for predicting test cases.

1Multivariate problems are also known as multivariable, multiple output or multiple response
problems.
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In this thesis, we consider the problem of extending the Gaussian process frame-

work for modeling correlated outputs. The main challenge is the definition of a

covariance function that encodes not only the degree of correlation of a process

fd(x) as function of the input x, but, concomitantly, expresses the correlation

between two different processes fd(x) and fd′(x), for d 6= d′. Importantly, the

covariance function must be valid, that is, positive semidefinite.

Much of the common practice in univariate Gaussian process regression, as it is

done today in machine learning, has been rigorously systematized in Rasmussen

and Williams (2006). Except for some isolated attempts, the counterpart for the

multivariate case is yet to be written. In this thesis, we introduce some ideas

towards that direction, from both theoretical and applied perspectives.

Outline of the thesis and contributions

One of the paradigms that has been considered for extending Gaussian processes

to the multivariable scenario (Teh et al., 2005; Osborne et al., 2008; Bonilla et al.,

2008) is known in the geostatistics literature as the linear model of coregionaliza-

tion (LMC) (Journel and Huijbregts, 1978; Goovaerts, 1997). In the LMC the

covariance function is expressed as the sum of products between coregionalization

matrices and a set of underlying covariance functions. The correlations across

the outputs are expressed in the coregionalization matrices, while the underly-

ing covariance functions express the correlation between different data points in

terms of the input vectors.

An alternative approach to constructing covariance functions for multiple outputs

employs process convolutions (PC). To obtain a PC in the single output case, the

output of a given process is convolved with a smoothing kernel function. For

example, a white noise process may be convolved with a smoothing kernel to

obtain a covariance function (Barry and Ver Hoef, 1996). Ver Hoef and Barry

(1998) noted that if a single input process was convolved with different smoothing

kernels to produce different outputs, then correlation between the outputs could

be expressed. This idea was introduced to the machine learning audience by

Boyle and Frean (2005a).

Although these base processes have been considered almost exclusively as white

noise Gaussian processes, in this thesis we allow the bases processes to be Gaus-

sian processes with more general covariance functions. The first contribution
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in this thesis is to develop a unifying model for the covariance function for mul-

tiple outputs that contains the linear model of coregionalization and the process

convolution as special cases. We refer to this model as the convolved multiple

output covariance (CMOC). In chapter 2, we arrive at this covariance function

by building upon previous work in the linear model of coregionalization literature

and the process convolution literature.

The convolved multiple output covariance is obtained by convolving covariance

functions with smoothing kernels. Usually it is difficult to specify in advance

a functional form for the smoothing kernel that results in meaningful covariance

functions, in the sense that the resulting multiple output covariance can represent

important features of the data. Drawing connections with the theory of differ-

ential equations as in Lawrence et al. (2007), our second contribution is that

we develop a general framework in which the smoothing kernels correspond to

the Green’s function associated to the differential equations used to describe the

system. In chapter 3, we develop this idea under the name of latent force models.

A Gaussian process is a nonparametric technique and due to this nonparametric

nature it carries the cross of being computationally expensive to use in prac-

tice. The expensive steps are related to the successive inversion of the covariance

matrix computed from the covariance function of the Gaussian process. In the

multiple output case, the computational complexity grows as O(D3N3), where

N is the number of observations per output and D is the number of outputs.

Our third and fourth contributions are the development of efficient approx-

imation techniques that reduce computational complexity to O(DNK2), where

K is a user-specified parameter. In the third contribution, we develop reduced

rank approximations for the covariance matrix of the full Gaussian process by

exploiting different conditional independence assumptions in the likelihood func-

tion. In the fourth contribution, we introduce the concept of inducing function.

An inducing function acts as a smooth surrogate for white noise processes, when

these processes are used as base functions in the CMOC. Embedding these in-

ducing functions in a variational framework, replicating ideas presented in Titsias

(2009), we develop an efficient approximation that behaves as a lower bound of the

marginal likelihood of the full multivariate Gaussian process. Both contributions

and the relationships between them are presented in chapter 4.

Finally, in chapter 5 we present our fifth contribution. We propose a novel

model that allows discrete changes in the parameter space of the smoothing kernel
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and/or the parameter space of the covariances of the base processes. Our main

focus is to develop a latent force model in which the parameters of the multivariate

covariance change as a function of the input variable. Thus, the model obtained

allows for the description of highly nonstationary multivariate time series courses.

How to read this thesis

This thesis follows the Alternative Format Thesis allowed by the University of

Manchester thesis submission regulations,2 that consents to incorporate sections

that are in a format suitable for submission for publication in a peer-reviewed

journal. The way in which the thesis has been developed is as follows. The main

document serves as a backbone of a series of contributions already published at

the Annual Conference on Neural Information Processing Systems (NIPS), the

International Conference on Artificial Intelligence and Statistics (AISTATS), a

journal paper at the Journal of Machine Learning Research and a technical report

appearing in Álvarez et al. (2009). Each chapter includes in the introduction a

remark that explains what sections of the chapter have been published. We

then describe the theory involved in that chapter and include an experiment that

illustrates the main ideas developed. At the end of each chapter, we comment

about further experiments that accompany the theory and that are found in

the publications. Reprints of the publications are attached at the end of the

document.

We refer to the publications using the numbers in the list of publications of the

following section. So for example, we will use expressions like “in publication iv”

to refer to the publication [iv] in the list below.

List of publications

The main contributions in the thesis have been presented in the following publi-

cations and a submitted paper.

[i] Mauricio A. Álvarez and Neil D. Lawrence (2008): Sparse Convolved Gaus-

sian Processes for Multi-output Regression, in D. Koller and D. Schuurmans

and Y. Bengio and L. Bottou (Eds), Advances in Neural Information Pro-

cessing Systems 21, pp 57-64, 2009.

2http://www.campus.manchester.ac.uk/researchoffice/graduate/ordinancesandregulations
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[ii] Mauricio A. Álvarez, David Luengo and Neil D. Lawrence. Latent Force

Models, in D. van Dyk and M. Welling (Eds.), Proceedings of The Twelfth

International Conference on Artificial Intelligence and Statistics (AISTATS)

2009, JMLR: W&CP 5, pp. 9-16, Clearwater Beach, Florida, April 16-18,

2009.

[iii] Mauricio A. Álvarez, David Luengo, Michalis K. Titsias and Neil D. Lawrence

(2010): Efficient Multioutput Gaussian Processes through Variational In-

ducing Kernels, in Y. Whye Teh and M. Titterington (Eds.), Proceedings

of The Thirteenth International Conference on Artificial Intelligence and

Statistics (AISTATS) 2010, JMLR: W&CP 9, pp. 25-32, Chia Laguna Re-

sort, Sardinia, Italy, May 13-15, 2010.

[iv] Mauricio A. Álvarez, Jan Peters, Bernhard Schölkopf and Neil D. Lawrence

(2011): Switched latent force models for movement segmentation, in J.

Shawe-Taylor, R. Zemel, C. Williams and J. Lafferty (Eds), Advances in

Neural Information Processing Systems 23, pp 55-63, 2011. See also the

supplementary material accompanying the publication.

[v] Mauricio A. Álvarez and Neil D. Lawrence (2011): “Computationally Effi-

cient Convolved Multiple Output Gaussian Processes”, Journal of Machine

Learning Research 12, pp 1425–1466.

In all publications, Álvarez had the main responsibility in writing a first draft of

the paper and developing the software. Revisions of the writing were incorporated

by the coauthors directly or by Álvarez after discussions with the other authors.

For publication ii, Luengo developed the analytical expression for the covariance

function of the second order latent force model. For publication iii, Luengo

developed the covariance function for a latent force model driven by white noise

and Titsias helped with the description of the variational framework. Publication

iv was supervised by Peters, Schölkopf and Lawrence. All the other publications

were supervised by Lawrence.
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Chapter 2

Covariance functions for

multivariate regression

In chapter 1, we discussed applications of multivariate regression that are en-

countered in machine learning problems, including multitask learning (see Bonilla

et al., 2008, for example). In geostatistics these models are used for jointly pre-

dicting the concentration of different heavy metal pollutants (Goovaerts, 1997).

In statistics more researchers are becoming interested in emulation of multiple

output simulators (see Higdon et al., 2008; Rougier, 2008; Conti and O’Hagan,

2010, for example). In this chapter we provide a general review of structured

covariance/kernel functions for multiple outputs.

There is a huge amount of work in geostatistics focused on constructing valid

covariance functions for predicting spatial varying data. The basic approach is

based on the so called “Linear Model of Coregionalization” (Journel and Hui-

jbregts, 1978; Goovaerts, 1997). Similar methods have been suggested in several

machine learning and statistics related papers, including special type of kernels

proposed as a generalization of the regularization theory to vector-valued func-

tions. We show how some of those methods can be seen as particular cases of the

linear model of coregionalization.

An alternative approach for constructing the covariance function involves a mov-

ing average construction in the form of “Process Convolutions” (Ver Hoef and

Barry, 1998; Higdon, 2002). In a process convolution a latent process is convolved

with output-specific smoothing kernels to produce a valid covariance. The latent

process is usually assumed to be a white noise process. If the latent process fol-

lows a Gaussian process with general covariance function, we will see that the
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2.1. KERNELS FOR MULTIPLE OUTPUTS

linear model of coregionalization and the process convolution framework can be

interpreted as particular cases of this moving-average construction. We refer to

this covariance as the “Convolved Multiple Output Covariance” (CMOC).

Having firstly presented alternatives for constructing multivariate kernel func-

tions, we then embed these kernels in a Gaussian process prior and explain two

important aspects of multivariate Gaussian process regression, namely, how to

perform parameter estimation and prediction for test data. We also briefly re-

view how parameter estimation and prediction is done in research areas such as

geostatistics and statistics.

The chapter is organized as follows. In section 2.1, different methods for con-

structing the kernel for multiple outputs are reviewed, including the linear model

of coregionalization and process convolutions. We then employ the defined co-

variances for multivariate regression with Gaussian process priors in section 2.2.

Finally, in section 2.3, we present an example of multivariate regression in gene

expression data.

Remark . In publication v, we introduced the main idea that appears in section

2.1 and that is the motivation for this chapter. Detailed analysis of related work,

including the linear model of coregionalization in computer emulation, is new,

though. The example of section 2.3 also appears in publication v.

2.1 Kernels for multiple outputs

In geostatistics, prediction over multivariate output data is known as cokriging.

Geostatistical approaches to multivariate modelling are mostly formulated around

the “linear model of coregionalization” (LMC, see, e.g., Journel and Huijbregts,

1978; Wackernagel, 2003). We will first consider this model and discuss how

several recent models proposed in the machine learning and statistics literature

are special cases of the LMC, including approaches to constructing “multitask”

kernels in machine learning introduced from the perspective of regularization

theory (Evgeniou and Pontil, 2004). We also review different alternatives for the

moving average construction of the covariance function, under the generic name

of process convolutions and introduce the model for the covariance function that

is used in the thesis.
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2.1. KERNELS FOR MULTIPLE OUTPUTS

2.1.1 The linear model of coregionalization

In the linear model of coregionalization, the outputs are expressed as linear com-

binations of independent random functions. This is done in such a way that

ensures that the resulting covariance function (expressed jointly over all the out-

puts and the inputs) is a valid positive semidefinite function. Consider a set of

D variables {fd(x)}Dd=1 with x ∈ <p. In the LMC, each variable fd is expressed

as (Journel and Huijbregts, 1978)

fd(x) =

Q∑
q=1

ad,quq(x) + µd,

where µd represents the mean of each process fd(x) and the functions uq(x),

with q = 1, . . . , Q, have mean equal to zero and covariance cov[uq(x), uq′(x
′)] =

kq(x,x
′)δq,q′ , where δq,q′ is the Kronecker delta (δq,q′ = 1 if q = q′ and δq,q′ = 0

if q 6= q′). Therefore, the processes {uq(x)}Qq=1 are independent. We will assume

that µd = 0 for all outputs, unless it is stated otherwise. Some of the basic

processes uq(x) and uq′(x
′) can have the same covariance kq(x,x

′), kq(x,x
′) =

kq′(x,x
′) while remaining orthogonal. A similar expression for {fd(x)}Dd=1 can be

written grouping the functions uq(x) which share the same covariance (Journel

and Huijbregts, 1978; Goovaerts, 1997)

fd(x) =

Q∑
q=1

Rq∑
i=1

aid,qu
i
q(x), (2.1)

where the functions uiq(x), with q = 1, . . . , Q and i = 1, . . . , Rq, have mean

equal to zero and covariance cov[uiq(x), ui
′

q′(x
′)] = kq(x,x

′)δi,i′δq,q′ . Expression

(2.1) means that there are Q groups of functions uiq(x) and, within each group,

functions uiq(x) share the same covariance, but are independent. We assume that

the processes fd(x) are second-order stationary.1 The cross covariance between

any two functions fd(x) and fd′(x) is given in terms of the covariance functions

1The stationarity condition is introduced so that the prediction stage can be realized through
a linear predictor using a single realization of the process (Cressie, 1993). Implicitly, ergodicity
is also assumed. For nonstationary processes, description is done in terms of the so called
variogram functions (Matheron, 1973).
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2.1. KERNELS FOR MULTIPLE OUTPUTS

for uiq(x)

cov[fd(x), fd′(x + h)] =

Q∑
q=1

Q∑
q′=1

Rq∑
i=1

Rq∑
i′=1

aid,qa
i′

d′,q′ cov[uiq(x), ui
′

q′(x + h)],

with h = x−x′ being the lag vector. We refer to the covariance cov[fd(x), fd′(x+

h)] as kfd,fd′ (h). Due to the independence of the functions uiq(x), the above

expression reduces to

kfd,fd′ (h) =

Q∑
q=1

Rq∑
i=1

aid,qa
i
d′,qkq(h) =

Q∑
q=1

bqd,d′kq(h), (2.2)

with bqd,d′ =
∑Rq

i=1 a
i
d,qa

i
d′,q. For the D outputs, equation (2.1) can be expressed in

matrix form as

f(x) =

Q∑
q=1

Aquq(x),

where, for each x, f(x) = [f1(x), . . . , fD(x)]>, Aq ∈ <D×Rq is a matrix with

entries aid,q and uq(x) = [u1
q(x), . . . , u

Rq
q (x)]>. The covariance function for uq(x)

is

cov[uq(x),uq′(x + h)] = kq(h)IRqδq,q′ ,

where IRq ∈ <Rq×Rq is the identity matrix.

The covariance function for the outputs is then given as

cov[f(x), f(x + h)] = E

 Q∑
q=1

Aquq(x)

(
Q∑
q′=1

Aq′uq′(x + h)

)>
=

Q∑
q=1

Q∑
q′=1

Aq E
[
uq(x)u>q′(x + h)

]
A>q′

=

Q∑
q=1

AqA
>
q kq(h). (2.3)
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Equation (2.3) can be written as

Kf ,f (h) =

Q∑
q=1

Bqkq(h), (2.4)

where Kf ,f (h) = cov[f(x), f(x + h)] and Bq = AqA
>
q , with Bq ∈ <D×D is known

as the coregionalization matrix. In general, we denote the covariance of f(x)

as Kf ,f (x,x
′) = cov[f(x), f(x′)]. For the stationary case, it reduces to Kf ,f (h).

The elements of each Bq are the coefficients bqd,d′ appearing in equation (2.2). The

covariance function Kf ,f (h) is positive semidefinite as long as the coregionalization

matrices Bq are positive semi-definite and kq(h) is a valid covariance function. By

definition, matrices Bq fulfill the positive semidefiniteness requirement and several

models for the covariance function kq(h) can be used, for example the squared

exponential covariance function, the Matérn class of covariance functions, among

others (see Rasmussen and Williams, 2006, chap. 4).

Equation (2.1) can be interpreted as a nested structure (Wackernagel, 2003) in

which the outputs fd(x) are first expressed as a linear combination of spatially un-

correlated processes fd(x) =
∑Q

q=1 f
q
d (x), with E[f qd (x)] = 0 and cov[f qd (x), f q

′

d′ (x+

h)] = bqd,d′kq(h)δq,q′ . At the same time, each process f qd (x) can be represented

as a set of uncorrelated functions weighted by the coefficients aid,q, f
q
d (x) =∑Rq

i=1 a
i
d,qu

i
q(x) where again, the covariance function for uiq(x) is kq(h).

The linear model of coregionalization represents the covariance function as the

sum of the products of two covariance functions. One of the covariance functions

models the dependence between the functions, independently of the input vector

x, this is given by the coregionalization matrix Bq, whilst the other covariance

function models the input dependence, independently of the particular set of

functions fd(x), this is the covariance function kq(h). In equation (2.4), the

output covariance for a particular value of the lag vector h, is represented as a

weighted sum of the same set of coregionalization matrices Bq, where the weights

depend on the input x, given by the factors kq(h).

For a number N of input vectors, let fd be the vector of values from the output d

evaluated at X = {xn}Nn=1. If each output has the same set of inputs the system

is known as isotopic. In general, we can allow each output to be associated with

a different set of inputs, X(d) = {x(d)
n }Ndn=1, this is known as heterotopic.2 For

2These names come from geostatistics (Wackernagel, 2003). Heterotopic data is further
classified into entirely heterotopic data, where the variables have no sample locations in common,
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notational simplicity, we restrict ourselves to the isotopic case, but our analysis

can be easily used for heterotopic setups. The covariance matrix for fd is obtained

by expressing equation (2.2) as

cov[fd, fd′ ] =

Q∑
q=1

Rq∑
i=1

aid,qa
i
d′,qKq =

Q∑
q=1

bqd,d′Kq, (2.5)

where Kq ∈ <N×N has entries kq(h), for the different values that h may take for

the particular set X. Define f as f = [f>1 , . . . , f
>
D ]>. The covariance matrix for f

in terms of equation (2.5) can be written as

Kf ,f =

Q∑
q=1

Bq ⊗Kq, (2.6)

with the symbol⊗ representing the Kronecker product between matrices (Brookes,

2005).

Intrinsic coregionalization model

A simplified version of the LMC, known as the intrinsic coregionalization model

(ICM) (see Goovaerts, 1997), assumes that the elements bqd,d′ of the coregional-

ization matrix Bq can be written as bqd,d′ = υd,d′bq. In other words, as a scaled

version of the elements bq which do not depend on the particular output functions

fd(x). Using this form for bqd,d′ , equation (2.2) can be expressed as

cov[fd(x), fd′(x
′)] =

Q∑
q=1

υd,d′bqkq(x,x
′) = υd,d′

Q∑
q=1

bqkq(x,x
′) = υd,d′k(x,x′),

where k(x,x′) =
∑Q

q=1 bqkq(x,x
′) is an equivalent covariance function. The co-

variance matrix for f takes the form

Kf ,f = Υ⊗K, (2.7)

where Υ ∈ <D×D, with entries υd,d′ , and K =
∑Q

q=1 bqKq is an equivalent valid

covariance matrix.

and partially heterotopic data, where the variables share some sample locations. In machine
learning, the partially heterotopic case is sometimes referred to as asymmetric multitask learning
(Xue et al., 2007; Chai, 2010).
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The intrinsic coregionalization model can also be seen as a linear model of core-

gionalization where we have Q = 1. In such case, equation (2.6) takes the form

Kf ,f = A1A
>
1 ⊗K1 = B1 ⊗K1, (2.8)

where the coregionalization matrix B1 has elements b1
d,d′ =

∑R1

i=1 a
i
d,1a

i
d′,1. The

value of R1 determines the rank of the matrix B1.

As pointed out by Goovaerts (1997), the ICM is much more restrictive than the

LMC since it assumes that each basic covariance kq(x,x
′) contributes equally to

the construction of the autocovariances and cross covariances for the outputs.

However, for inference purposes, the inverse of the covariance matrix Kf ,f can be

computed using the properties of the Kronecker product (as along as the input

space follows the isotopic configuration) reducing the computational complexity

involved when compared to the matrix inversion of the full covariance matrix Kf ,f

obtained from LMC. This property is employed by Rougier (2008) to speed-up

the inference process in an emulator for multiple outputs. First, it assumes that

the multiple output problem can be seen as a single output problem considering

the output index as another variable of the input space. Then, the new output

fD(x̃), with x̃ ∈ <p×D and D the set D = {1, . . . , D}, is expressed as a weighted

sum of Q deterministic regressors, {gq(x̃)}Qq=1, plus a Gaussian error term e(x̃)

with covariance κ(x̃, x̃′). The set of regressors explain the mean of the output

process, while the Gaussian error term explains the variance in the output. Both,

the set of regressors and the covariance for the error, are assumed to be separable

in the input space, this is, each regressor gq(x̃) ≈ gq(x)gq(d) and the covariance

κ(x̃, x̃′) = κ(x,x′)κ(d, d′). For isotopic spaces (Rougier (2008) refers to this

condition as regular outputs, meaning outputs that are evaluated at the same

set of inputs X), the mean and covariance for the output fD(x̃), can be obtained

through Kronecker products for the regressors and the covariances involved in the

error term. For inference, the inversion of the necessary terms is accomplished

using properties of the Kronecker product. We will see in the next section that

the model that replaces the set of outputs for a single output as described before,

can be seen as a particular case of the intrinsic coregionalization model (Conti

and O’Hagan, 2010).

It can be shown that if the outputs are considered to be noise-free, prediction using

the intrinsic coregionalization model under an isotopic data case is equivalent to

independent prediction over each output (Helterbrand and Cressie, 1994). This
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circumstance is also known as autokrigeability (Wackernagel, 2003).

Linear Model of Coregionalization in Machine Learning and Statistics

The linear model of coregionalization has already been used in machine learning in

the context of Gaussian processes for multivariate regression, and regularization

theory for multitask learning. It has also been used in statistics for computer

emulation of expensive multivariate computer codes.

Before looking at related work, let us define the parameter space for the LMC. The

set of parameters in the LMC includes the coregionalization matrices, {Bq}Qq=1,

and the parameters associated to the basic covariances kq(x,x
′), that we denote

here as ψq, also called hyperparameters. We use θLMC = {{Bq}Qq=1, {ψq}Qq=1} to

denote the whole set of parameters involved in the LMC or θICM = {B1,ψ1} if

Q = 1.

As we have seen before, the linear model of coregionalization imposes the corre-

lation of the outputs explicitly through the set of coregionalization matrices. A

recurrent idea in the early days of Gaussian processes for multi-output modeling,

within the machine learning literature, was based on the intrinsic coregionaliza-

tion model and assumed B1 = ID. In other words, the outputs were considered to

be conditionally independent given the parameters ψ1. Correlation between the

outputs was assumed to exist implicitly by imposing the same set of hyperparam-

eters ψ1 for all outputs, and estimating those parameters, or directly the kernel

matrix K1, using data from all the outputs (Minka and Picard, 1999; Lawrence

and Platt, 2004; Yu et al., 2005).

In this section, we review more recent approaches for multiple output modeling

that are different versions of the linear model of coregionalization.

Semiparametric latent factor model. The semiparametric latent factor model

(SLFM) proposed by Teh et al. (2005) turns out to be a simplified version of equa-

tion (2.6). In particular, if Rq = 1 (see equation (2.1)), we can rewrite equation

(2.6) as

Kf ,f =

Q∑
q=1

aqa
>
q ⊗Kq,
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where aq ∈ <D×1 with elements {ad,q}Dd=1 and q fixed. With some algebraic

manipulations, that exploit the properties of the Kronecker product, we can write

Kf ,f =

Q∑
q=1

(aq ⊗ IN)Kq(a
>
q ⊗ IN) = (Ã⊗ IN)K̃(Ã> ⊗ IN),

where Ã ∈ <D×Q is a matrix with columns aq, and K̃ ∈ <QN×QN is a block

diagonal matrix with blocks given by Kq.

The functions uq(x) are considered to be latent factors and the semiparametric

name comes from the fact that it is combining a nonparametric model, this is a

Gaussian process, with a parametric linear mixing of the functions uq(x). The

kernel for each basic process q, kq(x,x
′), is assumed to be of Gaussian type with

a different length scale per input dimension. For computational speed up the

informative vector machine (IVM) is employed (Lawrence et al., 2003).

Multi-task Gaussian processes. The intrinsic coregionalization model has

been employed by Bonilla et al. (2008) for multitask learning. We refer to this

approach as multi-task Gaussian processes (MTGP). The covariance matrix is

expressed as Kf ,f (x,x
′) = Kfk(x,x′), with Kf being constrained positive semi-

definite and k(x,x′) a covariance function over inputs. It can be noticed that

this expression is similar to the one in (2.7), when it is evaluated for x,x′ ∈ X.

In Bonilla et al. (2008), Kf (equal to Υ in equation (2.7) or B1 in equation

(2.8)) expresses the correlation between tasks or inter-task dependencies, and

it is represented through a probabilistic principal component analysis (PPCA)

model. In turn, the spectral factorization in the PPCA model is replaced by an

incomplete Cholesky decomposition to keep numerical stability, so that Kf ≈
L̃L̃>, where L̃ ∈ <D×R1 . The authors also refer to the autokrigeability effect

as the cancellation of inter-task transfer (Bonilla et al., 2008). An application of

MTGP for obtaining the inverse dynamics of a robotic manipulator was presented

in Chai et al. (2009).

Multi-output Gaussian processes. The intrinsic coregionalization model

has been also used by Osborne et al. (2008). Matrix Υ in expression (2.7) is

assumed to be of the spherical parametrisation kind, Υ = diag(e)S>S diag(e),

where e gives a description for the length scale of each output variable and S

is an upper triangular matrix whose i-th column is associated with particular
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spherical coordinates of points in <i (for details see Osborne and Roberts, 2007,

sec. 3.4). Function k(x,x′) is represented through a Matérn kernel, where dif-

ferent parametrisations of the covariance allow the expression of periodic and

non-periodic terms. Sparsification for this model is obtained using an IVM style

approach.

Multi-task kernels in regularization theory. Kernels for multiple outputs

have also been studied in the context of regularization theory. The approach

is based mainly on the definition of kernels for multitask learning provided in

Evgeniou and Pontil (2004); Micchelli and Pontil (2005); Evgeniou et al. (2005).

The derivation is based on the theory of kernels for vector-valued functions. Ac-

cording to Evgeniou et al. (2005), the following lemma can be used to construct

multitask kernels,

Lemma. If G is a kernel on T × T and, for every d ∈ D there are prescribed

mappings Φd : X → T such that

kd,d′(x,x
′) = k((x, d), (x′, d′)) = G(Φd(x),Φd′(x

′)), x,x′ ∈ <p, d, d′ ∈ D,

then k(·) is a multitask or multioutput kernel.

A linear multitask kernel can be obtained if we set T = <m, Φd(x) = Cdx with

Φd ∈ <m and G : <m×<m → < as the polynomial kernel G(z, z′) = (z>z′)n with

n = 1, leading to kd,d′(x,x
′) = x>C>d Cd′x

′. The lemma above can be seen as

the result of applying kernel properties to the mapping Φd(x) (see Genton, 2001,

pag. 2). Notice that this corresponds to a generalization of the semiparametric

latent factor model where each output is expressed through its own basic process

acting over the linear transformation Cdx, this is, ud(Φd(x)) = ud(Cdx). In

general, it can be obtained from fd(x) =
∑D

q=1 ad,quq(Φq(x)), where ad,q = 1 if

d = q or zero, otherwise.

Computer emulation. A computer emulator is a statistical model used as a

surrogate for a computationally expensive deterministic model or computer code,

also known as simulator. Gaussian processes have become the preferred statis-

tical model among computer emulation practitioners (for a review see O’Hagan,

2006). Different Gaussian process emulators have been recently proposed to deal

with several outputs (Higdon et al., 2008; Conti and O’Hagan, 2010; Rougier,

2008). In Higdon et al. (2008), the linear model of coregionalization was used to
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model images representing the evolution of the implosion of steel cylinders after

using TNT, and obtained employing the so called Neddemeyer simulation model

(see Higdon et al., 2008, for further details). The input variable x represents

parameters of the simulation model, while the output is an image of the radius

of the inner shell of the cylinder over a fixed grid of times and angles. In the

version of the LMC that the authors employed, Rq = 1, and the Q vectors aq

were obtained as the eigenvectors of a PCA decomposition of the set of training

images.

In Conti and O’Hagan (2010), the intrinsic coregionalization model is employed

for emulating the response of a vegetation model called the Sheffield Dynamic

Global Vegetation Model (SDGVM) (Woodward et al., 1998). Authors refer to

the ICM as the Multiple-Output (MO) emulator. The inputs to the model are

variables related to broad soil, vegetation and climate data, while the outputs

are time series of the index Net Biome Productivity (NBP) measured at different

sites. The NBP index accounts for the residual amount of carbon at a vegetation

site after some natural processes have taken place. In the paper, the authors as-

sume that the outputs correspond to the different sampling time points, so that

D = T , being T the number of time points, while each observation corresponds

to a spatial sampling site.

As we mentioned before, Rougier (2008) introduces an emulator for multiple-

outputs that assumes that the set of output variables can be seen as a single

variable while augmenting the input space with an additional index over the out-

puts. In other words, it considers the output variable as an input variable. Conti

and O’Hagan (2010) refer to the model in Rougier (2008) as the Time input

(TI) emulator. They discussed how the TI model turns out to be a particular

case of the MO model, by using a squared-exponential kernel (see Rasmussen

and Williams, 2006, chapter 4) for computing the entries in the coregionalization

matrix B1.

2.1.2 Process convolutions for multiple outputs

The approaches introduced above involve some form of instantaneous mixing

through a linear weighted sum of independent processes to construct correlated

processes. By instantaneous mixing we mean that the output function f(x) eval-

uated at the input point x only depends on the values of the latent functions

{uq(x)}Qq=1 at the same input x. Instantaneous mixing has some limitations. If
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we wanted to model two output processes in such a way that one process was a

blurred version of the other, we cannot achieve this through instantaneous mix-

ing. We can achieve blurring through convolving a base process with a smoothing

kernel.3 If the base process is a Gaussian process, it turns out that the convolved

process is also a Gaussian process. We can therefore exploit convolutions to con-

struct covariance functions (Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998;

Higdon, 1998, 2002). A recent review of several extensions of this approach for the

single output case is presented in Calder and Cressie (2007). Applications include

the construction of nonstationary covariances (Higdon, 1998; Higdon et al., 1998;

Fuentes, 2002a,b; Paciorek and Schervish, 2004) and spatiotemporal covariances

(Wikle et al., 1998; Wikle, 2002, 2003).

We will first introduce the idea of moving average construction for multivariate

responses as it has traditionally been presented in the statistics and geostatis-

tics literature (Ver Hoef and Barry, 1998; Ver Hoef et al., 2004; Higdon, 2002).

They normally consider convolutions between kernels and white Gaussian noise

processes. We then describe the covariance model used in the thesis, that allows

for convolutions of kernels with more general Gaussian processes. A similar idea

was presented by Fuentes (2002a,b) using discrete convolutions for developing

nonstationary covariances, in the single output case.

Consider again a set of D functions {fd(x)}Dd=1. Each function could be expressed

through a convolution integral between a kernel, {Gd(x)}Dd=1, and a function

{rd(x)}Dd=1,

fd(x) =

∫
X
Gd(x− z)rd(z)dz.

For the integral to exist, it is assumed that the kernel Gd(x) is a continuous

function with compact support (Hörmander, 1983) or square-integrable (Ver Hoef

and Barry, 1998; Higdon, 2002). The kernel Gd(x) is also known as the moving

average function (Ver Hoef and Barry, 1998) or the smoothing kernel (Higdon,

2002).

The function rd(x) is given by rd(x) = ρdwd(x) + adu(x). It is composed of

two elements: a white Gaussian noise random process associated to each output,

wd(x), with mean zero and variance one, and a white Gaussian noise random

3We use kernel to refer to both reproducing kernels and smoothing kernels. Reproducing
kernels are those used in machine learning that conform to Mercer’s theorem. Smoothing kernels
are functions which are convolved with a signal to create a smoothed version of that signal.
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process that is common to all outputs, u(x), also with mean zero and variance

one. We can choose ρd, such that the variance of rd(x) be equal to one. For

example, in Ver Hoef and Barry (1998), ρd =
√

1− a2
d. The processes {wd(x)}Dd=1

and u(x) are assumed to be independent.

The cross-covariance between fd(x) and fd′(x
′) is then given by

cov [fd(x), fd′(x
′)] = E

[∫
X
Gd(x− z)rd(z)dz

∫
X
Gd′(x

′ − z′)rd′(z
′)dz′

]
=

∫
X

∫
X
Gd(x− z)Gd′(x

′ − z′) E [rd(z)rd′(z
′)] dz′dz

= covu [fd(x), fd′(x
′)] + covw [fd(x), fd′(x

′)] δd,d′ ,

where the subscripts u and w appearing in the covariance operator, emphasize

the components of rd(x) and rd′(x) involved in the covariance expression. We

refer to cov [fd(x), fd′(x
′)] as kfd,fd′ (x,x

′), covu [fd(x), fd′(x
′)] as kufd,fd′ (x,x

′) and

covw [fd(x), fd′(x
′)] as kwfd,fd′ (x,x

′). The covariances kufd,fd′ (x,x
′) and kwfd,fd′ (x,x

′)

are given as

kufd,fd′ (x,x
′) = adad′

∫
X
Gd(x− z)Gd′(x

′ − z)dz (2.9)

kwfd,fd(x,x
′) = ρ2

d

∫
X
Gd(x− z)Gd(x

′ − z)dz.

With the equations above, we can indirectly specify a functional form for the co-

variance kfd,fd′ (x,x
′) through a particular choice of the smoothing kernels Gd(x).

The smoothing kernels are usually parameterized functions and we refer to these

parameters as θPC = {θGd}Dd=1, where the subscript PC stands for process convo-

lution. Under the above construction, the covariance function for the vector f(x)

is positive semidefinite, for any fixed values of x = xi and x′ = xj.

In Ver Hoef and Barry (1998), the input space over which the integrals are com-

puted is X = <p. Higdon (2002) depicted a similar construction to the one pre-

sented above, but assuming that the functions rd(x) only included the common

component u(x), so that rd(x) = r(x) = u(x). The input space is partitioned

into disjoint subsets X =
⋂D
d=0Xd, and the latent process u(x) is assumed to be

independent on these separate subspaces. Each function fd(x) is expressed by

fd(x) =

∫
Xd∪X0

Gd(x− z)u(z)dz.
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The functions fd(x) and fd′(x) are dependent within X0, but independent within

Xd and Xd′ .
The approach described so far was introduced to the machine learning community

with the name of “Dependent Gaussian Processes” (DGP) by Boyle and Frean

(Boyle and Frean, 2005a,b) and further developed in Boyle (2007). Similar to

Ver Hoef and Barry (1998), the input space is again X = <p. The components

of the function rd(x), wd(x) and u(x) are considered independently (ρd and ad

are assumed to be one), and additional moving average functions {Hd(x)}Dd=1 are

convolved with the processes wd(x) to allow for a different functional form for the

covariance kfd,fd′ (x,x
′) when d = d′. In this way each output fd(x) follows

fd(x) =

∫
X
Gd(x− z)u(z)dz +

∫
X
Hd(x− z)wd(z)dz,

and the covariance kfd,fd′ (x,x
′) is again given by kufd,fd′ (x,x

′) plus kwfd,fd′ (x,x
′)δd,d′ ,

where kufd,fd′ (x,x
′) follows equation (2.9), with ad = 1 for all outputs, and

kwfd,fd(x,x
′) is

kwfd,fd(x,x
′) =

∫
X
Hd(x− z)Hd(x

′ − z)dz. (2.10)

Additional modeling flexibility is allowed if instead of using a single and common

white noise process u(x), we consider a set of Q independent and common white

noise processes {uq(x)}Qq=1, with zero mean and variance equal to one. Then the

outputs {fd(x)}Dd=1 can be expressed as

fd(x) =

Q∑
q=1

∫
X
Gd,q(x− z)uq(z)dz +

∫
X
Hd(x− z)wd(z)dz,

leading to a covariance kufd,fd′ (x,x
′) given as

kufd,fd′ (x,x
′) =

Q∑
q=1

∫
X
Gd,q(x− z)Gd′,q(x

′ − z)dz.

The covariance kwfd,fd(x,x
′) follows the same expression appearing in equation

(2.10). The parameter vector for the DGP includes the parameters for the kernels

{Gd,q(x)}D,Qd=1,q=1, {θGd,q}D,Qd=1,q=1, and the parameters for the kernels {Hd(x)}Dd=1,

{θHd}Dd=1. We also denote this set of parameters jointly as θPC.
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In Majumdar and Gelfand (2007), a different moving average construction for the

covariance of multiple outputs was introduced. It is obtained as a convolution

over covariance functions in contrast to the process convolution approach where

the convolution is performed over processes. Assuming that the covariances in-

volved are isotropic, Majumdar and Gelfand (2007) show that the cross-covariance

obtained from

cov [fd(x + h), fd′(x)] =

∫
X
kd(h− z)kd′(z)dz,

where kd(h) and kd′(h) are covariances associated to the outputs d and d′, lead

to a valid covariance function for the outputs {fd(x)}Dd=1. If we assume that

the smoothing kernels are not only square integrable, but also positive definite

functions, then the covariance convolution approach turns out to be a particular

case of the process convolution approach (square-integrability might be easier to

satisfy than positive definiteness).

When developing a covariance function for multivariable processes, our aim is to

specify jointly the dependencies over the input space X and over the set of outputs

D. We have seen how in the linear model of coregionalization this compound

dependency is broken in two different components, the coregionalization matrices

Bq, that specify dependencies in the set D independently of X , and the basic

kernels kq(x,x
′), specifying dependencies over X independently of D. Therefore,

the LMC assumption implies that all cross-covariances cov [fd(x), fd′(x
′)] share

the same input dependencies that are allowed by kq(x,x
′). For a large value of

Q, the weighted sum of covariances kq(x,x
′) might indirectly reflect the different

levels of variation in the input space. However, a large value for Q also leads to a

larger parameter space for the vector θLMC, particularly when the system involves

a large number of outputs D. In practice, though, one usually has prior knowledge

about the diverse degrees of variation that the outputs have as functions of x and,

subsequently, selects a set of covariances {kq(x,x′)}Qq=1 that better reflects that

amount of variation. On the other hand, the process convolution framework

attempts to model the variance of the set of outputs by the direct association of

a different smoothing kernel Gd(x) to each output fd(x). By specifying Gd(x),

one can model, for example, the degree of smoothness and the length-scale that

characterizes each output. If each output happens to have more than one degree

of variation (marginally, it is a sum of functions of varied smoothness) one is
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faced with the same situation than in LMC, namely, the need to augment the

parameter space θPC so as to satisfy a required precision. However, due to the

local description of each output that the process convolution performs, it is likely

that the parameter space θPC grows slower than the parameter space for LMC.

Here we have two methods that allows us to specify the degree of variation in each

output fd(x) while leading to a valid covariance function for multiple outputs:

globally, by means of Q underlying covariance functions kq(x,x
′) via the linear

model of coregionalization or locally, through a set of smoothing kernels Gd,q(x)

by way of the process convolution framework.

In this thesis, we employ an extension of the process convolution framework that

lies somewhere between the local and the global methods we described above. We

refer to this extension as the “convolved multiple output covariance” (CMOC)

In a similar way to the linear model of coregionalization, we consider Q groups

of functions, where a particular group q has elements uiq(z), for i = 1, . . . , Rq.

Each member of the group has the same covariance kq(x,x
′), but is sampled

independently. Any output fd(x) is described by

fd(x) =

Q∑
q=1

Rq∑
i=1

∫
X
Gi
d,q(x− z)uiq(z)dz + wd(x) =

Q∑
q=1

f qd (x) + wd(x),

where

f qd (x) =

Rq∑
i=1

∫
X
Gi
d,q(x− z)uiq(z)dz, (2.11)

and {wd(x)}Dd=1 are independent Gaussian processes with mean zero and covari-

ance kwd(x,x
′). We have included the superscript q for f qd (x) in (2.11) to empha-

size the fact that the function depends on the set of latent processes {uiq(x)}Rqi=1.

Notice that in the process convolution formulation, each function wd(x) was a

part of rd(x) and led to the covariance kwfd,fd(x,x
′), which was a function of ei-

ther Gd(x) or both Gd(x) and Hd(x). Here we allow the covariance kwd(x,x
′)

to be any valid covariance function. Importantly, the latent functions uiq(z) are

Gaussian processes with general covariances kq(x,x
′), in contrast to the process

convolution framework is which they were assumed to be white noise Gaussian

processes.
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Under the same independence assumptions used in the linear model of coregion-

alization, the covariance between fd(x) and fd′(x
′) follows

kfd,fd′ (x,x
′) =

Q∑
q=1

kfqd ,f
q

d′
(x,x′) + kwd(x,x

′)δd,d′ , (2.12)

where

kfqd ,f
q

d′
(x,x′) =

Rq∑
i=1

∫
X
Gi
d,q(x− z)

∫
X
Gi
d′,q(x

′ − z′)kq(z, z
′)dz′dz. (2.13)

Specifying Gi
d,q(x−z) and kq(z, z

′) in (2.13), the covariance for the outputs fd(x)

can be constructed indirectly.

Notice that if the smoothing kernels are taken to be the Dirac delta function such

that Gi
d,q(x−z) = aid,qδ(x−z),4 the double integral is easily solved and the linear

model of coregionalization is recovered. On the other hand, if the latent processes

uiq(x) are white Gaussian noise processes with mean zero and variance one, we

recover the process convolution formulation (with Rq = 1),

kfd,fd′ (x,x
′) =

Q∑
q=1

∫
X
Gd,q(x− z)Gd′,q(x

′ − z)dz + kwd(x,x
′).

As well as the covariance across outputs, the covariance between the latent func-

tion, uiq(z), and any given output, fd(x), can be computed,

kfd,uiq(x, z) = cov
[
fd(x), uiq(z)

]
=

∫
X
Gi
d,q(x− z′)kq(z

′, z)dz′. (2.14)

The convolved multiple output covariance can also be seen as a dynamic version

of the linear model of coregionalization: the latent functions are dynamically

combined with the help of the kernel smoothing functions, as opposed to the

static combination of the latent functions in the LMC case. We are interested

in allowing the latent Gaussian processes uiq(x) to go beyond the white noise

assumption for different reasons. First, in several problems in systems biology, the

latent functions represent physical quantities, for example, transcription factor

4We have slightly abused of the delta notation to indicate the Kronecker delta for discrete
arguments and the Dirac function for continuous arguments. The particular meaning should
be understood from the context.
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proteins (Gao et al., 2008; Honkela et al., 2010; Perkins et al., 2006). We expect

a priori that these transcription factors behave smoothly, so that the white noise

assumption would not be correct. Second, from the perspective of dynamical

systems, for which the smoothing kernel corresponds to the impulse response

of a particular system, the latent functions usually have very structured forms

like step responses or sinusoidal waveforms, even piece-wise continuous functions.

Third, even if we do not believe that the convolved multiple output covariance can

represent some physical quantity (the latent function or the dynamical system),

by introducing this more informative or more redundant latent function, we can

propose efficient approximations of the convolved multiple output covariance for

inference with large numbers of outputs and observations. An example of this

approach will be presented in chapter 4.

The parameter space for the convolved multiple output covariance include the

parameters of the moving-average functions and the parameters of the basic co-

variances kq(x,x
′), this is θCMOC = {{θGid,q}

D,Q,Rq
d=1,q=1,i=1, {ψq}Qq=1}.

Murray-Smith and Pearlmutter (2005) introduced the idea of transforming a

Gaussian process prior using a discretized process convolution, fd = Gdu, where

Gd ∈ <N×K is a so called design matrix with elements {Gd(xn, zk)}N,Kn=1,k=1 and

u> = [u(x1), . . . , u(xK)]. Such transformation could be applied for the purposes

of fusing the information from multiple sensors, for solving inverse problems in

reconstruction of images or for reducing computational complexity working with

the filtered data in the transformed space (Shi et al., 2005).

The process convolution framework is mostly based on the assumption that the

latent functions uq(x) are white Gaussian noise processes. A similar model to ours

was proposed by Fuentes (2002a,b), but instead of the continuous convolution,

Fuentes (2002a,b) used a discrete convolution. The purpose in Fuentes (2002a,b)

was to develop a spatially varying covariance for single outputs, by allowing the

parameters of the covariance of a base process to change as a function of the

input domain. We will come back to this type of model in chapter 5.

We have seen that by going beyond the white noise process assumption, we can

link models appearing in the linear model of coregionalization literature and the

process convolution literature. In a similar way, Calder (2003, 2007, 2008) also
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allows more general latent processes, but instead of attempting to compute cross-

covariances in the multiple output setting, she embeds the latent processes into

a Kalman filtering framework, while dependency between the outputs and the

latent functions is given by a discretized convolution. In Calder (2008), two

particulate matter (PM) levels measured in the air (10 µm in diameter and 25

µm in diameter) are modeled as the added influence of coarse and fine particles.

In turn, these coarse and fine particles are modeled as random walks and then

transformed by discrete convolutions to actually represent the levels of PM at 10

µm and 25 µm.

Process convolutions are also closely related to the Bayesian kernel method (Pillai

et al., 2007; Liang et al., 2009) to construct reproducible kernel Hilbert spaces

(RKHS) assigning priors to signed measures and mapping these measures through

integral operators. In particular, define the following space of functions,

F =
{
f
∣∣∣f(x) =

∫
X
G(x, z)γ(dz), γ ∈ Γ

}
,

for some space Γ ⊆ B(X ) of signed Borel measures. In Pillai et al. (2007, propo-

sition 1), the authors show that for Γ = B(X ), the space of all signed Borel

measures, F corresponds to a RKHS. Examples of these measures that appear in

the form of stochastic processes include Gaussian processes, Dirichlet processes

and Lévy processes. In principle, we can extend this framework for the multiple

output case, expresing each output as

fd(x) =

∫
X
Gd(x, z)γ(dz).

An example of a convolved multiple output covariance.

A simple general purpose kernel for multiple outputs based on the convolved mul-

tiple output covariance framework can be constructed assuming that the kernel

smoothing function, Gd,q(x) (with Rq = 1), and the covariance for the latent

function, kq(x,x
′), follow both a Gaussian form. A similar construction using

a Gaussian form for G(x) and a white noise process for u(x) has been used in

Paciorek and Schervish (2004) to propose a nonstationary covariance function in

single output regression. It has also been used in Boyle and Frean (2005a) as an

example of constructing dependent Gaussian processes.
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The kernel smoothing function is given as

Gd,q(τ ) =
Sd,q|Pd|1/2

(2π)p/2
exp

[
−1

2
τ>Pdτ

]
,

where Sd,q is a variance coefficient that depends both on the output d and the

latent function q, and Pd is the precision matrix associated to the particular

output d. The covariance function for the latent process is expressed as

kq(x,x
′) =

|Λq|1/2
(2π)p/2

exp

[
−1

2
(x− x′)

>
Λq (x− x′)

]
, (2.15)

with Λq the precision matrix of the latent function q.

Expressions for the kernels are obtained applying systematically the identity for

the product of two Gaussian distributions. Let N (x|µ,P−1) denote a Gaussian

for x, then

N (x|µ1,P
−1
1 )N (x|µ2,P

−1
2 ) = N (µ1|µ2,P

−1
1 + P−1

2 )N (x|µc,P−1
c ), (2.16)

where µc = (P1 + P2)−1 (P1µ1 + P2µ2) and P−1
c = (P1 + P2)−1. For all inte-

grals we assume that X = <p. Since the Gaussian covariance is stationary, we can

write it as N (x−x′|0,P−1) = N (x′−x|0,P−1) = N (x|x′,P−1) = N (x′|x,P−1).

Using the identity in equation (2.16) twice, we get

kfd,fd′ (x,x
′) =

Q∑
q=1

Sd,qSd′,q
(2π)p/2|Peqv|1/2 exp

[
−1

2
(x− x′)

>
P−1

eqv (x− x′)

]
, (2.17)

where Peqv = P−1
d + P−1

d′ + Λ−1
q . For a large value of the input dimension, p,

the factor 1/[(2π)p/2|Peqv|1/2] in each of the terms above will dominate, making

values go quickly to zero. We can fix this problem, by scaling the outputs using the

factors 1/[(2π)p/4|2P−1
d + Λ−1

q |1/4] and 1/[(2π)p/4|2P−1
d′ + Λ−1

q |1/4]. Each of these

scaling factors correspond to the standard deviations associated to kfd,fd(x,x)

and kfd′ ,fd′ (x,x).

Equally, for the covariance cov [fd(x), uq(x
′)] in equation (2.14), we obtain

kfd,uq(x,x
′) =

Sd,q
(2π)p/2|Pd,q|1/2 exp

[
−1

2
(x− x′)

>
(Pd,q)

−1 (x− x′)

]
, (2.18)

where Pd,q = P−1
d + Λ−1

q . Again, this covariance must be standardized when
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working in higher dimensions.

2.2 Multivariate Gaussian Process Priors

It is important to highlight the fact that once a multivariate Gaussian process

prior has been specified, through the definition of a corresponding valid covariance

function, one can use the traditional Gaussian process methodology for single out-

puts (Rasmussen and Williams, 2006) to perform parameter estimation (section

2.2.1) and model prediction (section 2.2.2).

A Gaussian process is defined as a collection of random variables, such that any

finite number of them follow a joint Gaussian distribution. Section 2.1 described

a series of models for the set of outputs {fd(x)}Dd=1, that led to a valid covariance

function for the vector f(x). As mentioned before, we denote this covariance as

Kf ,f (x,x
′) ∈ <D×D, with elements given by kfd,fd′ (x,x

′), and define the Gaussian

process prior for the vector f(x),

f(x) ∼ GP(µ(x),Kf ,f (x,x
′)),

where µ(x) ∈ <D×1 is a vector that contains the mean functions {µd(x)}Dd=1 of

each output. For a finite number of inputs, X = {xn}Nn=1, the prior distribution

over the vector f = [f>1 , . . . , f
>
D ]> is given as f ∼ N (µ,Kf ,f ) or

f1

f2

...

fD

 ∼ N


µ1

µ2

...

µD

 ,


Kf1,f1 Kf1,f2 · · · Kf1,fD

Kf2,f1 Kf2,f2 · · · Kf2,fD
...

... · · · ...

KfD,f1 KfD,f2 · · · KfD,fD


 ,

where each vector fd = [fd(x1), fd(x2), . . . , fd(xN)]>; µ = [µ>1 ,µ
>
2 , . . . ,µ

>
N ]> with

µd = [µd(x1),µd(x2), . . . ,µd(xN)]>; the covariance matrix Kf ,f ∈ <DN×DN is

a block partitioned matrix with blocks given by Kfd,fd′
, and in turn each block

Kfd,fd′
has entries kfd,fd′ (x,x

′) for all values of X. The kernel function kfd,fd′ (x,x
′)

is obtained with any of the methods introduced in section 2.1. Without loss of

generality, we assume that the vector µ is zero.

In practice, we usually have access to noisy observations, so we model the outputs
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{yd(x)}Dd=1 using

yd(x) = fd(x) + εd(x),

where {εd(x)}Dd=1 are independent white Gaussian noise processes with variance

σ2
d. The marginal likelihood is given as

p(y|X,φ) = N (y|0,Kf ,f + Σ), (2.19)

where y =
[
y>1 ,y

>
2 . . . ,y

>
D

]>
is the set of output functions and each vector yd

has elements {yd(xn)}Nn=1; Σ = Σ ⊗ IN , where Σ ∈ <D×D is a diagonal matrix

with elements {σ2
d}Dd=1 and φ is the set of parameters of the covariance matrix,

including the parameters associated to the covariance function (θLMC, θPC or

θCMOC for the multivariate case) and {σ2
d}Dd=1.

Notice that we have obtained the marginal likelihood in equation 2.19 after inte-

grating out the latent functions uiq(x).

In subsection 2.2.1, we describe how the estimation of the parameter vector φ

is accomplished, using the marginal likelihood in equation (2.19). In subsection

2.2.2, we present prediction for test inputs.

2.2.1 Parameter estimation

In this section we refer to the parameter estimation problem for the models pre-

sented in section 2.1.

In the machine learning literature, the maximization of the marginal likelihood

has become the preferred method among practitioners for estimating parameters.

The method also goes by the names of evidence approximation, type II maximum

likelihood, empirical Bayes, among others (Bishop, 2006).

Our objective function is the logarithm of the marginal likelihood in equation

(2.19),

log p(y|X,φ) = −1

2
y>(Kf ,f + Σ)−1y − 1

2
log |Kf ,f + Σ| − ND

2
log 2π. (2.20)

Parameters φ are obtained by maximizing log p(y|X,φ) with respect to each
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element in φ, using a gradient-descent method. Derivatives follow

∂ log p(y|X,φ)

∂φi
=

1

2
y>K−1

y,y

∂Ky,y

∂φi
K−1

y,yy − 1

2
tr

(
K−1

y,y

∂Ky,y

∂φi

)
, (2.21)

where φi is an element of the vector φ and Ky,y = Kf ,f + Σ.

Another method used for parameter estimation, more common in the geostatis-

tics literature, consists of optimizing an objective function which involves some

empirical measure of the correlation between the functions fd(x), K̂f ,f (h), and

the multivariate covariance obtained using a particular model, Kf ,f (h), (Goulard

and Voltz, 1992; Künsch et al., 1997; Pelletier et al., 2004),

WSS =
N∑
i=1

w(hi) tr

{[(
K̂f ,f (hi)−Kf ,f (hi)

)]2
}
, (2.22)

where w(hi) is a weight coefficient, K̂f ,f (hi) is an experimental covariance ma-

trix and Kf ,f (hi) is the covariance matrix obtained, for example, using the linear

model of coregionalization.5 One of the first algorithms for obtaining θLMC was

proposed by Goulard and Voltz (1992). It assumed that the parameters of the

basic covariance functions kq(h) had been determined a priori and then used a

weighted least squares method to fit the coregionalization matrices. In Pelletier

et al. (2004) the efficiency of other least squares procedures was evaluated exper-

imentally, including ordinary least squares and generalized least squares. Other

more general algorithms in which all the parameters in θLMC are estimated si-

multaneously include simulated annealing (Lark and Papritz, 2003) and the EM

algorithm (Zhang, 2007). Ver Hoef and Barry (1998) also proposed the use of an

objective function like (2.22), to estimate the parameters in θPC.

Both methods described above, the evidence approximation or the least-square

method, give point estimates of the parameter vector φ. Several authors have

5Note that the common practice in geostatistics is to work with variograms instead of co-
variances. A variogram characterizes a general class of random functions known as intrinsic
random functions (Matheron, 1973), which are random processes whose increments follow a
stationary second-order process. For clarity of exposition, we will avoid the introduction of the
variogram and its properties. The interested reader can follow the original paper by Matheron
(1973) for a motivation of their existence, Gneiting et al. (2001) for a comparison between
variograms and covariance functions and Goovaerts (1997) for a definition of the linear model
of coregionalization in terms of variograms.
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employed full Bayesian inference by assigning priors to φ and computing the pos-

terior distribution through some sampling procedure. Examples include Higdon

et al. (2008) and Conti and O’Hagan (2010) under the LMC framework or Boyle

and Frean (2005a) and Calder (2007) under the process convolution approach.

In the thesis, we use the marginal likelihood to find point estimates of the pa-

rameter vector, φ̂. In the case of the LMC, in which the coregionalization matri-

ces must be positive semidefinite, we use an incomplete Cholesky decomposition

Bq = L̃qL̃
>
q , with L̃q ∈ <D×Rq , as suggested in Bonilla et al. (2008). The elements

of the matrices Lq are considered to be part of the vector φ.

2.2.2 Prediction

The predictive distribution for a new set of input vectors X∗ is (Rasmussen and

Williams, 2006)

p(y∗|y,X,X∗, φ̂) = N (y∗|µy∗|y,Ky∗|y
)
, (2.23)

with

µy∗|y = Kf∗,f (Kf ,f + Σ)−1y,

Ky∗|y = Kf∗,f∗ −Kf∗,f (Kf ,f + Σ)−1K>f∗,f + Σ∗,

where we have used Kf∗,f∗ as a compact notation to indicate when the covariance

matrix is evaluated at the inputs X∗, with a similar notation for Kf∗,f .

Once we have provided a model to describe the uncertainty in the predictions,

the next step usually involves making a decision related to the problem at hand

(Bishop, 2006). Decision theory is the mathematical framework that studies how

to make optimal decisions given the uncertainty in the prediction. These optimal

decisions are made by minimizing an expected loss or risk, by taking the average

of a loss function with respect to the predictive distribution (Rasmussen and

Williams, 2006). For the single output case, define L(y∗, ŷ(x∗)) as the loss we

would incur in approximating y∗ (which is the true unknown value) with the

value ŷ(x∗), provided by the model. In practice, we do not know the probability

distribution for y∗, so we use the predictive distribution given by the model to
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average over all values of y∗. The expected loss is then

E[L] =

∫
L(y∗, ŷ(x∗))p(y∗|x∗, data)dy∗.

A common loss function in regression problems is the squared-loss, (y∗− ŷ(x∗))
2.

With this loss function, the risk follows

E[L] =

∫
(y∗ − ŷ(x∗))

2p(y∗|x∗, data)dy∗.

Minimizing the above expression with respect to ŷ(x∗) leads to the following

expression for the optimal prediction

ŷoptimal(x∗) =

∫
y∗p(y∗|x∗, data)dy∗ = Ey∗[y∗],

that corresponds to the mean prediction given by the predictive distribution. In

the multivariate case, it just corresponds to µy∗|y.

In geostatistics, the framework that allows for optimal predictions in the multi-

variate case is known by the general name of cokriging (Goovaerts, 1997). Pre-

diction for a particular output fd(x∗) is obtained as the result of the following

linear estimator,

f̂d(x∗)− µd(x∗) =
D∑
s=1

ns(x∗)∑
αs=1

λαs(x∗) [fs(xαs)− µs(xαs)] ,

where λαs(x∗) are the weights assigned to the output data fs(xαs), µs(xαs) are the

expected values of fs(xαs), and ns(x∗) ≤ N . Cokriging estimators are required

to be unbiased (E[fd(x∗) − f̂d(x∗)] = 0), and minimize the error variance, σ2
E,

between the true value and the estimator prediction,

σ2
E(x∗) = var

[
fd(x∗)− f̂d(x∗)

]
.

The weights λαs(x∗) are those that minimize σ2
E(x∗).

In the cokriging literature, each output function fd(x) is decomposed into a resid-

ual component Rd(x) and a trend component µd(x), fd(x) = Rd(x) + µd(x), ∀d.

Residuals Rd(x) are assumed to be stationary Gaussian processes with mean equal
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zero and covariance kd,d(h), while two different residuals, Rd(x) and Rd′(x), have

cross-covariance kd,d′(h). If the means {µd(x)}Dd=1 are considered to be known

and constants,6 in particular zero, it can be shown that for a matrix of inputs

X∗, the cokriging weights are given as (Goovaerts, 1997),

λ = K−1
f ,f K

>
f∗,f ,

where Kf ,f is a valid positive semidefinite matrix. Predictions for f are then given

as f̂ = λ>f = Kf∗,fK
−1
f ,f f , that matches the mean prediction of the predictive

distribution in equation (2.23), for the case of noise-free observations.

Cokriging can be considered as a non-Bayesian version of prediction with Gaus-

sian processes, in which the predictor is obtained directly from the loss function

(the variance of the error in this case). Contrast this with the Bayesian perspec-

tive of GPs, where the predictive distribution is obtained in a first stage of the

analysis, while the loss function appears at the end, as part of the decision stage.

This difference between Bayesian and non-Bayesian paradigms was highlighted

in Rasmussen and Williams (2006, page 22).

As part of the inference process, we might also be interested in computing the pos-

terior distribution over the latent functions. To keep the notation uncluttered, as-

sumeRq = 1. Let u = [u>1 ,u
>
2 , . . . ,u

>
Q]>, where uq = [uq(x1), uq(x2), . . . , uq(xN)]>,

then the posterior distribution over the latent functions u, p(u|y,X, φ̂) can be

computed as

p(u|y,X, φ̂) = N (u|µu|y,Ku|y), (2.24)

with

µu|y = K>f ,u (Kf ,f + Σ)−1 y,

Ku|y = Ku,u −K>f ,u (Kf ,f + Σ)−1 Kf ,u,

where Ku,u is a block-diagonal matrix with blocks given by Kuq ,uq . In turn, the

elements of Kuq ,uq are given by kq(x,x
′) for {xn}Nn=1. Also Kf ,u is a matrix with

blocks Kfd,uq , where Kfd,uq has entries given by kfd,uq(x,x
′) in equation (2.14).

6This is a special case of cokriging, known as simple cokriging. Different assumptions over
{µd(x)}Dd=1 lead to different cokriging estimators. For other variants of cokriging, the reader is
referred to Goovaerts (1997).
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In the next section, we present an example of multivariate regression with Gaus-

sian processes using the tools developed so far.

2.3 Multivariate regression for gene expression

In this section we present an example in which we compare the linear model of

coregionalization and the convolved multiple output covariance for multivariate

regression in gene expression data.

Microarray technology has made the simultaneous measurement of mRNA from

thousands of genes possible. Transcription is governed by the presence or absence

of transcription factor (TF) proteins that act as switches to turn on and off the

expression of the genes. Most of these methods are based on assuming that there

is an instantaneous linear relationship between the gene expression and the pro-

tein concentration. We compare the performance of the intrinsic coregionalization

model and the convolved GPs for two independent time series or replicates of 12

time points collected hourly throughout Drosophila embryogenesis in wild-type

embryos (Tomancak et al., 2002). For preprocessing the data, we follow Honkela

et al. (2010). We concentrate on a particular transcription factor protein, namely

twi, and the genes associated with it. The information about the network con-

nections is obtained from the ChIP-chip experiments. This particular TF is a

key regulator of mesoderm and muscle development in Drosophila (Zinzen et al.,

2009).

After preprocessing the data, we end up with a dataset of 1621 genes with ex-

pression data for N = 12 time points. It is believed that this set of genes are

regulated by at least the twi transcription factor. For each one of these genes, we

have access to 2 replicates. Each gene is considered to be an output, yd(t), while

the transcription factor is assumed to be a latent function, u(t), that triggers the

expression of the genes. Out of the 1621 genes, we randomly select D = 50 genes

from replicate 1 for training a full multiple output GP model based on either the

LMC framework or the convolved multiple output covariance. The corresponding

50 genes of replicate 2 are used for testing, and results are presented in terms of

the standardized mean square error (SMSE) and the mean standardized log loss

(MSLL) as defined in Rasmussen and Williams (2006).7 The parameters of both

7The definitions for the SMSE and the MSLL we have used here are slightly different from the
ones provided in Rasmussen and Williams (2006). Instead of comparing against a Gaussian with
a global mean and variance computed from all the outputs in the training data, we compare
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the LMC and the convolved GPs are found through the maximization of the log-

marginal likelihood in equation (2.20), by means of a scaled conjugate gradient

procedure, and using only the data from replicate 1. We run the scaled conjugate

gradient routine for 100 iterations. Once we have estimated the hyperparameters

of the covariance function, we test both methods over the outputs in replicate 2,

by conditioning on the outputs of replicate 1. In practice then, we assume indi-

rectly that both replicates are correlated, in the sense that they are realizations

of the same multivariate Gaussian process. We repeated the experiment 10 times

using a different set of 50 genes each time. We also repeated the experiment se-

lecting the 50 genes for training from replicate 2 and the corresponding 50 genes

of replicate 1 for testing. For testing over the genes of replicate 1, we condition

on the genes of replicate 2.

Since we are interested in a reduced representation of the data, we assume that

Q = 1 and Rq = 1, for the LMC and the convolved multiple output GP in

equations (2.1) and (2.12), respectively. For the LMC model, we follow Bonilla

et al. (2008) and assume an incomplete Cholesky decomposition for B1 = L̃1L̃
>
1 ,

where L̃1 ∈ <50×1 and as the basic covariance kq(x,x
′) we assume the squared

exponential covariance function (Rasmussen and Williams, 2006, p. 83). For the

convolved multiple output GP we employ the covariance in equation (2.17), with

the appropriate scaling factors.

Train set Test set Method Average SMSE Average MSLL

Replicate 1 Replicate 2
LMC 0.6069± 0.0294 −0.2687± 0.0594

CMOC 0.4859± 0.0387 −0.3617± 0.0511

Replicate 2 Replicate 1
LMC 0.6194± 0.0447 −0.2360± 0.0696

CMOC 0.4615± 0.0626 −0.3811± 0.0748

Table 2.1: Standardized mean square error (SMSE) and mean standardized log loss (MSLL)
for the gene expression data for 50 outputs. CMOC stands for convolved multiple output
covariance. The experiment was repeated ten times with a different set of 50 genes each time.
Table includes the value of one standard deviation over the ten repetitions. More negative
values of MSLL indicate better models.

Table 2.1 shows the results of both methods over the test set for the two different

replicates. It can be seen that the convolved multiple output covariance (appear-

ing as CMOC in the table), outperforms the LMC covariance both in terms of

SMSE and MSLL.

against a Gaussian with local means and local variances computed from the training data
associated to each output.
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(a) LMC for a short length-scale output
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(b) CMOC for a short length-scale output
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(c) LMC for a long length-scale output
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(d) CMOC for a long length-scale output

Figure 2.1: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216
(second row) using the linear model of coregionalization (figures 2.1(a) and 2.1(c)) and the
convolved multiple-output covariance (figures 2.1(b) and 2.1(d)) with Q = 1 and Rq = 1. The
training data comes from replicate 1 and the testing data from replicate 2. The solid line
corresponds to the predictive mean, the shaded region corresponds to 2 standard deviations of
the prediction. Performances in terms of SMSE and MSLL are given in the title of each figure
and appear also in table 2.2. The adjectives “short” and “long” given to the length-scales in
the captions of each figure, must be understood relative to each other.

Figure 2.1 shows the prediction made over the test set (replicate 2 in this case)

by the two models for two particular genes, namely FBgn0038617 (figure 2.1,

first row) and FBgn0032216 (figure 2.1, second row). The black dots in the

figures represent the gene expression data of the particular genes. Figures 2.1(a)

and 2.1(c) show the response of the LMC and figures 2.1(b) and 2.1(d) show

the response of the convolved multiple output covariance. It can be noticed

from the data that the two genes differ in their responses to the action of the

transcription factor, that is, while gene FBgn0038617 has a rapid decay around
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time 2 and becomes relatively constant for the rest of the time interval, gene

FBgn0032216 has a smoother response within the time frame. The linear model

of coregionalization is driven by a latent function with a length-scale that is shared

across the outputs. Notice from figures 2.1(a) and 2.1(c) that the length-scale

for both responses is the same. On the other hand, due-to the non-instantaneous

mixing of the latent function, the convolved multiple output framework, allows

for the description of each output by using its own length-scale, which gives an

added flexibility for describing the data.

Table 2.2 (first four rows) shows the performances of both models for the genes

of figure 2.1. CMOC outperforms the linear model of coregionalization for both

genes in terms of SMSE and MSLL.

Test replicate Test genes Method SMSE MSLL

Replicate 2
FBgn0038617

LMC 0.2729 −0.6018
CMOC 0.0565 −1.3965

FBgn0032216
LMC 0.7621 −0.0998

CMOC 0.1674 −0.8443

Replicate 1
FBgn0010531

LMC 0.2572 −0.5699
CMOC 0.0446 −1.3434

FBgn0004907
LMC 0.4984 −0.3069

CMOC 0.0971 −1.0841

Table 2.2: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for
the genes in figures 2.1 and 2.2 for LMC and CMOC. Gene FBgn0038617 and gene FBgn0010531
have a shorter length-scale when compared to the length-scales of genes FBgn0032216 and
FBgn0004907.

A similar analysis can be made for figures 2.2(a), 2.2(b), 2.2(c) and 2.2(d). In

this case, the test set is replicate 1 and we have chosen two different genes,

FBgn0010531 and FBgn0004907 with a similar behavior to the ones in figure

2.1. Table 2.2 (last four rows) also highlights the performances of both mod-

els for the genes of figure 2.2. Again, CMOC outperforms the linear model of

coregionalization for both genes and in terms of SMSE and MSLL.

Having said this, we can argue that the performance of the LMC model can be

improved by either increasing the value of Q or the value Rq, or both. For the

intrinsic coregionalization model, we would fix the value of Q = 1 and increase the

value of R1. Effectively, we would be increasing the rank of the coregionalization

matrix B1, meaning that more latent functions sampled from the same covariance

function are being used to explain the data. In a extreme case in which each

output has its own length scale, this translates into equating the number of latent
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(a) LMC for a short length-scale output
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(b) CMOC for a short length-scale output
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(c) LMC for a long length-scale output
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(d) CMOC for a long length-scale output

Figure 2.2: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907
(second row) using the linear model of coregionalization (figures 2.2(a) and 2.2(c)) and the
convolved multiple-output covariance (figures 2.2(b) and 2.2(d)) with Q = 1 and Rq = 1. The
difference with figure 2.1 is that now the training data comes from replicate 2 while the testing
data comes from replicate 1. The solid line corresponds to the predictive mean, the shaded
region corresponds to 2 standard deviations of the prediction. Performances in terms of SMSE
and MSLL are given in the title of each figure.

functions to the number of outputs, or in other words assuming a full rank for

the matrix B1. This leads to the need of estimating the matrix B1 ∈ <D×D, that

might be problematic if D is high. For the semiparametric latent factor model,

we would fix the value of Rq = 1 and increase Q, the number of latent functions

sampled from Q different GPs. Again, in the extreme case of each output having

its own length-scale, we might need to estimate a matrix Ã ∈ <D×D, which could

be problematic for a high value of outputs. In a more general case, we could also

combine values of Q > 1 and Rq > 1. We would need then, to find values of Q

and Rq that fit the different outputs with different length scales.
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Therefore, in the above context, we have seen that the convolved covariance could

offer an explanation of the data through a simpler model or converge to the LMC,

if needed.

2.4 Summary

In this chapter we have presented different alternatives for constructing valid

covariance functions to be used in a multivariate Gaussian process framework.

We introduced the convolved multiple output covariance and saw that it contains

the Linear Model of Coregionalization and the Process Convolutions as particular

cases. We have also specified the elements that we will use in the following

chapters, namely, parameter estimation by maximum likelihood and predictive

posterior distribution.

The linear model of coregionalization can be interpreted as an instantaneous

mixing of latent functions, in contrast to a convolved multiple output framework,

where the mixing is not necessarily instantaneous. Experimental results presented

in publication v showed that there is a benefit in using this non-instantaneous

mixing in terms of predictive precision. This augmented performance was more

noticeable in systems with a presence of some dynamics.

One important question in the process convolution framework and in the con-

volved multiple output covariance is how to choose the kernel smoothing func-

tions {Gd,q}D,Qd=1,q=1. Although, there are non-parametric alternatives (Ver Hoef

and Barry, 1998) as well as plenty of parametric ones (Higdon, 2002), in this thesis

we are interested in dynamical systems, for which the present alternatives are not

suitable. In the next chapter, we will study moving-average functions obtained

from linear differential equations, that will allow us to encode prior knowledge of

the system’s dynamics in the covariance function.
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Chapter 3

Linear Latent force models

In chapter 2 we established a general framework to develop covariance func-

tions for multivariate regression in a Gaussian processes context. We proposed

the convolved multiple output covariance as a method that generalizes different

other alternatives in the literature and that is parameterized in terms of a set of

moving-average functions Gi
d,q(x) and a set of covariances kq(x,x

′). One impor-

tant question for making the approach practical is how to specify the moving-

average functions and the covariances of the latent functions.

It is well known, from the theory of dynamical systems, that there exists a cor-

respondence between a linear differential equation and a convolution transform,

and that this correspondence is established through what is called as the impulse

response of the system. From a mathematical point of view, the impulse response

is better known as the Green’s function and it is a standard method used to solve

differential equations (Griffel, 2002; Rynne and Youngson, 2008).

In this chapter, we motivate the use of Green’s functions as alternatives to

smoothing kernels by introducing a generative model of the noisy outputs, which

we call linear latent force models or simply latent force models (LFM). A latent

force model introduces basic mechanistic principles in the formulation of a tradi-

tional latent variable model. Our motivation is to augment a latent variable model

with the ability to incorporate salient characteristics of the data (for example,

in a mechanical system inertia or resonance), even knowing that the differential

equation from which it is derived does not reflect the real dynamics of the sys-

tem. For example, for a human motion capture dataset, we develop a mechanistic
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model of motion capture that does not exactly replicate the physics of human

movement, but nevertheless captures important features of the movement.

The linear latent force model is a generalization of the work of Lawrence et al.

(2007) and Gao et al. (2008), who encoded first order differential equations in the

covariance function of a multivariate Gaussian process.

In section 3.1, we introduce the linear latent force model as a latent variable

model. We then see how the latent force model translates into a multivariate

Gaussian process with a convolved multiple output covariance in section 3.2. In

section 3.3, we present a second order latent force model for motion capture data.

Finally, section 3.4 presents related work.

Remark . Section 3.1 and 3.3 were originally presented in publication ii. Section

3.2, which connects the latent force model with chapter 2, is new. The section

on related work is also new.

3.1 From latent variables to latent forces

From the perspective of machine learning, the linear latent force model can be seen

as a type of latent variable model. In a latent variable model we may summarize

a high dimensional data set with a reduced dimensional representation. For

example, if our data consists of N points in a D dimensional space we might

seek a linear relationship between the data, Y = [y1, . . . ,yD] ∈ <N×D with

yd ∈ <N×1, and a reduced dimensional representation, U = [u1, . . . ,uQ] ∈ <N×Q
with uq ∈ <N×1, where Q < D. From a probabilistic perspective this involves an

assumption that we can represent the data as

Y = UW> + E, (3.1)

where E = [e1, . . . , eD] is a matrix-variate Gaussian noise: each column, ed ∈
<N×1 (1 ≤ d ≤ D), is a multivariate Gaussian with zero mean and covariance

Σd, this is ed ∼ N (0,Σd). The usual approach, as undertaken in factor analysis

(FA) and principal component analysis (PCA), to dealing with the unknowns

in this model is to integrate out U under a Gaussian prior and optimize with

respect to W ∈ <D×Q (for a non-linear variant of the model it can be convenient

to do this the other way around, this is, integrate out W and optimize U, see for

example Lawrence (2005)). If the data has a temporal nature, then the Gaussian
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prior in the latent space could express a relationship between the rows of U,

utn = Γutn−1 +η, where Γ is a transformation matrix, η is a general noise process,

usually Gaussian, and utn is the n-th row of U, which we associate with time tn.

This is known as the Kalman filter/smoother. Normally the times tn, are taken

to be equally spaced, but more generally we can consider a joint distribution for

p (U|t), with t = [t1 . . . tN ]>, which has the form of a Gaussian process,

p (U|t) =

Q∏
q=1

N (uq|0,Kuq ,uq

)
,

where we have assumed zero mean and independence across the Q dimensions

of the latent space. The GP makes explicit the fact that the latent variables

are functions, {uq(t)}Qq=1, and we have now described them with a process prior.

The elements of the vector uq = [uq(t1), . . . , uq(tN)]>, represent the values of the

function for the q-th dimension at the times given by t. The matrix Kuq ,uq is the

covariance function associated to uq(t) computed at the times given in t.

Such a GP can be readily implemented. Given the covariance functions for

{uq(t)}Qq=1, the implied covariance functions for {yd(t)}Dd=1 are straightforward

to derive. In Teh et al. (2005) this is known as a semiparametric latent factor

model. If the latent functions uq(t) share the same covariance, but are sampled

independently, this is known as the multi-task Gaussian process prediction model

(Bonilla et al., 2008) with a similar model introduced in Osborne et al. (2008).

Both models were introduced in chapter 2 as particular cases of the linear model

of coregionalization. Historically the Kalman filter approach has been preferred,

perhaps because of its linear computational complexity in N . However, recent ad-

vances in sparse approximations have made the general GP framework practical

(see Quiñonero-Candela and Rasmussen, 2005b, for a review).

So far the model described relies on the latent variables to provide the dynamic

information. The novelty here is that we include a further dynamical system

with a mechanistic inspiration. We now use a mechanical analogy to introduce

it. Consider the following physical interpretation of equation (3.1): the latent

functions, uq(t), are Q forces and we observe the displacement of D springs,

yd(t), to the forces. Then we can reinterpret (3.1) as the force balance equation,

Yκ = US>+Ẽ. We have assumed that the forces are acting, for example, through

levers, so that we have a matrix of sensitivities, S ∈ <D×Q, and a diagonal matrix

of spring constants, κ ∈ <D×D, with elements {κd}Dd=1. The original model is
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recovered by setting W> = S>κ−1 and ẽd ∼ N
(
0,κ>Σdκ

)
. The model can be

extended by assuming that the spring is acting in parallel with a damper and

that the system has mass, allowing us to write,

ŸM + ẎV + Yκ = US> + Ê, (3.2)

where M and V are diagonal matrices of masses, {md}Dd=1, and damping co-

efficients, {vd}Dd=1, respectively, Ẏ is the first derivative of Y with respect to

time (with entries {ẏd(tn)} for d = 1, . . . D and n = 1, . . . , N), Ÿ is the second

derivative of Y with respect to time (with entries {ÿd(tn)} for d = 1, . . . D and

n = 1, . . . , N), and Ê is once again a matrix-variate Gaussian noise. Equation

(3.2) specifies a particular type of interaction between the outputs Y and the set

of latent functions U, namely, that a weighted sum of the second derivative for

yd(t), ÿd(t), the first derivative for yd(t), ẏd(t), and yd(t) is equal to the weighted

sum of functions {uq(t)}Qq=1 plus random noise. The second order mechanical

system that this model describes will exhibit several characteristics which are im-

possible to represent in the simpler latent variable model given by (3.1), such as

inertia and resonance. This model is not only appropriate for data from mechan-

ical systems. There are many analogous systems which can also be represented

by second order differential equations, for example Resistor-Inductor-Capacitor

circuits. A unifying characteristic for all these models is that the system is being

forced by latent functions, {uq(t)}Qq=1. Hence, we refer to them as latent force

models.

One way of thinking about this model is to consider puppetry. A marionette

is a representation of a human (or animal) controlled by a limited number of

inputs through strings (or rods) attached to the character. This limited number

of inputs can lead to a wide range of character movements. In the model, the

data is the movements of the marionette, and the latent forces are the inputs to

the system from the puppeteer.

3.2 From latent forces to convolved covariances

In the last section we provided a general description of the latent force model

idea and commented how it compares to previous models in the machine learning

and statistics literature. In this section we specify the operational procedure
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to obtain the Gaussian process model related to the outputs. We illustrate the

methodology using a first-order latent force model, for which we assume there are

no masses associated to the outputs and the damper constants are equal to one.

We then generalize the operational procedure for latent force models of higher

order and multidimensional inputs.

3.2.1 First-order Latent Force Model

Assume a simplified latent force model, for which only the first derivative of the

outputs is included. This is a particular case of equation (3.2), with masses equal

to zero and damper constants equal to one. With these assumptions, equation

(3.2) can be written as

Ẏ + Yκ = US> + Ê. (3.3)

Individual elements in equation (3.3) follow

dyd(t)

dt
+ κdyd(t) =

Q∑
q=1

Sd,quq(t) + êd(t). (3.4)

Given the parameters {κd}Dd=1 and {Sd,q}D,Qd=1,q=1, the uncertainty in the outputs is

given by the uncertainty coming from the set of functions {uq(t)}Qq=1 and the noise

êd(t). Strictly speaking, this equation belongs to a more general set of equations

known as stochastic differential equations (SDE) that are usually solved using

special techniques from stochastic calculus (Øksendal, 2003). The representation

used in equation (3.4) is more common in physics, where it receives the name of

Langevin equations (Reichl, 1998, p. 251-254). For the simpler equation (3.4),

the solution is found using standard calculus techniques and is given as

yd(t) = yd(t0)e−κdt +

Q∑
q=1

Sd,qGd[uq](t) + Gd[êd](t), (3.5)

where yd(t0) correspond to the value of yd(t) for t = t0 (or the initial condition)

and Gd is a linear integral operator that follows

Gd[uq](t) = fd(t, uq(t)) =

∫ t

0

e−κd(t−τ)uq(τ)dτ .
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The integral operation corresponds to a convolution transform and we can im-

mediately recognize the analogy with equation (2.11), with Rq = 1, where the

smoothing kernel is given by Gd(x − z) = e−κd(x−z). Notice that the smoothing

kernel here does not depend on parameters related to the latent function, uq(t).

However, the sensitivity coefficient Sd,q could be easily incorporated into the mov-

ing average function, and we would have Gd,q(x− z) = Sd,qe
−κd(x−z).

Our noise model Gd[êd](t) in equation (3.5) has a particular form depending on the

linear operator Gd. For example, assuming a white noise process prior for ed(t),

it can be shown that the process Gd[êd](t) corresponds to the Ornstein-Uhlenbeck

(OU) process (Reichl, 1998). In what follows, we will allow the noise model to

be a more general process and we denote it by wd(t). It could be an independent

Gaussian process as in chapter 2, a noise process, or even both. For the current

formulation, we also assume that the initial conditions {yd(t0)}Dd=1 are zero, so

that we can write again equation (3.5) as

yd(t) =

Q∑
q=1

Sd,qGd[uq](t) + wd(t).

We assume that the latent functions {uq(t)}Qq=1 are independent and each of them

follows a Gaussian process prior, this is, uq(t) ∼ GP(0, kuq ,uq(t, t
′)). Following a

similar framework to the one exposed in chapter 2, {yd(t)}Dd=1 correspond to a

Gaussian process with covariances

kyd,yd′ (t, t
′) = kfd,fd′ (t, t

′) + kwd,wd′ (t, t
′)δd,d′ ,

where kfd,fd′ (t, t
′) is given as

kfd,fd′ (t, t
′) =

Q∑
q=1

Sd,qSd′,qkfqd ,f
q

d′
(t, t′).

Furthermore, the covariance kfqd ,f
q

d′
(t, t′) is equal to

kfqd ,f
q

d′
(t, t′) =

∫ t

0

e−κd(t−τ)

∫ t′

0

e−κd′ (t
′−τ ′)kuq ,uq(τ, τ

′)dτ ′dτ. (3.6)

Notice that this equation has the same form than equation (2.13), used to estab-

lish the basic covariance in the convolved multiple output covariance framework.
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In our current framework, the form for the function kuq ,uq(t, t
′) must be such that

we can solve both integrals in equation (3.6) and find an analytical expression

for the covariance kfd,fd′ (t, t
′). In this chapter, we assume that the covariance

for each latent force uq(t) follows the squared-exponential (SE) form (Rasmussen

and Williams, 2006)

kuq ,uq(t, t
′) = exp

(
−(t− t′)2

`2
q

)
, (3.7)

where `q is known as the length-scale. We can compute the covariance kfqd ,f
q

d′
(t, t′)

obtaining (Lawrence et al., 2007)

kfqd ,f
q

d′
(t, t′) =

√
π`q
2

[hd′,d(t
′, t) + hd,d′(t, t

′)], (3.8)

where

hd′,d(t
′, t) =

exp(ν2
q,d′)

κd + κd′
exp(−κd′t′)

{
exp(κd′t)

×
[
erf

(
t′ − t
`q
− νq,d′

)
+ erf

(
t

`q
+ νq,d′

)]
− exp(−κdt)

[
erf

(
t′

`q
− νq,d′

)
+ erf(νq,d′)

]}
,

with erf(x) the real valued error function, erf(x) = 2√
π

∫ x
0

exp(−y2)dy, and νq,d =

`qκd/2.

The covariance function in equation (3.8) is nonstationary. For the stationary

regime, the covariance function can be obtained by writing t′ = t+ τ and taking

the limit as t tends to infinity. This is, kSTAT
fqd ,f

q

d′
(τ) = limt→∞ kfqd ,f

q

d′
(t, t + τ). The

stationary covariance could also be obtained making use of the power spectral

density for the stationary processes uq(t), Uq(ω) and the transfer function H(ω)

associated to h(t−s) = e−κd(t−s), the impulse response of the first order dynamical

system. Then applying the convolution property of the Fourier transform to

obtain the power spectral density of fd(t), Fd(ω) and finally using the Wiener-

Khinchin theorem to find the solution for fd(t) (Shanmugan and Breipohl, 1988).

Due to the independence between uq(t) and wd(t), the cross-covariance between
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the output yd(t) and the latent force uq(t) reduces to kfd,uq(t, t
′), given as

kfd,uq(t, t
′) =

√
π`qSd,q

2
exp(ν2

q,d) exp(−κd(t− t′))

×
[
erf

(
t− t′
`q
− νq,d

)
+ erf

(
t′

`q
+ νq,d

)]
.

3.2.2 Higher-order Latent Force Models

In general, a latent force model of order M can be described by the following

equation

M∑
m=0

Dm[Y]Am = US> + Ê, (3.9)

where Dm is a linear differential operator such that Dm[Y] is a matrix with

elements given by Dmyd(t) = dmyd(t)
dmt

and Am is a diagonal matrix with elements

Am,d that weights the contribution of Dmyd(t).
We follow the same procedure described in section 3.2.1 for the model in equation

(3.9) with M = 1. Each element in expression (3.9) can be written as

DM0 yd =
M∑
m=0

Am,dDmyd(t) =

Q∑
q=1

Sd,quq(t) + êd(t), (3.10)

where we have introduced a new operator DM0 that is equivalent to applying

the weighted sum of operators Dm. For a homogeneous differential equation in

(3.10), this is uq(t) = 0 for q = 1, . . . , Q and êd(t) = 0, and a particular set of

initial conditions {Dmyd(t0)}M−1
m=0 , it is possible to find a linear integral operator

Gd associated to DM0 that can be used to solve the non-homogeneous differential

equation. The linear integral operator is defined as

Gd[u](t) = fd(t, u(t)) =

∫
T
Gd(t, τ)u(τ)dτ, (3.11)

where Gd(t, s) is known as the Green’s function associated to the differential oper-

ator DM0 , u(t) is the input function for the non-homogeneous differential equation
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and T is the input domain. The particular relation between the differential op-

erator and the Green’s function is given by

DM0 [Gd(t, s)] = δ(t− s), (3.12)

with s fixed, Gd(t, s) a fundamental solution that satisfies the initial conditions

and δ(t − s) the Dirac delta function (Griffel, 2002). Strictly speaking, the dif-

ferential operator in equation (3.12) is the adjoint for the differential operator

appearing in equation (3.10). For a more rigorous introduction to Green’s func-

tions applied to differential equations, the interested reader is referred to Roach

(1982). In the signal processing and control theory literature, the Green’s func-

tion is known as the impulse response of the system. Following the general latent

force model framework, we write the outputs as

yd(t) =

Q∑
q=1

Sd,qGd[uq](t) + wd(t),

where wd(t) is again an independent process associated to each output. We

assume once more that the latent forces follow independent Gaussian process

priors with zero mean and covariance kuq ,uq(t, t
′). The covariance for the outputs

kyd,yd′ (t, t
′) is given as kfd,fd′ (t, t

′) + kwd,wd′ (t, t
′)δd,d′ , with kfd,fd′ (t, t

′) equal to

kfd,fd′ (t, t
′) =

Q∑
q=1

Sd,qSd′,q

∫
T

∫
T ′
Gd(t− τ)Gd′(t

′ − τ ′)kuq ,uq(τ, τ ′)dτ ′dτ (3.13)

=

Q∑
q=1

Sd,qSd′,qkfqd ,f
q

d′
(t, t′),

and kfqd ,f
q

d′
(t, t′) following

kfqd ,f
q

d′
(t, t′) =

∫
T

∫
T ′
Gd(t− τ)Gd′(t

′ − τ ′)kuq ,uq(τ, τ ′)dτ ′dτ. (3.14)

Learning and inference for the higher-order latent force model is done as ex-

plained in subsections 2.2.1 and 2.2.2, respectively. The Green’s function is de-

scribed by a parameter vector θGd and with the length-scales {ψq}Qq=1 = {`q}Qq=1

describing the latent GPs, the vector of hyperparameters is given as θLFM =

{θGd}Dd=1, {Sd,q}D,Qd=1,q=1, {ψq}Qq=1}. The parameter vector θLFM is estimated by
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maximizing the logarithm of the marginal likelihood in equation (2.20), where the

elements of the matrix Kf ,f are computed using expression (3.13) with kfqd ,f
q

d′
(t, t′)

given by (3.14). For prediction we use expression (2.23) and the posterior distri-

bution is found using expression (2.24), where the elements of the matrix Kf ,u,

kfd,uq(t, t
′) = kfqd ,uq(t, t

′), are computed using

Sd,q

∫
T
Gd(t− τ)kuq ,uq(τ, t

′)dτ. (3.15)

3.2.3 Multidimensional inputs

In the sections above we have introduced latent force models for which the input

variable is one-dimensional. For higher-dimensional inputs, x ∈ <p, we can use

linear partial differential equations to establish the dependency between the latent

forces and the outputs. The initial conditions turn into boundary conditions,

specified by a set of functions that are linear combinations of yd(x) and its lower

derivatives, evaluated at a set of specific points of the input space. Inference and

learning is done in a similar way to the one-input dimensional latent force model.

Once the Green’s function associated to the linear partial differential operator has

been established, we employ similar equations to (3.14) and (3.15) to compute

kfd,f ′d(x,x
′) and kfd,uq(x,x

′) and the hyperparameters appearing in the covariance

function are estimated by maximizing the marginal likelihood.

3.3 A Latent Force Model for Motion Capture

Data

In section 3.1 we introduced the analogy of a marionette’s motion being controlled

by a reduced number of forces. Human motion capture data consists of a skeleton

and multivariate time courses of angles which summarize the motion. This motion

can be modelled with a set of second order differential equations which, due to

variations in the centers of mass induced by the movement, are non-linear. The

simplification we consider for the latent force model is to linearize these differential

equations, resulting in the following second order system,

md
d2yd(t)

dt2
+ υd

dyd(t)

dt
+ κdyd(t) =

Q∑
q=1

Sd,quq(t) + êd(t). (3.16)
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Whilst (3.16) is not the correct physical model for our system, it will still be

helpful when extrapolating predictions across different motions, as we shall see

later. Note also that, although similar to (3.4), the dynamic behavior of this

system is much richer than that of the first order system, since it can exhibit

inertia and resonance. In what follows, we will assume without loss of generality

that the masses are equal to one.

For the motion capture data, yd(t) corresponds to a given observed angle over

time, and its derivatives represent angular velocity and acceleration. The system

is summarized by the undamped natural frequency, ω0d =
√
κd, and the damping

ratio, ζd = 1
2
υd/
√
κd. Systems with a damping ratio greater than one are said

to be overdamped, whereas underdamped systems exhibit resonance and have a

damping ratio less than one. For critically damped systems ζd = 1, and finally,

for undamped systems (this is no friction) ζd = 0.

Ignoring the initial conditions, the solution of (3.16) is given by the integral

operator of equation (3.11), with Green’s function

Gd(t, s) =
1

ωd
exp(−αd(t− s)) sin(ωd(t− s)), (3.17)

where ωd =
√

4κd − υ2
d/2 and αd = υd/2.

According to the general framework described in section 3.2.2, the covariance

function between the outputs is obtained by solving expression (3.14), where

kuq ,uq(t, t
′) follows the SE form in equation (3.7). Solution for kfqd ,f

q

d′
(t, t′) is then

given as (Álvarez et al., 2009)

K0

[
hq(γ̃d′ , γd, t, t

′) + hq(γd, γ̃d′ , t
′, t) + hq(γd′ , γ̃d, t, t

′) + hq(γ̃d, γd′ , t
′, t)

− hq(γ̃d′ , γ̃d, t, t
′)− hq(γ̃d, γ̃d′ , t′, t)− hq(γd′ , γd, t, t

′)− hq(γd, γd′ , t′, t)
]
,

where K0 = `q
√
π/8ωdωd′ , γd = αd + jωd and γ̃d = αd − jωd, and the functions

hq(γ̃d′ , γd, t, t
′) follow

hq(γd′ , γd, t, t
′) =

Υq(γd′ , t
′, t)− e−γdtΥq(γd, t

′, 0)

γd + γd′
,
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with Υq(γd′ , t, t
′)

2e

„
`2qγ

2
d′

4

«
e−γd′ (t−t

′) − e
„
− (t−t′)2

`2q

«
w(jzd′,q(t))

− e
„
− (t′)2

`2q

«
e(−γd′ t)w(−jzd′,q(0)), (3.18)

and zd′,q(t) = (t− t′)/`q − (`qγd′)/2. Note that zd′,q(t) ∈ C, and w(jz) in (3.18),

for z ∈ C, denotes Faddeeva’s function w(jz) = exp(z2)erfc(z), where erfc(z) is

the complex version of the complementary error function, erfc(z) = 1− erf(z) =
2√
π

∫∞
z

exp(−v2)dv. Faddeeva’s function is usually considered the complex equiv-

alent of the error function, since |w(jz)| is bounded whenever the imaginary part

of jz is greater or equal than zero, and is the key to achieving a good numerical

stability when computing (3.18) and its gradients.

Similarly, the cross-covariance between latent functions and outputs in equation

(3.15) is given by

kfqd ,uq(t, t
′) =

`qSd,q
√
π

j4ωd
[Υq(γ̃d, t, t

′)−Υq(γd, t, t
′)].

Motion Capture data

Our motion capture data set is from the CMU motion capture data base.1 We

considered 3 balancing motions (18, 19, 20) from subject 49. The subject starts

in a standing position with arms raised, then, over about 10 seconds, he raises

one leg in the air and lowers his arms to an outstretched position. Of interest to

us was the fact that, whilst motions 18 and 19 are relatively similar, motion 20

contains more dramatic movements. We were interested in training on motions

18 and 19 and testing on the more dramatic movement to assess the model’s

ability to extrapolate. The data was down-sampled by 32 (from 120 frames per

second to just 3.75) and we focused on the subject’s left arm. For the left arm,

we chose D = 9 outputs including the humerus (X, Y and Z rotations), the radius

(X rotation), the wrist (the Y rotation), the hand (X and Z rotations), and the

thumb (X and Z rotations). The number of latent forces is fixed to Q = 2.

Our objective was to reconstruct the movement of this arm for motion 20 given

the angles of the humerus and the parameters learned from motions 18 and 19

1The CMU Graphics Lab Motion Capture Database was created with funding from NSF
EIA-0196217 and is available at http://mocap.cs.cmu.edu.
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using two latent functions. First, we train the second order differential equation

latent force model on motions 18 and 19, treating the sequences as independent,

but sharing parameters (this is, the damping coefficients and natural frequencies

of the two differential equations associated with each angle were constrained to

be the same). The training is done by maximizing the log-marginal likelihood

in equation (2.20). Once the parameters are learned, we use them for testing

the extrapolation ability of the model over movement 20. For the test data, we

condition on the observations of the humerus orientation to make predictions for

the rest of the arm’s angles.

For comparison, we considered a regression model that directly predicts the angles

of the arm given the orientation of the humerus using standard independent

GPs with SE covariance functions. A similar setup is used, this is, we learn

hyperparameters for 6 independent GPs, having as inputs the humerus’ angle

rotations (three rotations) of motions 18 and 19. For testing, we use the three

angles of humerus for motion 20, and predict over the 6 other outputs. Results

are summarized in table 3.1, with some example plots of the tracks of the angles

given in figure 3.1.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09

Table 3.1: Root mean squared (RMS) angle error for prediction of the left arm’s configuration
in the motion capture data. Prediction with the latent force model outperforms the prediction
with regression for all apart from the radius’s angle.

In the next section, we present related work of differential equations in statistics

and machine learning.

3.4 Related work

Differential equations are the cornerstone in a diverse range of engineering fields

and applied sciences. However, their use for inference in statistics and machine
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Figure 3.1: Predictions from the latent force model (solid line, grey error bars) and from direct
regression from the humerus angles (crosses with stick error bars). For these examples noise is
high due to the relatively small length of the bones. Despite this the latent force model does
a credible job of capturing the angle, whereas direct regression with independent GPs fails to
capture the trends.

learning has been less studied. The main field in which they have been used is

known as functional data analysis (Ramsay and Silverman, 2005).

From the frequentist statistics point of view, the literature in functional data

analysis has been concerned with the problem of parameter estimation in differ-

ential equations (Poyton et al., 2006; Ramsay et al., 2007): given a differential

equation with unknown coefficients {Am}Mm=0, how do we use data to fit those

parameters? Notice that there is a subtle difference between those techniques and

the latent force model. While these parameter estimation methods start with a

very accurate description of the interactions in the system via the differential

equation (the differential equation might even be non-linear as in Perkins et al.
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(2006)), in the latent force model, we use the differential equation as part of the

modeling problem: the differential equation is used as a way to introduce prior

knowledge over a system for which we do not know the real dynamics, but for

which we hope, some important features of that dynamics could be expressed.

Having said that, we review some of the parameter estimation methods because

they also deal with differential equations with an uncertainty background.

Classical approaches to fit parameters θ of differential equations to observed

data include numerical approximations of initial value problems and collocation

methods (Ramsay et al. (2007) and Brewer et al. (2008) provide reviews and

detailed descriptions of additional methods).

The solution by numerical approximations include an iterative process in which

given an initial set of parameters θ0 and a set of initial conditions y0, a numer-

ical method is used to solve the differential equation. The parameters of the

differential equation are then optimized by minimizing an error criterion between

the approximated solution and the observed data. For exposition, we assume in

equation (3.10) that D = 1, Q = 1 and S1,1 = 1. We are interested in finding

the solution y(t) to the following differential equation, with unknown parameters

θ = {Am}Mm=0,

DM0 y(t) =
M∑
m=0

AmDmy(t) = u(t),

In the classical approach, we assume that we have access to a vector of initial

conditions, y0, and data for u(t), u. We start with an initial guess for the

parameter vector θ0 and solve numerically the differential equation to find a

solution ỹ. An updated parameter vector θ̃ is obtained by minimizing

E(θ) =
N∑
n=1

‖ỹ(tn)− y(tn)‖.

through any gradient descent method. To use any of those methods, we must be

able to compute ∂E(θ)/∂θ, which is equivalent to compute ∂y(t)/∂θ. In general,

when we do not have access to ∂y(t)/∂θ, we can compute it using what is known

as the sensitivity equations (see Bard, 1974, chapter 8, for detailed explanations),

which are solved along with the ODE equation that provides the partial solution

ỹ. Once a new parameter vector θ̃ has been found, the same steps are repeated
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until some convergence criterion is satisfied. If the initial conditions are not

available, they can be considered as additional elements of the parameter vector

θ and optimized in the same gradient descent method.

In collocation methods, the solution of the differential equation is approximated

using a set of basis functions, {φi(t)}Ji=1, this is y(t) =
∑J

i=1 βiφi(t). The basis

functions must be sufficiently smooth so that the derivatives of the unknown func-

tion, appearing in the differential equation, can be obtained by differentiation of

the basis representation of the solution, this is, Dmy(t) =
∑
βiDmφi(t). Colloca-

tion methods also use an iterative procedure for fitting the additional parameters

involved in the differential equation. Once the solution and its derivatives have

been approximated using the set of basis functions, minimization of an error cri-

teria is used to estimate the parameters of the differential equation. Principal

differential analysis (PDA) (Ramsay, 1996) is one example of a collocation method

in which the basis functions are splines. In PDA, the parameters of the differen-

tial equation are obtained by minimizing the squared residuals of the higher order

derivative DMy(t) and the weighted sum of derivatives {Dmy(t)}M−1
m=0 , instead of

the squared residuals between the approximated solution and the observed data.

An example of a collocation method augmented with Gaussian process priors

was introduced by Graepel (2003). Graepel starts with noisy observations, ŷ(t),

of the differential equation DM0 y(t), such that ŷ(t) ∼ N (DM0 y(t), σy). The solu-

tion y(t) is expressed using a basis representation, y(t) =
∑
βiφi(t). A Gaus-

sian prior is placed over β = [β1, . . . , βJ ], and its posterior computed under

the above likelihood. With the posterior over β, the predictive distribution for

ŷ(t∗) can be readily computed, being a function of the matrix DM0 Φ with ele-

ments {DM0 φi(tn)}N,Jn=1,i=1. It turns out that products DM0 Φ
(DM0 Φ

)>
that appear

in this predictive distribution have individual elements that can be written as∑J
i=1DM0 φi(tn)DM0 φi(tn′) = DM0,tDM0,t′

∑J
i=1 φi(tn)φi(tn′) or, using a kernel repre-

sentation for the inner products k(tn, tn′) =
∑J

i=1 φi(tn)φi(tn′), as kDM0,t,DM0,t′
(tn, tn′),

where this covariance is obtained by taking DM0 derivatives of k(t, t′) with respect

to t and DM0 derivatives with respect to t′. In other words, the result of the dif-

ferential equation DM0 y(t) is assumed to follow a Gaussian process prior with co-

variance kDM0,t,DM0,t′
(t, t′). An approximated solution ỹ(t) can be computed through

the expansion ỹ(t) =
∑N

n=1 αnkDM0,t′
(t, tn), where αn is an element of the vector

(KDM0,t,DM0,t′
+ σyIN)−1ŷ, where KDM0,t,DM0,t′

is a matrix with entries kDM0,t,DM0,t′
(tn, tn′)
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and ŷ are noisy observations of DM0 y(t).

Although, we presented the above methods in the context of linear ODEs, solu-

tions by numerical approximations and collocation methods are applied to non-

linear ODEs as well.

Gaussian processes have been used as models for systems identification (Solak

et al., 2003; Kocijan et al., 2005; Thompson, 2009). In Solak et al. (2003), a

non-linear dynamical system is linearized around an equilibrium point by means

of a Taylor series expansion (Thompson, 2009),

y(t) =
∞∑
j=0

y(j)(a)

j!
(t− a)j,

with a the equilibrium point. For a finite value of terms, the linearization above

can be seen as a regression problem in which the covariates correspond to the

terms (t − a)j, and the derivatives y(j)(a) as regression coefficients. The deriva-

tives are assumed to follow a Gaussian process prior with a covariance function

that is obtained as k(j,j′)(t, t′), where the superscript j indicates how many deriva-

tive of k(t, t′) are taken with respect to t and the superscript j′ indicates how

many derivatives of k(t, t′) are taken with respect to t′. Derivatives are then es-

timated a posteriori through standard Bayesian linear regression. An important

consequence of including derivative information in the inference process is that

the uncertainty in the posterior prediction is reduced as compared to using only

function observations. This aspect of derivative information have been exploited

in the theory of computer emulation to reduce the uncertainty in experimental

design problems (Morris et al., 1993; Mitchell and Morris, 1994).

Gaussian processes have also been used to model the output y(t) at time tk as a

function of its L previous samples {y(t−tk−l)}Ll=1, a common setup in the classical

theory of systems identification (Ljung, 1999). The particular dependency y(t) =

g({y(t− tk−l)}Ll=1), where g(·) is a general non- linear function, is modelled using

a Gaussian process prior, and the predicted value for the output y∗(tk) is used

as a new input for multi-step ahead prediction at times tj, with j > k (Kocijan

et al., 2005). Uncertainty about y∗(tk) can also be incorporated for predictions

of future output values (Girard et al., 2003).

There has been a recent interest in introducing Gaussian processes in the state

space formulation of dynamical systems (Ko et al., 2007; Deisenroth et al., 2009;

Turner et al., 2010) for the representation of the possible nonlinear relationships
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between the latent space, and between the latent space and the observation space.

Going back to the formulation of the dimensionality reduction model, we have

utn = g1(utn−1) + η,

ytn = g2(utn) + ε,

where η and ξ are noise processes and g1(·) and g2(·) are general non-linear

functions. Usually g1(·) and g2(·) are unknown, and research on this area has fo-

cused on developing a practical framework for inference when assigning Gaussian

process priors to both functions.

Finally, it is important to highlight here that in chapter 2 we introduced the

work of Calder (Calder, 2003, 2007, 2008) as an alternative to multiple-output

modeling. Her work can be seen in the context of state-space models,

utn = utn−1 + η,

ytn = Gtnutn + ε,

where ytn and utn are related through a discrete convolution over an independent

spatial variable. This is, for a fixed tn, ytnd (s) =
∑

q

∑
iG

tn
d (s − zi)u

tn
q (zi) for a

grid of I spatial inputs {zi}Ii=1.

3.5 Summary

In this chapter we introduced the latent force model. A latent force model com-

bines linear differential equations with Gaussian processes to formulate a proba-

bilistic generative model of the data.

The moving-average functions Gd(x) from chapter 2 were chosen in this chapter

as the Green’s functions associated to several differential equations. This is an

example of how we may introduce prior knowledge into the convolved multiple

output covariance formulation, namely, through the specification of a linear differ-

ential equation. An important point here is that we actually construct a kernel for

multiple outputs that encodes dynamical interactions between different systems,

allowing the use of non-parametric methods for prediction.

In some biology-oriented applications the differential equation is not a direct func-

tion of the latent force u(t), but of a non-linear transformation of u(t), g(u(t)).
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Although, from the functional perspective, the solution for fd(t) is still a convo-

lution transform, the joint process {fd(t)}Dd=1 is not a Gaussian process anymore

due to the non-linearity g(·). In those cases, the posterior distribution can be still

approximated using a Laplace approximation (Lawrence et al., 2007) or sampling

(Titsias et al., 2009).

For the above presentation of the latent force model, we assumed that the covari-

ances kq(t, t
′) were squared-exponential. However, more structured covariances

can be used. For example, in Honkela et al. (2010), the authors used a cas-

caded system to describe gene expression data for which a first order system, like

the one presented in equation (3.4), has as inputs uq(t) Gaussian processes with

covariance function (3.8).

In publication ii, we applied the latent force model of order M = 1 to gene

expression data with several transcription factors, as opposed to Lawrence et al.

(2007) where only a single transcription factor was considered. Additionally,

we established a physical interpretation of the multivariate Gaussian covariance

presented in section 2.1 as the latent force model covariance obtained from a Heat

equation with p input variables (Polyanin, 2002).

In the next chapter, we will present various methods that allow learning and

inference of latent force models for large values of N and D.
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Chapter 4

Efficient Approximations

In this thesis, the parameters in the covariance function for the multivariate

Gaussian processes are estimated using type II maximum likelihood. In type II

maximum likelihood, a gradient descent method is usually employed to obtain

point estimates of the parameter vector φ. The objective function corresponds

to the logarithm of the marginal likelihood in equation (2.20), and the gradients

with respect to the parameters are computed according to (2.21). In both expres-

sions, the most computationally expensive step is the inversion of the covariance

matrix Ky,y. Gradient descent methods require the iterative evaluation of both

equations (2.20) and (2.21), and, thus, the continuous evaluation of the inverse

of the covariance matrix.

The preferred method for finding the inverse of the symmetric positive definite

matrix Ky,y is the Cholesky decomposition, which has computational complexity

of O(D3N3) and associated storage of O(D2N2). The polynomial complexity in

both the computation of the inverse matrix and its storage makes that the direct

use of the matrix Ky,y becomes prohibitively expensive for values of DN greater

than a few hundreds.

In recent years, different efforts in the GP machine learning community have

been spent in finding ways to reduce the computational complexity associated

with the inversion of Ky,y for the case of a single output (see Quiñonero-Candela

and Rasmussen, 2005b, for a review).

In this chapter, our main concern is reducing computational complexity for multi-

variate Gaussian processes regression in the context of type II marginal likelihood

parameter estimation. We first show how through making specific conditional in-

dependence assumptions, inspired by the model structure, we arrive at a series of
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efficient approximations that represent the covariance matrix Kf ,f using a reduced

rank approximation Kf ,uK−1
u,uK>f ,u plus a matrix D, where D has a specific struc-

ture that depends on the particular independence assumption made to obtain

the approximation. Approximations can reduce the computational complexity to

O(NDK2) and storage to O(NDK) with K representing a user specified value

that determines the rank of the approximation. These approximations were pre-

sented in publication i and further developed in publication v.

The entries in the covariance matrix Ku,u, which is used to obtain the reduced

rank matrix Kf ,uK−1
u,uK>f ,u, are evaluated at a set of points Z = {zk}Kk=1 known

in the literature as the inducing points or the inducing inputs. The location

of these inducing points is obtained by maximizing the approximated marginal

likelihood. In practice, though, such maximization can lead to overfitting. Re-

cently Titsias (2009) introduced a new inducing point approximation through

a variational formalism. In this approach, the inducing points are treated as

additional variational parameters, and their locations can be optimized without

fear of overfitting. The variational lower bound obtained has a similar form to

the approximation provided by the Deterministic Training Conditional (DTC)

approximation (Csató and Opper, 2001; Seeger et al., 2003; Quiñonero-Candela

and Rasmussen, 2005b). It differs through an additional trace term that favors

configurations of inducing points for which the variance of the posterior process

at the data points is minimized. We show how the variational approach may be

extended to the multiple output case.

All the approximations described above rely on summarizing the behavior of the

base process u(x) through a set of inducing variables, u = [u(z1), . . . , u(zK)]>,

this is, the process u(x) evaluated at Z, the inducing inputs. If the behavior

of the base process is accurately represented by the inducing variables, then the

approximations work well. However, if the base process is rapidly fluctuating (for

example it is white noise) then it will not be well characterized by the inducing

points. Our final contribution is to extend the concept of inducing variables to

inducing functions which arise by convolving the base process with variational

inducing kernels (VIK). By applying the variational framework to the inducing

function, rather than the latent base process, we can approximate multiple output

models even for the case where the base process is white noise. In this sense, we

introduce approximations for the process convolution framework of section 2.1.2,

in particular, for Dependent Gaussian processes. The variational version of the
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DTC approximation for multiple outputs and the concepts of inducing function

and inducing kernel were presented in publication iii. More technical details can

be found in Álvarez et al. (2009).

The chapter is organized as follows. In section 4.1, we describe the set of reduced

rank approximations. In section 4.2, we illustrate the performance of these ap-

proximations over a subset of the gene expression dataset already described in

section 2.3. The variational approximation and the extension to base processes

which are white Gaussian noise are presented in section 4.3. Finally, in section

4.4, we present alternative approaches that have been used for efficient computa-

tions in multivariate Gaussian processes.

Remark. Section 4.1 and section 4.2 appear with minor modifications in pub-

lication v. Section 4.3 appears with minor modifications in publication iii and

the technical report Álvarez et al. (2009). Section 4.4 includes some additional

related work that did not appear in the publications.

4.1 Latent functions as conditional means

For notational simplicity, we restrict the analysis of the approximations to one

latent function u(x) (this is, Q = 1 and Rq = 1). The key to all approximations

is based on the form we assume for the latent functions. From the perspective of

a generative model, equation (2.11) can be interpreted as follows: first we draw

a sample from the Gaussian process prior p(u(z)) and then solve the integral for

each of the outputs fd(x) involved. Uncertainty about u(z) is also propagated

through the convolution transform.

For the following set of approximations, instead of drawing a sample from u(z), we

first draw a sample from a finite representation of u(z), uZ = [u(z1), . . . , u(zK)]>,

where Z = {zk}Kk=1 is the set of input vectors at which u(z) is evaluated. The

vectors Z are usually known as the inducing points, while the elements in uZ are

known as the inducing variables. Due to the properties of a Gaussian process,

p(uZ) follows a multivariate Gaussian distribution. Conditioning on uZ, we next

sample from the conditional prior p(u(z)|uZ) and use this function to solve the

convolution integral for each fd(x).1 Under this generative approach, we can

1For simplicity in the notation, we just write u to refer to uZ.

77



4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) Conditional prior for K = 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

(b) Output one for K = 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

(c) Output two for K = 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(d) Conditional prior for K = 10
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(g) Conditional prior for K = 30
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(h) Output one for K = 30
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Figure 4.1: Conditional prior and two outputs for different values of K. The first column,
figures 4.1(a), 4.1(d) and 4.1(g), shows the mean and confidence intervals of the conditional
prior distribution using one input function and two output functions. The dashed line represents
a sample from the prior. Conditioning over a few points of this sample, shown as black dots,
the conditional mean and conditional covariance are computed. The solid line represents the
conditional mean and the shaded region corresponds to 2 standard deviations away from the
mean. The second column, 4.1(b), 4.1(e) and 4.1(h), shows the solution to equation (2.11) for
output one using a sample from the prior (dashed line) and the conditional mean (solid line),
for different values of K. The third column, 4.1(c), 4.1(f) and 4.1(i), shows the solution to
equation (2.11) for output two, again for different values of K.

approximate each function fd(x) using

fd(x) ≈
∫
X
Gd(x− z) E [u(z)|u] dz. (4.1)

Replacing u(z) for E [u(z)|u] is a reasonable approximation as long as u(z) is a

smooth function so that the infinite dimensional object u(z) can be summarized

by u. Figure 4.1 shows a cartoon example of the quality of the approximations
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for two outputs as the size of the set Z increases. The first column represents the

conditional prior p (u(z)|u) for a particular choice of u(z). The second and third

columns represent the outputs f1(x) and f2(x) obtained using equation (4.1).

The conditional probability function p(u(z)|u) is given as

p(u(z)|u) = N (u(z)|k>u,u(z,Z)K−1
u,uu, ku,u(z, z

′)− k>u,u(z,Z)K−1
u,uku,u(z′,Z)),

where ku,u(z,Z) is a vector with elements {ku,u(z, zk)}Kk=1, and Ku,u is the co-

variance matrix between the samples from the latent function uZ, with elements

given by ku,u(z, z
′).

We use this conditional probability prior over u(x) to marginalize the latent

functions in the expression for each output {fd(x)}Dd=1, appearing in equation

(2.11). Under this linear model, the likelihood function for fd(x) is Gaussian, and

we need to compute Eu|u [fd(x)] and covu|u [fd(x), fd′(x
′)], where the expectation

and the covariance are taken under p(u(z)|u).

The expected value Eu|u [fd(x)] under p(u(z)|u) is given by

Eu|u [fd(x)] =

∫
X
Gd(x− z) Eu|u[u(z)]dz = k>fd,u(x,Z)K−1

u,uu,

where kfd,u(x,Z) is a vector with elements {kfd,u(x, zk)}Kk=1 computed through

equation (2.14).

The covariance covu|u [fd(x), fd′(x
′)] under p(u(z)|u) follows

covu|u [fd(x), fd′(x
′)] =

∫
X
Gd(x− z)

∫
X
Gd′(x

′ − z′) covu|u[u(z), u(z′)]dzdz′

= kfd,fd′ (x,x
′)− k>fd,u(x,Z)K−1

u,ukfd,u(x′,Z),

where kfd,fd′ (x,x
′) is computed through equation (2.12).

Using the above expressions, for a set of input data X, the likelihood function for

f is expressed as

p(f |u,Z,X,φ) = N (f |Kf ,uK−1
u,uu,Kf ,f −Kf ,uK−1

u,uK>f ,u
)
, (4.2)

where Kf ,u is the cross-covariance matrix between the latent function u(z) and

the outputs fd(x), with elements cov [fd(x), u(z)] in (2.14). Given the set of

points u, we can have different assumptions about the uncertainty of the outputs
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in the likelihood term. For example, we could assume that the outputs are inde-

pendent or uncorrelated, keeping only the uncertainty involved for each output

in the likelihood term. Another approximation assumes that the outputs are de-

terministic, that is Kf ,f = Kf ,uK−1
u,uK>f ,u. The only uncertainty left would be due

to the conditional prior p(u|u). Next, we present different approximations of the

covariance of the likelihood that lead to a reduction in computational complexity.

Partial Independence

We assume that the individual outputs in f are independent given the latent

variable samples u, leading to the following expression for the likelihood

p(f |u,Z,X,φ) =
D∏
d=1

p(fd|u,Z,X,φ)

=
D∏
d=1

N (fd|Kfd,uK−1
u,uu,Kfd,fd −Kfd,uK−1

u,uK>fd,u
)
.

We rewrite this product of multivariate Gaussian distributions as a single Gaus-

sian distribution with a block diagonal covariance matrix, including the uncer-

tainty about the independent processes

p(y|u,Z,X,φ) = N (y|Kf ,uK−1
u,uu,D + Σ

)
, (4.3)

where D = blockdiag
[
Kf ,f −Kf ,uK−1

u,uK>f ,u
]
, and we have used the notation

blockdiag [G] to indicate that the block associated with each output of the matrix

G should be retained, but all other elements should be set to zero. We can also

write this as D =
[
Kf ,f −Kf ,uK−1

u,uK>f ,u
]�M where � is the Hadamard product

and M = ID ⊗ 1N , 1N being the N × N matrix of ones. We now marginalize

the values of the samples from the latent function by using its process prior, this

means p(u|Z) = N (u|0,Ku,u). This leads to the following marginal likelihood,

p(y|Z,X,φ) =

∫
p(y|u,Z,X,φ)p(u|Z)du,

= N (y|0,D + Kf ,uK−1
u,uK>f ,u + Σ

)
. (4.4)

Notice that, compared to (2.19), the full covariance matrix Kf ,f has been replaced

by the low rank covariance Kf ,uK−1
u,uK>f ,u in all entries except in the diagonal
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blocks corresponding to Kfd,fd′
. Depending on our choice of K, the inverse of the

low rank approximation to the covariance is either dominated by a O(DN3) term

or a O(K2DN) term. Storage of the matrix is O(N2D) + O(NDK). Note that

if we set K = N , these reduce to O(N3D) and O(N2D) respectively. Rather

neatly this matches the computational complexity of modeling the data with D

independent Gaussian processes across the outputs.

The functional form of (4.4) is almost identical to that of the partially indepen-

dent training conditional (PITC) approximation (Quiñonero-Candela and Ras-

mussen, 2005b) or the partially independent conditional (PIC) approximation

(Quiñonero-Candela and Rasmussen, 2005b; Snelson and Ghahramani, 2007),

with the samples we retain from the latent function providing the same role as

the inducing values in the PITC or PIC.2 This is perhaps not surprising given

that the PITC or PIC approximations are also derived by making conditional

independence assumptions. A key difference is that in PITC and PIC it is not

obvious which variables should be grouped together when making these condi-

tional independence assumptions; here it is clear from the structure of the model

that each of the outputs should be grouped separately.

Full Independence

We can be inspired by the analogy of our approach to the PI(T)C approximation

and consider a more radical factorization of the likelihood term. In the fully

independent training conditional (FITC) approximation or the fully independent

conditional (FIC) approximation (Snelson and Ghahramani, 2006, 2007), a fac-

torization across the data points is assumed. For us that would lead to the

following expression for the conditional distribution of the output functions given

the inducing variables,

p(f |u,Z,X,φ) =
D∏
d=1

N∏
n=1

p(fn,d|u,Z,X,φ),

which can be briefly expressed through (4.3) with D = diag
[
Kf ,f −Kf ,uK−1

u,uK>f ,u
]

=
[
Kf ,f −Kf ,uK−1

u,uK>f ,u
] �M, with M = ID ⊗ IN or simply M = IDN . The

marginal likelihood, including the uncertainty about the independent processes,

2We refer to both PITC and PIC by PI(T)C.
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4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

is given by equation (4.4) with the diagonal form for D. Training with this ap-

proximated likelihood reduces computational complexity to O(K2DN) and the

associated storage to O(KDN).

Deterministic likelihood

In Quiñonero-Candela and Rasmussen (2005b), the relationship between the pro-

jected process approximation (Csató and Opper, 2001; Seeger et al., 2003) and

the FI(T)C and PI(T)C approximations is elucidated. They show that if, given

the set of values u, the outputs are assumed to be deterministic, the likelihood

term of equation (4.2) can be simplified as

p(f |u,Z,X,φ) = N (f |Kf ,uK−1
u,uu,0

)
.

Marginalizing with respect to the latent function using p(u|Z) = N (u|0,Ku,u),

and including the uncertainty about the independent processes, we obtain the

marginal likelihood as

p(y|Z,X,φ) =

∫
p(y|u,Z,X,φ)p(u|Z)du = N (y|0,Kf ,uK−1

u,uK>f ,u + Σ
)
.

In other words, we approximate the full covariance Kf ,f using the low rank ap-

proximation Kf ,uK−1
u,uK>f ,u. Employing this new marginal likelihood to estimate

the parameters φ reduces computational complexity to O(K2DN) and the as-

sociated storage to O(KDN). The approximation obtained has similarities with

the projected latent variables (PLV) method also known as the projected process

approximation (PPA) or the deterministic training conditional (DTC) approx-

imation (Csató and Opper, 2001; Seeger et al., 2003; Quiñonero-Candela and

Rasmussen, 2005b; Rasmussen and Williams, 2006; Boyle, 2007).

Additional independence assumptions.

As mentioned before, we can consider different conditional independence assump-

tions for the likelihood term. One further assumption that is worth mentioning

considers conditional independencies across data points and dependence across
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4.1. LATENT FUNCTIONS AS CONDITIONAL MEANS

outputs. This would lead to the following likelihood term

p(f |u,Z,X,φ) =
N∏
n=1

p(fn|u,Z,X,φ),

where fn = [f1(xn), f2(xn), . . . , fD(xn)]>. We can use again equation (4.3) to

express the likelihood. In this case, though, the matrix D is a partitioned ma-

trix with blocks Dd,d′ ∈ <N×N and each block Dd,d′ would be given as Dd,d′ =

diag
[
Kfd,fd′

−Kfd,uK−1
u,uK>fd′ ,u

]
. For cases in which D > N , that is, the number

of outputs is greater than the number of data points, this approximation may be

more accurate than the one obtained with the partial independence assumption.

For cases where D < N it may be less accurate, but faster to compute.3

4.1.1 Posterior and predictive distributions

Combining the likelihood term for each approximation with p(u|Z) using Bayes’

theorem, the posterior distribution over u is obtained as

p(u|y,X,Z,φ) = N (u|Ku,uA−1K>f ,u(D + Σ)−1y,Ku,uA−1Ku,u

)
, (4.5)

where A = Ku,u + K>f ,u(D + Σ)−1Kf ,u and D follows a particular form according

to the different approximations: it equals D = blockdiag
[
Kf ,f −Kf ,uK−1

u,uK>f ,u
]

for partial independence, it is D = diag
[
Kf ,f −Kf ,uK−1

u,uK>f ,u
]

for the full inde-

pendence, and D = 0 for the deterministic likelihood. The posterior distribution

over u(x) is given by

p(u|y,X,Z,φ) =

∫
p(u|u,Z,φ)p(u|y,X,Z,φ)du,

= N (u(x)|µPOST
u (x), kPOST

u,u (x,x′)),

3Notice that if we work with the block diagonal matrices Dd,d′ , we would need to invert the
full matrix D. However, since the blocks Dd,d′ are diagonal matrices themselves, the inversion
can be done efficiently using, for example, a block Cholesky decomposition. Furthermore, we
would be restricted to work with isotopic input spaces. Alternatively, we could rearrange the
elements of the matrix D so that the blocks of the main diagonal are the covariances associated
with the vectors fn.
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where

µPOST
u (x) = k>u,uA−1K>f ,u(D + Σ)−1y,

kPOST
u,u (x,x′) = ku,u(x,x

′)− k>u,u(K−1
u,u −A−1)ku,u,

where the superscript POST stands for posterior.

For computing the predictive distribution we have two options, either use the

posterior for u and the approximated likelihoods or the posterior for u and the

likelihood of equation (4.2) (plus the corresponding noise term), that corresponds

to the likelihood of the model without any approximations. The difference be-

tween both options is reflected in the covariance for the predictive distribution.

Quiñonero-Candela and Rasmussen (2005b) proposed a taxonomy of different

approximations according to the type of likelihood used for the predictive distri-

bution, in the context of single output Gaussian processes.

For the multivariate case, if we choose the approximated likelihoods, the predic-

tive distribution evaluated at X∗ is expressed by

p̃(y∗|y,X,X∗,Z,φ) =

∫
p̃(y∗|u,Z,X∗,φ)p(u|y,X,Z,φ)du

= N
(
y∗|µ̃y∗ , K̃y∗,y∗

)
,

where

µ̃y∗ = Kf∗,uA−1K>f ,u(D + Σ)−1y,

K̃y∗,y∗ = D∗ + Kf∗,uA−1K>f∗,u + Σ∗,

and p̃(y∗|u,Z,X∗,φ) refers to the approximated likelihood. The values for D∗

depend again of the approximations, being D∗ = 0 for the deterministic like-

lihood, D∗ = diag
[
Kf∗,f∗ −Kf∗,uK−1

u,uK>f∗,u
]

for full independence and D∗ =

blockdiag
[
Kf∗,f∗ −Kf∗,uK−1

u,uK>f∗,u
]

for partial independence. For the single out-

put case, the deterministic likelihood leads to the subset of regressors approxima-

tion (Smola and Bartlett, 2001; Quiñonero-Candela and Rasmussen, 2005b); the

full independence approximation leads to the fully independent conditional (FIC)

(Snelson and Ghahramani, 2006; Quiñonero-Candela and Rasmussen, 2005b); and

the partial independence leads to the partially independent conditional (PIC)

(Snelson and Ghahramani, 2007; Quiñonero-Candela and Rasmussen, 2005b).
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If we choose the exact likelihood term in equation (4.2), the predictive distribution

follows as

p(y∗|y,X,X∗,Z,φ) =

∫
p(y∗|u,Z,X∗,φ)p(u|y,X,Z,φ)du

= N (y∗|µy∗ ,Ky∗,y∗) , (4.6)

where

µy∗ = Kf∗,uA−1K>f ,u(D + Σ)−1y,

Ky∗,y∗ = Kf∗,f∗ −Kf∗,uK−1
u,uK>f∗,u + Kf∗,uA−1K>f∗,u + Σ∗.

For the single output case, the assumption of the deterministic likelihood is equiv-

alent to the deterministic training conditional (DTC) approximation; the full

independence approximation leads to the fully independent training conditional

(FITC) approximation (Quiñonero-Candela and Rasmussen, 2005b); and the par-

tial independence leads to the partially independent training conditional (PITC)

approximation (Quiñonero-Candela and Rasmussen, 2005b).

From a comparison between Ky∗,y∗ and K̃y∗,y∗ , we can notice that the entries in

the predictive covariance matrix Ky∗,y∗ are higher than the entries in the covari-

ance matrix K̃y∗,y∗ (for the partial independence assumption, both matrices are

equal in the block-diagonal matrices and for the full independence assumption,

both matrices are equal in the diagonal), indicating that predictions made using

the predictive distribution p̃(y∗|u,Z,X∗,φ) are usually overconfident. This is

more critical in the case of the deterministic approximation. For the fully inde-

pendence assumption and the partial independence assumption, the variance for

both predictive distributions is the same, this is ky∗,y∗(x∗,x∗) = k̃y∗,y∗(x∗,x∗).

The similarities of the above approximations for multivariate GPs with respect

to the approximations presented in Quiñonero-Candela and Rasmussen (2005b)

for single output GPs are such, that we find it convenient to follow the same

terminology, and also refer to above approximations as DTC, FITC and PITC

approximations for multioutput Gaussian processes.
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4.2. REGRESSION OVER GENE EXPRESSION DATA

4.1.2 Model selection in approximated models

The marginal likelihood approximations derived above are functions of both the

hyperparameters of the covariance function and the location of the inducing vari-

ables. For estimation purposes, there seems to be a consensus in the GP com-

munity that hyperparameters for the covariance function can be obtained by

maximization of the marginal likelihood.4 For selecting the inducing variables,

though, there are different alternatives that can be used. A simple procedure con-

sists of grouping the input data using a clustering method like K-means and then

use the K resulting vectors as inducing variables. More sophisticated alternatives

consider that the set of inducing variables must be restricted to be a subset of

the input data (Csató and Opper, 2001; Williams and Seeger, 2001). This set

of methods require a criterion for choosing the optimal subset of the training

points (Smola and Bartlett, 2001; Seeger et al., 2003). Such approximations are

truly sparse in the sense that only few data points are needed at the end for

making predictions. Recently, Snelson and Ghahramani (2006) suggested using

the marginal likelihood not only for the optimization of the hyperparameters in

the covariance function, but also for the optimization of the location of these

inducing variables. Although, using such procedure to find the optimal location

of the inducing inputs might look in principle like an overwhelming optimization

problem (inducing points usually appear non-linearly in the covariance function),

in practice it has been shown that performances close to the full GP model can

be obtained in a fraction of the time that it takes to train the full model (see

publication v). In that respect, the inducing points that are finally found are

optimal in the same optimality sense that the hyperparameters of the covariance

function.5

4.2 Regression over gene expression data

We now present an example of the approximations described above, for perform-

ing multiple output regression over gene expression data. The setup was described

in section 2.3. The difference with that example, is that instead of using D = 50

4As mentioned in chapter 2, full Bayesian approaches are also possible.
5Essentially, it would be possible to use any of the methods just mentioned above together

with the multiple-output GP regression models presented in chapter 2. In the software ac-
companying this thesis, though, we follow Snelson and Ghahramani (2006) and optimize the
locations of the inducing variables using the approximated marginal likelihoods.
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4.2. REGRESSION OVER GENE EXPRESSION DATA

outputs, here we use D = 1000 outputs. We then have access to gene expression

data for D = 1000 outputs and N = 12 time points per output.

We do multiple output regression using DTC, FITC and PITC fixing the number

of inducing points to K = 8, equally spaced in the interval [−0.5, 11.5]. Since it

is a 1-dimensional input dataset, we do not optimize the location of the inducing

points, but fix them to equally spaced initial positions. As for the full GP model

in the example of section 2.3, we set Q = 1 and Rq = 1. Covariances Kf ,f and

Kf ,u used in the approximations, are computed using the kernels kfd,fd′ (x,x
′) and

kfd,uq(x,x
′), derived in equations (2.17) and (2.18), respectively. For the diagonal

blocks of Ku,u, we use a Gaussian kernel as in equation (2.15). All these kernels

have the appropriate normalization constants.

Train set Test set Method Average SMSE Average MSLL

Replicate 1 Replicate 2
DTC 0.5421± 0.0085 −0.2493± 0.0183
FITC 0.5469± 0.0125 −0.3124± 0.0200
PITC 0.5537± 0.0136 −0.3162± 0.0206

Replicate 2 Replicate 1
DTC 0.5454± 0.0173 0.6499± 0.7961
FITC 0.5565± 0.0425 −0.3024± 0.0294
PITC 0.5713± 0.0794 −0.3128± 0.0138

Table 4.1: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for
the gene expression data for 1000 outputs using the efficient approximations for the convolved
multiple output GP. The experiment was repeated ten times with a different set of 1000 genes
each time. Table includes the value of one standard deviation over the ten repetitions.

Again we use a scaled conjugate gradient to find the parameters that maximize

the marginal likelihood in each approximation using the data from replicate 1.

Once we have estimated the hyperparameters of the covariance functions, we test

all the approximation methods over the outputs in replicate 2, by conditioning on

the outputs of replicate 1. We also repeated the experiment selecting the genes

for training from replicate 2 and the corresponding genes of replicate 1 for testing.

The optimization procedure runs for 100 iterations.

Table 4.1 shows the results of applying the approximations in terms of SMSE and

MSLL. DTC and FITC slightly outperforms PITC in terms of SMSE, but PITC

outperforms both DTC and FITC in terms of MSLL. This pattern repeats itself

when the training data comes from replicate 1 or from replicate 2.

In figure 4.2 we show the performance of the approximations over the same

two genes of figure 2.1, these are FBgn0038617 and FBgn0032216. The non-

instantaneous mixing effect of the model can still be observed. Performances for
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Figure 4.2: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216
(second row) using the different approximations. In the first column DTC (figures 4.2(a) and
4.2(d)), second column FITC (figures 4.2(b) and 4.2(e)) and in the third column PITC (figures
4.2(c) and 4.2(f)). The training data comes from replicate 1 and the testing data from replicate
2. The solid line corresponds to the predictive mean, the shaded region corresponds to 2
standard deviations of the prediction. Performances in terms of SMSE and MSLL are given in
the title of each figure. The crosses in the bottom of each figure indicate the positions of the
inducing points.

these particular genes are highlighted in table 4.2.

Notice that the performances are between the actual performances for the LMC

and the CMOC appearing in table 2.2. We include these figures only for illustra-

tive purposes, since both experiments use a different number of outputs. Figures

2.1 and 2.2 were obtained as part of multiple output regression problem of D = 50

outputs, while figures 4.2 and 4.3 were obtained in a multiple output regression

problem with D = 1000 outputs.

In figure 4.3, we replicate the same exercise for the genes FBgn0010531 and

FBgn0004907, that also appeared in figure 2.2. Performances for DTC, FITC

and PITC are shown in table 4.2 (last six rows), which compare favourably with

the performances for the linear model of coregionalization in table 2.2 and close

to the performances for the CMOC. In average, PITC outperforms the other

methods for the specific set of genes in both figures.
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Test replicate Test genes Method SMSE MSLL

Replicate 2

FBgn0038617
DTC 0.2162 −0.7015
FITC 0.2240 −0.6886
PITC 0.1625 −0.8600

FBgn0032216
DTC 0.1845 −0.3078
FITC 0.3639 −0.5086
PITC 0.1613 −0.8368

Replicate 1

FBgn0010531
DTC 0.0774 −1.0171
FITC 0.1707 −0.7423
PITC 0.0872 −0.9899

FBgn0004907
DTC 0.6057 −0.2192
FITC 0.1512 −0.8426
PITC 0.2468 −0.7176

Table 4.2: Standardized mean square error (SMSE) and mean standardized log loss (MSLL)
for the genes in figures 4.2 and 4.3 for DTC, FITC and PITC with K = 8.
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Figure 4.3: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907
(second row) using the different approximations. In the first column DTC (figures 4.3(a) and
4.3(d)), second column FITC (figures 4.3(b) and 4.3(e)) and in the third column PITC (figures
4.3(c) and 4.3(f)). The training data comes now from replicate 2 and the testing data from
replicate 1. The solid line corresponds to the predictive mean, the shaded region corresponds to
2 standard deviations of the prediction. Performances in terms of SMSE and MSLL are given
in the title of each figure. The crosses in the bottom of each figure indicate the positions of the
inducing points, which remain fixed during the training procedure.
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Train set Test set Method Average TTPI

Replicate 1 Replicate 2
DTC 2.04
FITC 2.31
PITC 2.59

Replicate 2 Replicate 1
DTC 2.10
FITC 2.32
PITC 2.58

Table 4.3: Training time per iteration (TTPI) for the gene expression data for 1000 outputs
using the efficient approximations for the convolved multiple output GP. The experiment was
repeated ten times with a different set of 1000 genes each time.

With respect to the training times, table 4.3 shows the average training time per

iteration (average TTPI) for each approximation. To have an idea of the saving

times, one iteration of the full GP model for the same 1000 genes would take

around 4595.3 seconds. This gives a speed up factor of 1780, approximately.6

4.3 Variational approximations

In section 4.1 we introduced a series of approximations that reduce computational

complexity for performing multivariate regression with Gaussian processes. How-

ever, that reduction came at the price of introducing new parameters in the model,

namely, the inducing locations Z. Marginal likelihoods now are dependent of Z

and without additional restrictions over them, estimating these quantities and

the covariance hyperparameters using the marginal likelihood as cost function,

might lead to overfitting. In a Bayesian setup, one would be tempted to put a

prior over Z and then marginalize, but unfortunately Z appears in the inverse

of Ku,u and performing this integration becomes intractable. One potential de-

tour consists of approximating the marginal likelihood in equation (2.19) directly,

finding an expression of the posterior distribution through the minimization of

Kullback-Leibler divergences.

In subsection 4.3.1, we follow the lines of Titsias (2009) and propose a variational

approximation for multiple output GPs. For this new approximation, we augment

the prior over the latent functions and condition this prior on the location of

the inducing variables. We assume the posterior over the inducing variables is

6The experiments were run in workstations with 2.59 GHz, AMD Opteron’s and up to 16
GHz of RAM. Only one processor was used on each run. The speed up factor is computed as
the relation between the slower method and the faster method, using the corresponding training
times.
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unknown and we approximate it by maximizing a lower bound on the exact

marginal likelihood given by equation (2.19). This is equivalent to minimizing

the Kullback-Leibler distance between the true posterior and the approximated

one.

In subsection 4.3.2, we introduce the idea of inducing kernels, that enhance the

variational approximation for multiple outputs with the ability to deal with latent

functions which are white noise processes.

4.3.1 A variational lower bound

In section 4.1, the principle underlying the different approximations was the re-

placement of the original prior p(u) with the conditional prior p(u|u), under

the fundamental assumption that the latent function u(z) might be as well rep-

resented by the conditional mean E[u(z)|uZ], where the uncertainty in uZ is

described by p(uZ).

The above assumption modifies the initial multivariate Gaussian process model

and introduces the inducing inputs Z as extra kernel hyperparameters in the

modified GP model without any restrictions about the values that the vectors

Z might take. The maximization of the marginal likelihood for the modified

Gaussian process models (for example in equation (4.4)) with respect to (Z,φ),

may be prone to overfitting especially when the number of variables in Z is large.

Moreover, fitting a modified GP model implies that the full GP model is not

approximated in a systematic and rigorous way since there is no distance or

divergence between the two models that is minimized.

We follow Titsias (2009) to establish a rigorous lower bound for the marginal

likelihood of equation (2.19). Given target data y and inputs X, the marginal

likelihood of the original model is given by integrating over the latent function7

p(y|X,φ) =

∫
u

p(y|u,X,φ)p(u)du.

Instead of working directly with a prior distribution p(u), as in the approxima-

tions of section 4.1, we augment the original prior as p(u,u) = p(u|u)p(u) with

7Strictly speaking, the distributions associated to u correspond to random signed measures,
in particular, Gaussian measures.
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the consistency relation

p(u(z)) =

∫
u

p(u(z)|u)p(u)du. (4.7)

The augmented joint model can be expressed as

p (y, u,u) = p(y|u)p(u|u)p(u),

which can be also written as p(y|u)p(u) using the marginalization property in

(4.7) for the latent function. Using standard variational approximation techniques

(see for example Bishop, 2006, chap. 10), we establish a lower bound on the

true exact log marginal likelihood log p(y) by approximating the true posterior

p(u,u|y) with a variational distribution q(u,u).

The variational posterior distribution is taken to be

q(u,u) = p(u|u)ϕ(u),

where ϕ(u) is the unknown a posteriori distribution over the inducing variables.

The lower bound is now computed as

L(Z,φ, ϕ(u)) =

∫
u,u

q(u,u) log

{
p(y, u,u)

q(u,u)

}
du du

=

∫
u,u

p(u|u)ϕ(u) log

{
p(y|u)p(u|u)p(u)

p(u|u)ϕ(u)

}
du du

=

∫
u,u

p(u|u)ϕ(u) log

{
p(y|u)p(u)

ϕ(u)

}
du du

=

∫
u

ϕ(u)

∫
u

p(u|u)

{
log p(y|u) + log

p(u)

ϕ(u)

}
du du.

It can be shown that this bound is given as (see Álvarez et al., 2009, for detailed

derivations),

L(Z,φ, ϕ(u)) =

∫
u

ϕ(u) log

{N (y|α,Σ) p(u)

ϕ(u)

}
du− 1

2

D∑
d=1

tr
(
Σ−1
wd

K̃dd

)
,

where α =
[
α>1 , . . . ,α

>
D

]>
with αd = KfduK−1

u,uu, Σwd is the covariance matrix

associated to the independent process wd(x), K̃dd = Kfd,fd −Kfd,uK−1
u,uK>fd,u, and

Σ is a block-diagonal matrix with blocks given by Σwd .
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After analytically maximizing the lower bound with respect to ϕ(u) (which is

equivalent to apply Jensen’s inequality in the integral over u for log(x), this is, a

concave function), we have

L(Z,φ) = logN (y|0,Kf ,uK−1
u,uK>f ,u + Σ

)− 1

2
tr
(
Σ−1K̃

)
, (4.8)

with K̃ = Kf ,f −Kf ,uK−1
u,uK>f ,u. The approximated covariance appearing in the

lower bound, Kf ,uK−1
u,uK>f ,u, has the same form as the Deterministic Training Con-

ditional (DTC) approximation discussed in Quiñonero-Candela and Rasmussen

(2005b) for a single output. Since this approximation is obtained by applying

a variational approximation, we refer to this approximation as DTCVAR. Note

that this bound consists of two parts. The first part is the log of a GP prior

with the only difference that now the covariance matrix has a particular low rank

form. This form allows the inversion of the covariance matrix to take place in

O(NDK2) time rather than O(N3D3). The second part can be seen as a penal-

ization term that regulates the estimation of the parameters. Notice also that

only the diagonal of the exact covariance matrix Kf ,f needs to be computed, when

compared to PI(T)C, for which we need to compute the block covariances Kfd,fd .

According to the complexity of cov[fd(x), fd′(x
′)] this might be an important

extra computational saving.

The approximated posterior ϕ(u) is obtained by maximizing the lower bound

L(Z,φ, ϕ), following a similar expression to (4.5). Equally, the expression for the

predictive distribution is similar to the one obtained in (4.6) with D = 0.

4.3.2 Variational inducing kernels

Our key assumption for the approximations in section 4.1 lies in the fact that

the latent functions can be summarized using just a few points in the latent

space. This assumption appears also implicitly in the variational approximation

in subsection 4.3.1. Indeed, when writing the factor p(u|u) in the distribution for

the joint model p(y, u,u) and in the approximated posterior q(u,u), we implicit

assume that this infinite-dimensional objects, the functions {uq(x)}Qq=1, may be

abbreviated using a finite number of points {uq}Qq=1. If the locations of the induc-

ing points, {zk}Kk=1, are close relative to the length scale of the latent function,

the approximations on section 4.1 will be accurate. However, if the length scale

becomes small the approximation requires very many inducing points. In the
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worst case, the latent process could be white noise (as suggested by the process

convolution constructions of chapter 2). An important class of problems where

we have to deal with white noise processes arise in linear stochastic differential

equations (Álvarez et al., 2010) where the above approximation methods do not

reflect the characteristics of the latent functions.

In this subsection, we develop the variational approximation to allow us to work

with rapidly fluctuating latent functions. This is achieved by augmenting the out-

put functions with one or more additional functions. We refer to these additional

outputs as the inducing functions. Our variational approximation is developed

through the inducing functions. There are also smoothing kernels associated with

the inducing functions. The quality of the variational approximation can be con-

trolled both through these inducing kernels and through the number and location

of the inducing inputs.

To motivate the idea, we first explain why the u variables can work when the

latent functions are smooth and fail when these functions become white noises.

In approximations like PI(T)C, we assume each latent function uq(x) is smooth

and we sparsify the GP model through introducing uq, this is, inducing variables

which are direct observations of the latent function uq(x), at particular input

points. Because of the latent function’s smoothness, the uq variables also carry

information about other points in the function through the imposed prior over

the latent function. So, having observed uq, we can reduce the uncertainty of the

whole function uq(x).

With the vector of inducing variables u, if chosen to be sufficiently large relative to

the length scales of the latent functions, we can efficiently represent the functions

{uq(x)}Qq=1 and subsequently variables f which are just convolved versions of the

latent functions.8 When the reconstruction of f from u is perfect, the conditional

prior p(f |u) becomes a delta function and the PITC-like approximations become

exact. Figure 4.4(a) shows a cartoon example of the description of uq(x) by uq.

In contrast, when some of the latent functions are white noise processes the ap-

proximation will fail. If uq(z) is white noise,9 it has a covariance function δ(z−z′).

8This idea is like a “soft version” of the Nyquist-Shannon sampling theorem. If the latent
functions were bandlimited, we could compute exact results given a high enough number of
inducing points. In general it won’t be bandlimited, but for smooth functions low frequency
components will dominate over high frequencies, which will quickly fade away.

9Such a process can be thought as the “time derivative” of the Wiener process.
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(a) Latent function is smooth (b) Latent function is noise

uq(x) ∗ Tq(x) = λq(x)

(c) Generation of an inducing function

Figure 4.4: With a smooth latent function as in (a), we can use some inducing variables uq

(red dots) from the complete latent process uq(x) (in black) to generate smoothed versions (for
example the one in blue), with uncertainty described by p(uq|uq). However, with a white noise
latent function as in (b), choosing inducing variables uq (red dots) from the latent process (in
black) does not give us any information about other points (for example the blue dots). In (c)
the inducing function λq(x) acts as a surrogate for a smooth function. Indirectly, it contains
information about the inducing points and it can be used in the computation of the lower
bound. In this context, the symbol ∗ refers to the convolution integral.

Such processes naturally arise in the application of stochastic differential equa-

tions and are the ultimate non-smooth processes where two values uq(z) and

uq(z
′) are uncorrelated when z 6= z′. When we apply the approximation, a vector

of “white-noise” inducing variables uq does not carry information about uq(z)

at any input z that differs from all inducing inputs Z. In other words there is

no additional information in the conditional prior p(uq(z)|uq) over the uncondi-

tional prior p(uq(z)). Figure 4.4(b) shows a pictorial representation. The lack of

structure makes it impossible to exploit the correlations in standard methods like

PI(T)C.10

10Returning to our sampling theorem analogy, the white noise process has infinite bandwidth.
It is therefore impossible to represent it by observations at a few fixed inducing points.
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Our solution to this problem is the following. We will define a more powerful

form of inducing variable, one based not around the latent function at a point,

but one given by the convolution of the latent function with a smoothing kernel.

More precisely, let us replace each inducing vector uq with the variables λq which

are evaluated at the inputs Z and are defined according to

λq(z) =

∫
Tq(z− v)uq(v)dv, (4.9)

where Tq(x) is a smoothing kernel which we call the inducing kernel (IK). This

kernel is not necessarily related to the model’s smoothing kernels. Notice that

the new inducing variables λq correspond to a finite set of points taken from the

λq(z) process, this is, λq = [λq(z1), . . . , λq(zK)]>. These newly defined inducing

variables can carry information about uq(z) not only at a single input location but

from the entire input space. Figure 4.4(c) shows how the inducing kernel generates

the artificial construction λq(x), that sheds some light over the, otherwise, obscure

inducing points. We can even allow a separate IK for each inducing point, this

is, if the set of inducing points is Z = {zk}Kk=1, then

λq(zk) =

∫
Tq,k(zk − v)uq(v)dv, (4.10)

with the advantage of associating to each inducing point zk its own set of adaptive

parameters in Tq,k.

If uq(z) has a white noise GP prior, the covariance function for λq(x) is

cov[λq(x), λq(x
′)] =

∫
Tq(x− z)Tq(x

′ − z)dz,

and the cross-covariance function between fd(x) and λq(x
′) is

cov[fd(x), λq(x
′)] =

∫
Gd,q(x− z)Tq(x

′ − z)dz.

Notice that this cross-covariance function maintains a weighted integration over

the whole input space, unlike the case of using u as the inducing variables. This

implies that a single inducing variable λq(x) can properly propagate information

from the full-length process uq(x) into the set of outputs f .

It is possible to combine the IKs defined above with the approximations of sub-

section 4.3.1. However, we would arrive again at the problem of overfitting. We
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therefore include the inducing functions and inducing kernels within the varia-

tional framework of Titsias (2009), and refer to the functions as variational induc-

ing functions (VIFs) and to the kernels as variational inducing kernels (VIKs).

A lower bound for the multivariate Gaussian process can be obtained again by

replacing the vector of inducing variables u = {uq}Qq=1 for the vector of variables

λ = {λq}Qq=1. Posterior and predictive distributions are obtained in the same way

as in section 4.3.2, replacing the vector u with the vector λ (Álvarez et al., 2009).

4.4 Related work

As we saw in section 4.1, assuming that the latent function u(x) can be replaced

by the conditional mean E[u(x)|uZ] in the convolved multiple output covariance

and using different conditional independence assumptions for the likelihood func-

tion, we arrived to a series of approximations summarized in a reduced rank valid

covariance matrix.

Other alternatives for reducing computational complexity for multivariate Gaus-

sian processes include Ver Hoef et al. (2004) and Boyle (2007, chapter 6). In

both works, the covariance function is obtained using the process convolution

formalism of subsection 2.1.2.

Ver Hoef et al. (2004) presents a simulation example with D = 2. Prediction over

one of the variables is performed using cokriging. In cokriging scenarios, usually

one has access to a few measurements of a primary variable, but plenty of obser-

vations for a secondary variable. Following a suggestion by Stein (1999, p. 172),

the authors partition the secondary observations into subgroups of observations

and assume the likelihood function is the sum of the partial likelihood functions of

several systems that include the primary observations and each of the subgroups

of the secondary observations. In other words, the joint probability distribution

p(f1, f2) is factorised as p(f1, f2) =
∏J

j=1 p(f
(j)
2 |f1)p(f1), where f

(j)
2 indicates the

observations in the subgroup j out of J subgroups of observations. It is not clear

from this method, though, how the groups in the secondary variable should be

selected. The authors recognize that this is an area than requires further research.

The authors also use a Fast Fourier Transform for computing the autocovariance

matrices Kfd,fd and cross-covariance matrices Kfd,fd′
.

Boyle (2007) proposed an extension of the reduced rank approximation method

of Quiñonero-Candela and Rasmussen (2005a), to be applied to the Dependent
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Gaussian process construction. The reduced rank approximation in the single out-

put case, starts with the representation of the output using a generalised linear

model, this is, the output f1 = f is represented as f = Kf ,ww, where w is a vector

of weights with prior distribution p(w) = N (w|0,K−1
w,w), that define the so called

support points.11 Elements in both matrices Kf ,w and Kw,w are computed using,

for example, the squared-exponential kernel. The marginal likelihood for the noisy

observations y is given by p(y) = N (y|0,Kf ,wK−1
w,wK>f ,w + σ2I), and the predic-

tive distribution by p(f∗|y) = N (f∗|σ−2Kf∗,wA−1K>f ,wy,Kf∗,wA−1K>f∗,w + σ2I),

where A = σ−2K>f ,wKf ,w + Kw,w. It can be noticed that if the number of

training points equals the number support points, N = K, the predictive mean

σ−2Kf∗,wA−1K>f ,wy converges to the predictive mean of the full Gaussian process.

If the kernel used is decaying (for example, it has compact support), then the

predictive variance for test inputs away from the support points will be equal to

the noise variance. Such a behavior is inadequate, because it underestimates the

uncertainty of f∗(x∗) and this was not originally intended in the full Gaussian pro-

cess prior. To alleviate this problem, Quiñonero-Candela and Rasmussen (2005a)

augmented the generalised linear model with a weight and a basis function local-

ized in the test input x∗. The new vector of weights is given as w̃ = [w>w∗]
>

and the output f1 is defined as f = Kf ,eww̃. It can be shown that for N = K, the

predictive variance for this model converges to the predictive variance of the full

GP, even for test inputs away from the training data (Boyle, 2007, chapter 5).

From the perspective of Quiñonero-Candela and Rasmussen (2005b), the reduced

rank approximation is equivalent to the DTC approximation by augmenting the

set of inducing variables with an additional variable corresponding to the test

point f∗ (of course, we do not need access to the actual value of f∗, since we are

working with kernels).

Boyle (2007) presented the development of the same idea for D = 2. The outputs

f1 and f2 are defined as [
f1

f2

]
=

[
Kf1,ew1 Kf1,ew2

Kf2,ew1 Kf1,ew2

][
w̃1

w̃2

]
,

where w̃d are vectors of weights associated to each output including additional

weights corresponding to the test inputs, one for each output. Based on this

likelihood, a predictive distribution for the joint prediction of f1 and f2 can be

11A more recent name for support points is inducing variables.
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obtained, with the characteristic that the variances approach to variances for

the full predictive of the Gaussian process for test points away from the training

data. The elements in the matrices Kfd,ewd′
are computed using the covariances

and cross-covariances developed in chapter 2. Notice that compared to the ap-

proximations presented in sections 4.1 and 4.3, where the inducing inputs are

common to all outputs, here the inducing inputs are particular to each output.

On the other hand, the idea of inducing function and inducing kernel is closely

related to sparse multiscale Gaussian process regression (Walder et al., 2008) and

inter-domain Gaussian processes (Lázaro-Gredilla and Figueiras-Vidal, 2010).

Both methods share a similar purpose, namely, augmenting the flexibility of the

inducing points in order to improve the quality of the approximations when com-

pared to the traditional defined inducing points used in Snelson and Ghahramani

(2006). In a nutshell, in Snelson and Ghahramani (2006), the entries of the

covariance matrices appearing in the reduced rank approximation Kf ,fK
−1

f ,f
K>

f ,f
,

where f is the vector of inducing variables, are computed using the same kernel

function kf,f (x,x
′) that is used to compute the full rank kernel matrix Kf ,f . In

other words, the inducing variables are point evaluations of the single output

f(x), this is, f = [f̄(z1), . . . , f̄(zK)]>, where f̄(zk) = f(x)δ(x − zk). Lázaro-

Gredilla and Figueiras-Vidal (2010) defined the inducing variables f̄(Z) using a

similar expression to (4.9), where the process uq(x) corresponded to f(x). The

elements of Kf ,f and Kf ,f are defined by the covariance between f(x) and f̄(x′)

and the covariance between f̄(x) and f̄(x′), respectively. The inducing variables

can exist in a different domain, through the suitable selection of the feature ex-

traction function T (x, z) in equation (4.9). Walder et al. (2008) allowed each of

the inducing variables {f̄(zk)}Kk=1 to be described by its own parameter vector,

θzk and developed a kernel basis {kf,f̄zk (x, zk)}Kk=1, where each basis function has

its own set of parameters. This is equivalent to equation (4.10), where each in-

ducing point is allowed to have its own inducing kernel. As we said before, the

two methods intend to improve performance over the pseudo-inputs approach of

Snelson and Ghahramani (2006) in sparse GP models for single outputs, using a

new definition of the pseudo-inputs. Our use of inducing functions and inducing

kernels is motivated by the need to deal with non-smooth latent functions in the

process convolution model for multiple outputs.
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4.5 Summary

In this chapter, we presented a series of methods that allow the reduction in

computational complexity for multivariate Gaussian processes when parameters

are estimated using type II maximum likelihood.

Using these approximations we can capture the correlated information among

outputs while reducing the computational overhead involved in the optimization

and prediction tasks. The computational complexity for training using the de-

terministic marginal likelihood and the fully independent marginal likelihood is

O(NDK2). The computational complexity for the PI(T)C approximation re-

duces from O(N3D3) to O(N3D). This matches the computational complexity

for modeling with independent GPs.

In publications i and v we present applications of this type of approximations

for multivariate regression of pollutant metals and exam score predictions. We

showed experimentally how the training of the models can be done in a fraction

of the time it takes to train the full Gaussian process without sacrificing the

prediction performance.

We presented also a variational version of the deterministic training conditional

approximation for multiple outputs, that allows for a rigorous measure of the

distance between the true marginal likelihood and the approximated one. We

have introduced the concept of an inducing function, which generalizes the idea

of inducing point, traditionally employed in sparse GP methods and provide

efficient mechanisms for learning in multiple output Gaussian processes when the

latent function is fluctuating rapidly.

In publication iii, we present applications of the variational approximation with

inducing functions that include a latent force model, where the latent functions

are white noise processes.

As a byproduct of seeing the linear model of coregionalization as a particular case

of the convolved multioutput covariance, we can extend all the approximations

to work under the linear model of coregionalization regime.

In the next chapter, we will go back to the latent force model framework and

present an extension that admits the modeling of non-stationary multivariate

time series by allowing changes in the parameter vector θLFM.
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Chapter 5

Switching dynamical latent force

models

In chapter 2, we described how a flexible type of covariance function for multi-

variate Gaussian processes can be developed by convolving univariate Gaussian

processes with moving-average functions specific to each output. If the moving-

average function corresponds to a Green’s function, then the resulting covariance

function encodes the dynamics associated to the differential equation from which

the Green’s function comes from. We coined the resulting multivariate Gaussian

process with the name of latent force model in chapter 3.

In the latent force model, the parameter vector θLFM, composed of the parameters

{θGd}Dd=1, {Sd,q}D,Qd=1,q=1 and {`q}Qq=1, remains fixed for all values of the input

variable t. In many applied scenarios, though, the parameter vector is a function

of the input variable, θLFM(t), either because there is a change in the parameters of

the differential equation, {θGd}Dd=1, or because there is a change in the sensitivity

parameters {Sd,q}D,Qd=1,q=1, or because there is a change in the length-scales of the

functions {`q}Qq=1 driving the set of systems or because all these parameters change

simultaneously. In this chapter we introduce an extension of the latent force

model that allows for discrete changes in the elements of the parameter vector

θLFM.1 Practical motivations for this extension include the discovery of motor

primitives within a multivariate time series of angles and the augmentation of

the latent force model with the ability to incorporate discontinuous forces. Both

1The current version of the software accompanying this thesis allows discrete changes in
either the sensitivity parameters {Sd,q(t)}D,Q

d=1,q=1 and/or in the length-scales of the forcing
functions {`q(t)}Qq=1, and assumes that the parameters {θGd

}Dd=1 remain constant in the time-
input domain.
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applications are explained in the following paragraphs.

First, a current line of thought in neuroscience considers that elaborated move-

ments or motor actions can be represented by the transformation of a reduced set

of building blocks known as motor primitives (Flash and Hochner, 2005). Flash

and Hochner (2005) present a recent review of definitions of motor primitives

in the neuroscience literature that include interpretations at a behavioral-level

(movements are composed of submovements, which are not further decomposed

(Vecchio et al., 2003)), at a muscle level (a motor primitive is defined as a syn-

ergy, this is, a co-activation of muscles that produce a torque or a force), and at a

neural level (a motor primitive corresponds to a particular assembly of neurons).

From a more physics-related point of view, motor primitives can be either kine-

matic (defined as strokes or submovements), dynamic (defined as a static field of

forces, time-varying synergies or control policies) or both.

The idea of motor primitive has been used in humanoid robotics with the pur-

pose of creating a vocabulary of basic motor skills that can be used to teach a

robot how to reproduce movements performed by a human teacher (Schaal et al.,

2003). Once the library of primitives has been defined, the robot can generate

more complex movements by the sequential, concurrent or hierarchical combina-

tion of the motor primitive actions (Peters, 2007). Motor primitives are learned

from a sequence of multivariate time course data that corresponds to the angles

of the several degrees of freedom of the robot. Before labeling the different motor

primitives, it is necessary to determine where a motor primitive occurred within

the multivariate time series. In other words, we need to segment the multivariate

time series into a sequence of motor primitives. This step resembles the seg-

mentation problem in a speech recognition system, in which a series of acoustic

features are first segmented, before to their identification as phonemes.

We assume that each motor primitive can be represented through a second or-

der differential equation, a traditional practice in imitation learning for humanoid

robotics (Ijspeert et al., 2003; Schaal et al., 2007; Vecchio et al., 2003) and through

the discrete changes in the parameter vector θLFM of the latent force model, where

θGd correspond to the parameters of the Green’s function associated to a second

order ordinary differential equation, we identify the presence of a motor primitive.

Second, in publication ii, we introduced the latent force model of second order to

represent the movement of a human actor while performing a particular activity.
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The movements are recorded as multivariate time courses of angles referenced to

the skeleton of the actor; the resulting data is known as motion capture data.

In this context, the latent forces are seen as a reduced multivariate time series

representation of the movement that summarizes the high-dimensional multi-

variate time series of recorded angles. Furthermore, using a few set of inferred

latent forces, we can generate a diverse range of new movements. An impor-

tant restriction of this model, though, is that the latent forces are continuous

functions. However, discontinuities and segmented latent forces are omnipresent

in real-world data. For example, impact forces due to contacts in a mechanical

dynamical system (when grasping an object or when the feet touch the ground),

or a switch in an electrical circuit, result in discontinuous latent forces.

With both applications in mind, the rest of the chapter is organized as follows. In

section 5.1, we present the convolved multiple output covariance for the second

order latent force model. In contrast to publication ii and chapter 3, where we

ignored the initial conditions in the differential equations, in this section the ini-

tial conditions are included, and their role will be to allow for smooth transitions

in the outputs between two different regimes each one described by a different

latent force model. We refer to this model as the switching dynamical latent force

model. In section 5.2, we describe the extension proposed that allows for switch-

ing between sequential latent force models. Section 5.3 includes an example of

the application of the model for segmenting striking movements recorded using a

Barrett WAM robot as haptic input device. In section 5.4 we present the related

work.

Remark. This chapter is mainly based on publication iv and the supplementary

material that accompanies it. Section 5.4 includes a description of related models

that were not mentioned in publication iv.

5.1 Second order latent force models

In section 3.1 we introduced a latent force model of order two, as a generalization

of a classical latent variable model that allowed to include behaviors like inertia

and resonance, typical features in a mechanical system. The variables in the

model are described as the outputs of a set of second order ordinary differential
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equations driven by a set of forces {uq(x)}Qq=1. The second order differential equa-

tions represent mass-spring-damper systems with masses described by the set of

parameters {md}Dd=1, springs described by parameters {κd}Dd=1 and dampers rep-

resented by parameters {vd}Dd=1. The solution for the output functions was given

in terms of a convolution transform and we assumed that the initial conditions

were zero, in section 3.3. In this section, we present the second order latent force

model with non-zero initial conditions, that will allow the extension of the model

to a switching regime.

The set of D functions {yd(t)}Dd=1 in a second order LFM, with Q = 1, has

elements given as

yd(t) = yd(0)cd(t) + ẏd(0)ed(t) + fd(t, u), (5.1)

where yd(0) and ẏd(0) are the output and the velocity at time t = 0, respec-

tively, known as the initial conditions (IC). In the above solution, we delib-

erately assumed that there is not an independent process wd(x) associated to

the output. The independent process can be included later, once the switching

covariance function has been constructed. The angular frequency is given by

ωd =
√

(4mdκd − v2
d)/(4m

2
d) and the remaining variables follow

cd(t) = e−αdt
[

cos(ωdt) +
αd
ωd

sin(ωdt)
]
, ed(t) =

e−αdt

ωd
sin(ωdt),

fd(t, u) =
Sd
mdωd

∫ t

0

Gd(t− τ)u(τ)dτ =
Sd
mdωd

∫ t

0

e−αd(t−τ) sin[(t− τ)ωd]u(τ)dτ,

with αd = vd/(2md). The uncertainty in the model of equation (5.1) is due to

the fact that the latent force u(t) and the initial conditions yd(0) and ẏd(0) are

not known. Recall that in the LFM, we assume that the latent function u(t)

is sampled from a zero mean Gaussian process prior with covariance function

ku,u(t, t
′).

We assume that the initial conditions, yIC = [y1(0), y2(0), . . . , yD(0), ẏ1(0), ẏ2(0),

. . . , ẏD(0)]>, are independent of u(t) and distributed as a zero mean Gaussian

with covariance KIC,

KIC =

[
KIC

y,y KIC
y,ẏ

KIC
ẏ,y KIC

ẏ,ẏ

]
,
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where the matrices KIC
y,y, KIC

y,ẏ, KIC
ẏ,y and KIC

ẏ,ẏ have entries σyd,yd′ , σyd,ẏd′ , σẏd,yd′

and σẏd,ẏd′ , respectively, that specify the prior covariance between the elements

of yIC. Then, the covariance function between any two output functions, d and

d′ at any two times, t and t′, kyd,yd′ (t, t
′), is given by

kyd,yd′ (t, t
′) = cd(t)cd′(t

′)σyd,yd′ + cd(t)ed′(t
′)σyd,ẏd′ + ed(t)cd′(t

′)σẏd,yd′

+ ed(t)ed′(t
′)σẏd,ẏd′ + kfd,fd′ (t, t

′),

where kfd,fd′ (t, t
′) follows

kfd,fd′ (t, t
′) = K0

∫ t

0

Gd(t− τ)

∫ t′

0

Gd′(t
′ − τ ′)ku,u(t, t′)dτ ′dτ, (5.2)

with K0 = SdSd′/(mdmd′ωdωd′). The covariance function kfd,fd′ (t, t
′) depends

on the covariance function of the latent force u(t). Assuming that the covari-

ance function for the latent function follows a squared-exponential form, like in

chapter 3, ku,u(t, t
′) = exp[−(t− t′)2/`2], then kfd,fd′ (t, t

′) can be computed ana-

lytically. The corresponding expression appears in chapter 3, section 3.3 (see also

publication ii and the supplementary material of publication iv).

In the next section we look to extend the second order LFM to the case where

there can be discontinuities in the latent functions. We do this through switching

between different Gaussian process models to drive the system.

5.2 Switching dynamical latent force models

We now consider switching the system between different latent forces. This allows

us to change the dynamical system and the driving force for each segment. By

constraining the displacement and velocity at each switching time to be the same,

the output functions remain continuous.

5.2.1 Definition of the model

We assume that the input space is divided in a series of non-overlapping intervals

[tq−1, tq]
Q
q=1. During each interval, only one force uq−1(t) out of Q forces is active,

that is, there are {uq−1(t)}Qq=1 forces.2 The force uq−1(t) is activated after time

2Note that we employ the same variable Q that we used to denote the number of latent
functions in the latent force model. In the switching dynamical LFM, the variable Q refers
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5.2. SWITCHING DYNAMICAL LATENT FORCE MODELS

tq−1 (switched on) and deactivated (switched off) after time tq. We can use the

basic model in equation (5.1) to describe the contribution to the output due to

the sequential activation of these forces. A particular output zd(t) at a particular

time instant t, in the interval (tq−1, tq), is expressed as

zd(t) = yqd(t− tq−1) = cqd(t− tq−1)yqd(tq−1) + eqd(t− tq−1)ẏqd(tq−1)

+ f qd (t− tq−1, uq−1).

This equation is assumed to be valid for describing the output only inside the

interval (tq−1, tq). Here we highlighted this idea by including the superscript q

in yqd(t− tq−1) to represent the interval q for which the equation holds, although

later we will omit it to keep a simpler notation. Note that for Q = 1 and t0 = 0,

we recover the original latent force model given in equation (5.1). We also define

the velocity żd(t) at each time interval (tq−1, tq) as

żd(t) = ẏqd(t− tq−1) = gqd(t− tq−1)yqd(tq−1) + hqd(t− tq−1)ẏqd(tq−1)

+ rqd(t− tq−1, uq−1),

where

gd(t) = −e−αdt sin(ωdt)(α
2
dω
−1
d + ωd), hd(t) = −e−αdt

[
αd
ωd

sin(ωdt)− cos(ωdt)

]
,

rd(t) =
Sd
mdωd

d

dt

(∫ t

0

Gd(t− τ)u(τ)dτ

)
.

Given the parameters {{md, vd, κd}Dd=1, {Sd,q−1}D,Qd=1,q=1, {`q−1}Qq=1}, the uncertainty

in the outputs is induced by the prior over the initial conditions yqd(tq−1), ẏqd(tq−1)

for all values of tq−1 and the prior over the latent force uq−1(t) that is active dur-

ing (tq−1, tq). We place Gaussian process priors over each of these latent forces

uq−1(t), assuming independence between them.

For initial conditions, yqd(tq−1) and ẏqd(tq−1), we could assume that they are either

parameters to be estimated or random variables with uncertainty governed by

independent Gaussian distributions with covariance matrices Kq
IC as described in

to forces that act sequentially and in the latent force model, the Q forces act in parallel. Of
course, both type of forces can act simultaneously, but to keep the notation uncluttered, here
we assume there is only one force acting in parallel and Q refers to the forces acting in series.
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5.2. SWITCHING DYNAMICAL LATENT FORCE MODELS

the last section. However, for the class of applications we have in mind: mechan-

ical systems, the outputs should be continuous across the switching points. We

therefore assume that the uncertainty about the initial conditions for the interval

q, is proscribed by the Gaussian process that describes the outputs zd(t) and ve-

locities żd(t) in the previous interval q−1. In particular, we assume that yqd(tq−1)

and ẏqd(tq−1) are Gaussian-distributed with mean values given by yq−1
d (tq−1 −

tq−2) and ẏq−1
d (tq−1 − tq−2), and covariances kzd,zd′ (tq−1, tq′−1) = cov[yq−1

d (tq−1 −
tq−2), yq−1

d′ (tq−1 − tq−2)] and kżd,żd′ (tq−1, tq′−1) = cov[ẏq−1
d (tq−1 − tq−2), ẏq−1

d′ (tq−1 −
tq−2)]. We also consider covariances between zd(tq−1) and żd′(tq′−1), this is, be-

tween positions and velocities for different values of q and d.

As an example, let us assume that we have one output (D = 1) and three switch-

ing intervals (Q = 3) with switching points t0, t1 and t2. At t0, we assume that

yIC follows a Gaussian distribution with mean zero and covariance KIC. From t0

to t1, the output z(t) is described by

z(t) = y1(t− t0) = c1(t− t0)y1(t0) + e1(t− t0)ẏ1(t0) + f 1(t− t0, u0).

The initial condition for the position in the interval (t1, t2) is given by the last

equation evaluated a t1, this is, z(t1) = y2(t1) = y1(t1 − t0). A similar analysis

is used to obtain the initial condition associated to the velocity, ż(t1) = ẏ2(t1) =

ẏ1(t1 − t0). Then, from t1 to t2, the output z(t) is

z(t) = y2(t− t1) = c2(t− t1)y2(t1) + e2(t− t1)ẏ2(t1) + f 2(t− t1, u1),

= c2(t− t1)y1(t1 − t0) + e2(t− t1)ẏ1(t1 − t0) + f 2(t− t1, u1).

Following the same train of thought, the output z(t) from t2 is given as

z(t) = y3(t− t2) = c3(t− t2)y3(t2) + e3(t− t2)ẏ3(t2) + f 3(t− t2, u2),

where y3(t2) = y2(t2 − t1) and ẏ3(t2) = ẏ2(t2 − t1). Figure 5.1 shows an example

of the switching dynamical latent force model scenario. To ensure the continuity

of the outputs, the initial conditions are forced to be equal to the output of the

last interval evaluated at the switching point.
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y1(t− t0)

y2(t− t1)

y3(t− t2)

y1(t0)

y1(t1 − t0)

y2(t1)

y2(t2 − t1)
y3(t2)

z(t)

t0 t1 t2

Figure 5.1: Representation of an output constructed through a switching dynamical latent
force model with Q = 3. The initial conditions yq(tq−1) for each interval are matched to
the value of the output in the last interval, evaluated at the switching point tq−1, this is,
yq(tq−1) = yq−1(tq−1 − tq−2).
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(a) System 1. Samples from the latent force.
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(b) System 2. Samples from the latent force.
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(c) System 1. Samples from the output.
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(d) System 2. Samples from the output.

Figure 5.2: Joint samples of a switching dynamical LFM model with one output, D = 1, and
three intervals, Q = 3, for two different systems. Dashed lines indicate the presence of switching
points. While system 2 responds instantaneously to the input force, system 1 delays its reaction
due to larger inertia.

108



5.2. SWITCHING DYNAMICAL LATENT FORCE MODELS

5.2.2 The covariance function

The derivation of the covariance function for the switching model is rather in-

volved. For continuous output signals, we must take into account constraints at

each switching time. This causes initial conditions for each interval to be depen-

dent on final conditions for the previous interval and induces correlations across

the intervals. This effort is worthwhile though as the resulting model is very

flexible and can take advantage of the switching dynamics to represent a range

of signals.

As a taster, figure 5.2 shows samples from a covariance function of a switching

dynamical latent force model with D = 1 and Q = 3. Note that while the latent

forces (figures 5.2(a) and 5.2(b)) are discrete, the outputs (figures 5.2(c) and

5.2(d)) are continuous and have matching gradients at the switching points. The

outputs are highly nonstationary. The switching times turn out to be parameters

of the covariance function. They can be optimized along with the dynamical

system parameters to match the location of the nonstationarities. We now give

an overview of the covariance function derivation. Details are provided in the

supplementary material, in publication iv.

In general, we need to compute the covariance kzd,zd′ (t, t
′) = cov[zd(t), zd′(t

′)] for

zd(t) in time interval (tq−1, tq) and zd′(t
′) in time interval (tq′−1, tq′). By definition,

this covariance follows

cov[zd(t), zd′(t
′)] = cov

[
yqd(t− tq−1), yq

′

d′(t− tq′−1)
]
.

We assume independence between the latent forces uq(t) and independence be-

tween the initial conditions yIC and the latent forces uq(t).
3 With these condi-

tions, it can be shown4 that the covariance function5 for q = q′ is given as

cqd(t, tq−1)cqd′(t
′, tq−1)kzd,zd′ (tq−1, tq−1) + cqd(t, tq−1)eqd′(t

′, tq−1)kzd,żd′ (tq−1, tq−1)

+eqd(t, tq−1)cqd′(t
′, tq−1)kżd,zd′ (tq−1, tq−1) + eqd(t, tq−1)eqd′(t

′, tq−1)kżd,żd′ (tq−1, tq−1)

+ kqfd,fd′ (t, t
′), (5.3)

3Derivations of these equations are rather involved. In the supplementary material of publi-
cation iv, section 2, we include a detailed description of how to obtain the equations (5.3) and
(5.4)

4See supplementary material of publication iv, section 2.2.1.
5We will write fq

d (t− tq−1, uq−1) as fq
d (t− tq−1), cqd(t− tq−1) as cqd(t, tq−1) and eq

d(t− tq−1)
as eq

d(t, tq−1), for notational simplicity.
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where

kzd,zd′ (tq−1, tq−1) = cov[yqd(tq−1)yqd′(tq−1)],

kzd,żd′ (tq−1, tq−1) = cov[yqd(tq−1)ẏqd′(tq−1)],

kżd,zd′ (tq−1, tq−1) = cov[ẏqd(tq−1)yqd′(tq−1)],

kżd,żd′ (tq−1, tq−1) = cov[ẏqd(tq−1)ẏqd′(tq−1)],

kqfd,fd′ (t, t
′) = cov[f qd (t− tq−1)f qd′(t

′ − tq−1)].

In expression (5.3), kzd,zd′ (tq−1, tq−1) = cov[yq−1
d (tq−1 − tq−2), yq−1

d′ (tq−1 − tq−2)].

Values for kzd,żd′ (tq−1, tq−1), kżd,zd′ (tq−1, tq−1) and kżd,żd′ (tq−1, tq−1) can be obtained

using similar definitions. The covariance kqfd,fd′ (t, t
′) follows an analogous expres-

sion to the one for kfd,fd′ (t, t
′) in equation (5.2), now depending on the covariance

kuq−1,uq−1(t, t
′). We again assume that the covariances for the latent forces follow

the squared-exponential form, with length-scale `q.

When q > q′, we have to take into account the correlation between the initial con-

ditions yqd(tq−1), ẏqd(tq−1) and the latent force uq′−1(t′). This correlation appears

because of the contribution of uq′−1(t′) to the generation of the initial conditions.

It can be shown6 that the covariance function cov[zd(t), zd′(t
′)] for q > q′ follows

cqd(t, tq−1)cq
′

d′(t
′, tq′−1)kzd,zd′ (tq−1, tq′−1) + cqd(t, tq−1)eq

′

d′(t
′, tq′−1)kzd,żd′ (tq−1, tq′−1)

+eqd(t, tq−1)cq
′

d′(t
′, tq′−1)kżd,zd′ (tq−1, tq′−1) + eqd(t, tq−1)eq

′

d′(t
′, tq′−1)kżd,żd′ (tq−1, tq′−1)

+cqd(t, tq−1)X 1
d k

q′

fd,fd′
(tq′−1, t

′) + cqd(t, tq−1)X 2
d k

q′

rd,fd′
(tq′−1, t

′)

+eqd(t, tq−1)X 3
d k

q′

fd,fd′
(tq′−1, t

′) + eqd(t, tq−1)X 4
d k

q′

rd,fd′
(tq′−1, t

′), (5.4)

where

kzd,zd′ (tq−1, tq′−1) = cov[yqd(tq−1)yq
′

d′(tq′−1)],

kzd,żd′ (tq−1, tq′−1) = cov[yqd(tq−1)ẏq
′

d′(tq′−1)],

kżd,zd′ (tq−1, tq′−1) = cov[ẏqd(tq−1)yq
′

d′(tq′−1)],

kżd,żd′ (tq−1, tq′−1) = cov[ẏqd(tq−1)ẏq
′

d′(tq′−1)],

kqrd,fd′ (t, t
′) = cov[rqd(t− tq−1)f qd′(t

′ − tq−1)],

and X 1
d , X 2

d , X 3
d and X 4

d are functions of the form
∑q−q′

n=2

∏q−q′
i=2 xq−i+1

d (tq−i+1−tq−i),

6See supplementary material, section 2.2.2
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with xq−i+1
d being equal to cq−i+1

d , eq−i+1
d , gq−i+1

d or hq−i+1
d , depending on the values

of q and q′.

An identical expression to (5.4) can be obtained for q′ > q. Examples of these

functions for specific values of q and q′ and more details are also given in the

supplementary material. We refer to this model as the switching dynamical latent

force model (SDLFM).

The covariance functions kżd,zd′ (t, t
′), kzd,żd′ (t, t

′) and kżd,żd′ (t, t
′) appearing in

equations (5.3) and (5.4), are obtained by taking derivatives of kzd,zd′ (t, t
′) with

respect to t and t′ (Solak et al., 2003).

The parameters in the SDLFM comprise the parameters of the mass-spring-

damper systems, the sensitivity coefficients, the length-scales of the latent func-

tions, the switching points and the covariance matrix Kq=0
IC , this is θSDLFM =

{{md, vd, κd}Dd=1, {Sd,q−1}D,Qd=1,q=1, {`q−1}Qq=1, {tq−1}Qq=1,K
0
IC}. Given the number of

outputs D and the number of intervals Q, we estimate the parameters θSDLFM

by maximizing the marginal likelihood of the joint Gaussian process {zd(t)}Dd=1

using gradient descent methods, as explained in section 2.2.1. Alternatively, we

can use any of the efficient approximations of chapter 4.

5.3 Segmentation of human movement data

Figure 5.3: Data collection was performed using
a Barrett WAM robot as haptic input device.

In this section, we evaluate the feasi-

bility of the model for motion segmen-

tation with possible applications in the

analysis of human movement data and

imitation learning. To do so, we had

a human teacher take the robot by the

hand and have him demonstrate strik-

ing movements in a cooperative game

of table tennis with another human be-

ing as shown in figure 5.3. We recorded

joint positions, angular velocities, and

angular acceleration of the robot for two independent trials of the same table

tennis exercise. For each trial, we selected four output positions and train several

models for different values of Q, including the latent force model without switches

(Q = 1). We evaluate the quality of the segmentation in terms of the lower bound
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Figure 5.4: Employing the switching dynamical LFM model on the human movement data
collected as in figure 5.3 leads to plausible segmentations of the demonstrated trajectories. The
first row corresponds to the lower bound, latent force and one of four outputs, humeral rotation
(HR), for trial one. Second row shows the same quantities for trial two. In this case, the output
corresponds to shoulder flexion and extension (SFE). Crosses in the bottom of the figure refer to
the number of points used for the approximation of the Gaussian process, in this case K = 50.

for the marginal likelihood appearing in equation (4.8). For computing the en-

tries in Kf ,f , we use the covariance describe in section 5.2.2, while the elements

of covariance Kf ,u are computed using expressions appearing in supplementary

material in publication iv. Figure 5.4 shows the lower bound of the marginal

likelihood, the inferred latent force and one output for trial one (first row) and

the corresponding quantities for trial two (second row). Figures 5.4(a) and 5.4(d)

show peaks for the lower bound of the marginal likelihood at Q = 9 for trial one

and Q = 10 for trial two. As the movement has few gaps and the data has several

output dimensions, it is hard even for a human being to detect the transitions be-

tween movements (unless it is visualized as in a movie). Nevertheless, the model

found a maximum for the lower bound of the marginal likelihood at the correct

instances in time where the human transits between two movements. At these

instances the human usually reacts due to an external stimulus with a large jerk

causing a jump in the forces. As a result, we obtained not only a segmentation of

the movement but also a generative model for table tennis striking movements.
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5.4 Related work

The related work can be divided in different areas, namely, alternative proba-

bilistic methods to tackle the same segmentation problem, Gaussian processes

for change-point detection and nonstationary covariance functions under a pro-

cess convolution framework.

Peters (2007, chapter 2) provides a review of definitions and uses of motor primi-

tives in classical robotics. More up-to-date approaches for segmentation of motor

primitives include Williams et al. (2008) and Chiappa and Peters (2011). The

idea in both methods is to represent the multivariate time series observations as

noisy realizations of an underlying (usually Markov) process(es) with additional

parameters that control the different durations of each primitive. In Williams

et al. (2008), the probabilistic model employed is a factorial Hidden Markov

model, while in Chiappa and Peters (2011) the probabilistic model corresponds

to a linear dynamical system (see Bishop, 2006, for example). Chiappa et al.

(2009) uses a mixture of linear dynamical systems to find similarities in a set of

motion primitives that have been previously segmented. An important difference

of these methodologies with the SDLFM is that those methods are parametric

and driven only by data, while our approach is non-parametric and incorporates

prior knowledge through the second order differential equation.

There has been a recent interest in employing Gaussian processes for detection of

change points in time series analysis, an area of study that relates to some extent

to our model. Some machine learning related papers include Garnett et al. (2010,

2009); Saatçi et al. (2010). Garnett et al. (2010, 2009) deals specifically with how

to construct covariance functions in the presence of change points (see Garnett

et al. (2010), section 4). The authors propose different alternatives according

to the type of change point. From these alternatives, the closest ones to our

work appear in subsections 4.2, 4.3 and 4.4. In subsection 4.2, a mechanism to

keep continuity in a covariance function when there are two regimes described

by different GPs, is proposed. The authors call this covariance continuous condi-

tionally independent covariance function. In our switched latent force model, a

more natural option is to use the initial conditions as the way to transit smoothly

between different regimes. In subsections 4.3 and 4.4, the authors propose covari-

ances that account for a sudden change in the input scale and a sudden change in

the output scale. Both type of changes are automatically included in our model

due to the latent force model construction: the changes in the input scale are
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accounted by the different length-scales of the latent force GP process and the

changes in the output scale are accounted by the different sensitivity parameters.

Importantly, we are also concerned about multiple output systems. It is not clear

how the methods in Garnett et al. (2010) could be extended to the multivariate

case.

On the other hand, Saatçi et al. (2010) proposes an efficient inference procedure

for Bayesian Online Change Point Detection (BOCPD) in which the underly-

ing predictive model (UPM) is a GP. This reference is less concerned about the

particular type of change that is represented by the model: in our application

scenario, the continuity of the covariance function between two regimes must be

assured beforehand.

In the context of single output GPs in the geostatistics literature, the process

convolution construction has been used to develop nonstationary covariances for

spatial domains, either by allowing the parameters of the smoothing kernel θG to

depend on the input location (Higdon, 1998; Higdon et al., 1998; Paciorek and

Schervish, 2004) or by allowing convolutions with stationary Gaussian processes

such that the covariance parameters ψ of such stationary processes depend of

the input location (Fuentes, 2002a,b). A detailed description of both methods is

given by Calder and Cressie (2007).

5.5 Summary

In this chapter, we introduced an extension of the latent force model that allows

for discontinuous latent forces, while imposing continuity in the output functions

that are modeled. The continuity in the outputs is accomplished by matching

the initial conditions of positions and velocities of the current interval, with the

final values of positions and velocities in the previous interval.

A different application for the SDLFM that we might consider as future work is

the modeling of walking movements using motion capture data.
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Chapter 6

Conclusions and Future Work

This final chapter summarizes the research work carried out in the thesis and

outlines some ideas for future research.

Conclusions

In this thesis we have introduced a framework for developing covariance func-

tions for multivariate Gaussian process regression. By establishing this multi-

variate prior, we have proposed a powerful probabilistic methodology for making

simultaneous predictions providing also estimates for the uncertainty of several

correlated variables. Important features of the model are the ability to incorpo-

rate prior knowledge through the specification of sensible smoothing kernels, and

the non-parametric formulation in terms of kernel matrices.

In chapter 2 we introduced the convolved multiple output covariance as the

covariance obtained from convolving smoothing kernels specific to each output

with covariance functions common to all outputs. Alternatives that lead to valid

covariance functions for multiple outputs include the assumption of independence

of the outputs, the linear model of coregionalization and process convolutions. All

these alternatives can be seen as particular cases of the CMOC covariance. Pub-

lications i, ii, iii and v show experimental results that confirm that, in general,

making predictions with Gaussian processes that employ the CMOC covariance,

convey better performances or at least as good performances as the ones ob-

tained by making predictions with Gaussian processes that employ alternative

covariances.

In chapter 3 we proposed the use of Green’s functions associated to differential
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equations as potential smoothing kernel functions in the CMOC construction. By

knowing in advance the type of differential equation that might rule the behavior

of the outputs, we can construct a sensible covariance function that can be applied

to problem specific domains. In some real world problems, we actually have

expert-knowledge about the dynamics that govern the outputs, like applications

in systems biology, where interactions between genes and proteins can be modeled

through first order differential equations (Barenco et al., 2006; Alon, 2006). In

other scenarios, though, we just might want to include what we believe is the

approximated dynamics of the system, like in motion capture data and robotics,

where we assume the outputs follow second order differential equations. Notably,

we have encoded dynamical systems in a multivariable covariance function that,

embedded within the Gaussian process machinery, results in a generative model

for the data.

In chapter 4, we provided different efficient approximations to make the mul-

tivariate Gaussian process regression methodology practical. In a set of approx-

imations, we gain efficiency by modifying the marginal likelihood of the model

and on a further approximation, by proposing a lower bound of the marginal like-

lihood. Experimental results in publications i, iii and v show that considerable

speed-ups can be obtained by employing these approximations in the training

phase as well as in the prediction stage.

Finally in chapter 5, we extended the CMOC to deal with nonstationary multi-

variate time series. Our motivation for this extension was twofold: on one hand,

we wanted to provide the latent force model framework with the ability to han-

dle discontinuous forces, an important application for generating natural-looking

walking animated movements, and, on the other hand, we wanted to use the

model for segmenting motor primitives as a first step towards a machine learning

approach for imitation learning in robotics.

Future work

We envisage the future work following two complementary directions, the theo-

retical and the applied one.

Model selection. Free parameters in the CMOC include the number of latent pro-

cesses Q, whose covariance functions have distinct parameter vectors {ψq}Qq=1,

and the number of latent functions Rq, which, for a fixed value of q, share the
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same parameter vector ψq. In some practical scenarios, we might know in advance

how many latent functions should we use, because those functions represent phys-

ical quantities, like in a network of genes, for which the latent functions represent

transcription factor proteins. However, in a black box problem, we might need

to use cross-validation to assess the values of Q and Rq, which turns out to be an

expensive procedure. One might think in proposing “information criteria” ideas,

employing concepts like Bayesian information criteria or the Akaike information

criteria (Bishop, 2006). A first attempt in that direction have been proposed by

Chai et al. (2009) for the intrinsic coregionalization model. This is an area of

research that requires further study.

Sparsity priors in latent force models. Having assumed a number of latent forces

in the latent force model framework, one wonders if the influence of the latent

forces is equal for all the outputs. The parameter that to some extent quantifies

the relative strength of a force q over an output d is the sensitivity parameter

Sd,q. In the way in which we estimate these parameters in the thesis, we implic-

itly assume that they follow a uniform prior. In many applications, though, this

prior is inadequate. For example, it is well known that in a network of genes,

only certain proteins interact with certain genes, this is, the network of interac-

tions between proteins and genes is not dense. Therefore, we are interested in

exploring priors over the sensitivity parameters that encourage sparsity. These

priors could in principle be integrated in the variational approximation of chapter

4 and develop a practical system for performing sparse inference of gene networks

involving thousands of genes and hundreds of transcription factors.

Human motion capture data. The latent force model of order two was developed

in publication ii as a generative model for human movement. A thoughtful evalu-

ation of this model is yet to be completed. We would like to push the boundaries

of the model and test it in scenarios of transfer learning, for example, learning

models for walking and running and then under certain restrictions for certain

poses generate movements that look more realistic. We believe our model can

provide a rich family of movements because it incorporates ideas from the dy-

namics of the movements. This is a hot topic of research in computer animation

(Brubaker et al., 2009).
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Motor primitives. Probabilistic models for description of motor primitives are

attracting the attention from researches in the area of humanoid robotics. We

provided an extension of the latent force model, that allows for segmenting motor

primitives in a multivariate time series. Once the motor primitives are segmented,

the next step is a process of labeling them so that they can be combined to gen-

erate more complex movements. A method that admits the identification of the

motor primitives within the switching dynamical latent force model methodology

constitutes a promising area of research.
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Abstract

We present a sparse approximation approach for dependent output Gaussian pro-
cesses (GP). Employing a latent function framework, we apply the convolution
process formalism to establish dependencies between output variables, where each
latent function is represented as a GP. Based on these latent functions, we establish
an approximation scheme using a conditional independence assumption between
the output processes, leading to an approximation of the full covariance which is
determined by the locations at which the latent functions are evaluated. We show
results of the proposed methodology for synthetic data and real world applications
on pollution prediction and a sensor network.

1 Introduction

We consider the problem of modeling correlated outputs from a single Gaussian process (GP). Appli-
cations of modeling multiple outputs include multi-task learning (seee.g.[1]) and jointly predicting
the concentration of different heavy metal pollutants [5]. Modelling multiple output variables is a
challenge as we are required to compute cross covariances between the different outputs. In geo-
statistics this is known ascokriging. Whilst cross covariances allow us to improve our predictions
of one output given the others because the correlations between outputs are modelled [6, 2, 15, 12]
they also come with a computational and storage overhead. The main aim of this paper is to address
these overheads in the context of convolution processes [6, 2].

One neat approach to account for non-trivial correlations between outputs employs convolution pro-
cesses (CP). When using CPs each output can be expressed as the convolution between a smoothing
kernel and alatent function [6, 2]. Let’s assume that the latent function is drawn from a GP. If
we also share the same latent function across several convolutions (each with a potentially differ-
ent smoothing kernel) then, since a convolution is a linear operator on a function, the outputs of
the convolutions can be expressed as a jointly distributed GP. It is this GP that is used to model
the multi-output regression. This approach was proposed by [6, 2] who focussed on a white noise
process for the latent function.

Even though the CP framework is an elegant way for constructing dependent output processes, the
fact that the full covariance function of the joint GP must be considered results in significant storage
and computational demands. ForQ output dimensions andN data points the covariance matrix
scales asQN leading toO(Q3N3) computational complexity andO(N2Q2) storage. Whilst other
approaches to modeling multiple output regression are typically more constraining in the types of
cross covariance that can be expressed [1, 15], these constraints also lead to structured covariances
functions for which inference and learning are typically more efficient (typically forN > Q these
methods haveO(N3Q) computation andO(N2Q) storage). We are interested in exploiting the
richer class of covariance structures allowed by the CP framework, but without the additional com-
putational overhead they imply.



We propose a sparse approximation for the full covariance matrix involved in the multiple output
convolution process, exploiting the fact that each of the outputs is conditional independent of all oth-
ers given the input process. This leads to an approximation for the covariance matrix which keeps
intact the covariances of each output and approximates the cross-covariances terms with a low rank
matrix. Inference and learning can then be undertaken with the same computational complexity as
a set of independent GPs. The approximation turns out to be strongly related to the partially in-
dependent training conditional (PITC) [10] approximation for a single output GP. This inspires us
to consider a further conditional independence function across data points that leads to an approx-
imation which shares the form of the fully independent training conditional (FITC) approximation
[13, 10] reducing computational complexity toO(NQM2) and storage toO(NQM) with M rep-
resenting a user specified value.

To introduce our sparse approximation some review of the CP framework is required (Section 2).
Then in Section 3, we present sparse approximations for the multi-output GP. We discuss relations
with other approaches in Section 4. Finally, in Section 5, we demonstrate the approach on both
synthetic and real datasets.

2 Convolution Processes

Consider a set ofQ functions{fq(x)}Q
q=1, where each function is expressed as the convolution

between a smoothing kernel{kq(x)}Q
q=1, and a latent functionu(z),

fq(x) =
∫ ∞

−∞
kq(x− z)u(z)dz.

More generally, we can consider the influence of more than one latent function,{ur(z)}R
r=1, and

corrupt each of the outputs of the convolutions with an independent process (which could also in-
clude a noise term),wq(x), to obtain

yq(x) = fq(x) + wq(x) =
R∑

r=1

∫ ∞

−∞
kqr(x− z)ur(z)dz + wq(x). (1)

The covariance between two different functionsyq(x) andys(x′) is then recovered as

cov [yq(x), ys(x′)] = cov [fq(x), fs(x′)] + cov [wq(x), ws(x′)] δqs,

where

cov [fq(x), fs(x′)] =
R∑

r=1

R∑
p=1

∫ ∞

−∞
kqr(x− z)

∫ ∞

−∞
ksp(x′ − z′) cov [ur(z), up(z′)] dz′dz (2)

This equation is a general result; in [6, 2] the latent functionsur(z) are assumed as independent
white Gaussian noise processes,i.e. cov [ur(z), up(z′)] = σ2

ur
δrpδz,z′ , so the expression (2) is

simplified as

cov [fq(x), fs(x′)] =
R∑

r=1

σ2
ur

∫ ∞

−∞
kqr(x− z)ksr(x′ − z)dz.

We are going to relax this constraint on the latent processes, we assume that each inducing function is
an independent GP,i.e. cov [ur(z), up(z′)] = kurup

(z, z′)δrp, wherekurur
(z, z′) is the covariance

function forur(z). With this simplification, (2) can be written as

cov [fq(x), fs(x′)] =
R∑

r=1

∫ ∞

−∞
kqr(x− z)

∫ ∞

−∞
ksr(x′ − z′)kurur

(z, z′)dz′dz. (3)

As well as this correlation across outputs, the correlation between the latent function,ur(z), and
any given output,fq(x), can be computed,

cov [fq(x), ur(z))] =
∫ ∞

−∞
kqr(x− z′)kurur (z

′, z)dz′. (4)



3 Sparse Approximation

Given the convolution formalism, we can construct a full GP over the set of outputs. The likelihood
of the model is given by

p(y|X,φ) = N (0,Kf ,f + Σ), (5)

wherey =
[
y>1 , . . . ,y>Q

]>
is the set of output functions withyq = [yq(x1), . . . , yq(xN )]>;

Kf ,f ∈ <QN×QN is the covariance matrix relating all data points at all outputs, with elements
cov [fq(x), fs(x′)] in (3); Σ = Σ ⊗ IN , whereΣ is a diagonal matrix with elements{σ2

q}
Q
q=1; φ

is the set of parameters of the covariance matrix andX = {x1, . . . ,xN} is the set of training input
vectors at which the covariance is evaluated.

The predictive distribution for a new set of input vectorsX∗ is [11]

p(y∗|y,X,X∗,φ) = N
(
Kf∗,f (Kf ,f + Σ)−1y,Kf∗,f∗ −Kf∗,f (Kf ,f + Σ)−1Kf ,f∗ + Σ

)
,

where we have usedKf∗,f∗ as a compact notation to indicate when the covariance matrix is evalu-
ated at the inputsX∗, with a similar notation forKf∗,f . Learning from the log-likelihood involves
the computation of the inverse ofKf ,f + Σ, which grows with complexityO((NQ)3). Once the
parameters have been learned, prediction isO(NQ) for the predictive mean andO((NQ)2) for the
predictive variance.

Our strategy for approximate inference is to exploit the natural conditional dependencies in the
model. If we had observed the entire length of each latent function,ur(z), then from (1) we see that
eachyq(x) wouldbe independent,i.e.we can write,

p({yq (x)}Q
q=1 | {ur (z)}R

r=1 ,θ) =
Q∏

q=1

p(yq (x) | {ur (z)}R
r=1 ,θ),

whereθ are the parameters of the kernels and covariance functions. Our key assumption is that this
independence will hold even if we have only observedM samples fromur(z) rather than the whole
function. The observed values of theseM samples are then marginalized (as they are for the exact
case) to obtain the approximation to the likelihood. Our intuition is that the approximation should
be more accurate for largerM and smoother latent functions, as in this domain the latent function
could be very well characterized from only a few samples.

We define u =
[
u>1 , . . . ,u>R

]>
as the samples from the latent function withur =

[ur(z1), . . . , ur(zM )]>; Ku,u is then the covariance matrix between the samples from the latent
functionsur(z), with elements given bykurur

(z, z′); Kf ,u = K>
u,f are the cross-covariance ma-

trices between the latent functionsur(z) and the outputsfq(x), with elementscov [fq(x), ur(z)] in
(4) andZ = {z1, . . . , zM} is the set of input vectors at which the covarianceKu,u is evaluated.

We now make the conditional independence assumption given the samples from the latent functions,

p(y|u,Z,X,θ) =
Q∏

q=1

p(yq|u,Z,X,θ) =
Q∏

q=1

N
(
Kfq,uK−1

u,uu,Kfq,fq −Kfq,uK−1
u,uKu,fq + σ2

qI
)
.

We rewrite this product as a single Gaussian with a block diagonal covariance matrix,

p(y|u,Z,X,θ) = N
(
Kf ,uK−1

u,uu,D + Σ
)

(6)

whereD = blockdiag
[
Kf ,f −Kf ,uK−1

u,uKu,f

]
, and we have used the notationblockdiag [G] to

indicate the block associated with each output of the matrixG should be retained, but all other
elements should be set to zero. We can also write this asD =

[
Kf ,f −Kf ,uK−1

u,uKu,f

]
�M where

� is the Hadamard product andM = IQ⊗1N , 1N being theN×N matrix of ones and⊗ being the
Kronecker product. We now marginalize the values of the samples from the latent functions by using
their process priors,i.e.p(u|Z) = N (0,Ku,u). This leads to the following marginal likelihood,

p(y|Z,X,θ) =
∫

p(y|u,Z,X,θ)p(u|Z)du = N
(
0,D + Kf ,uK−1

u,uKu,f + Σ
)
. (7)



Notice that, compared to (5), the full covariance matrixKf ,f has been replaced by the low rank co-
varianceKf ,uK−1

u,uKu,f in all entries except in the diagonal blocks corresponding toKfq,fq . When
using the marginal likelihood for learning, the computation load is associated to the calculation of
the inverse ofD. The complexity of this inversion isO(N3Q) + O(NQM2), storage of the matrix
is O(N2Q) + O(NQM). Note that if we setM = N these reduce toO(N3Q) andO(N2Q)
respectively which matches the computational complexity of applyingQ independent GPs to model
the multiple outputs.

Combining eq. (6) withp(u|Z) using Bayes theorem, the posterior distribution overu is obtained
as

p(u|y,X,Z,θ) = N
(
Ku,uA−1Ku,f (D + Σ)−1y,Ku,uA−1Ku,u

)
(8)

whereA = Ku,u + Ku,f (D + Σ)−1Kf ,u. The predictive distribution is expressed through the
integration of (6), evaluated atX∗, with (8), giving

p(y∗|y,X,X∗,Z,θ) =
∫

p(y∗|u,Z,X∗,θ)p(u|y,X,Z,θ)du

=N
(
Kf∗,uA−1Ku,f (D + Σ)−1y,D∗ + Kf∗,uA−1Ku,f∗ + Σ

)
(9)

with D∗ = blockdiag
[
Kf∗,f∗ −Kf∗,uK−1

u,uKu,f∗

]
.

The functional form of (7) is almost identical to that of the PITC approximation [10], with the
samples we retain from the latent function providing the same role as theinducing valuesin the
partially independent training conditional (PITC) approximation. This is perhaps not surprising
given that the nature of the conditional independence assumptions in PITC is similar to that we have
made. A key difference is that in PITC it is not obvious which variables should be grouped together
when making the conditional independence assumption, here it is clear from the structure of the
model that each of the outputs should be grouped separately. However, the similarities are such that
we find it convenient to follow the terminology of [10] and also refer to our approximation as a PITC
approximation.

We have already noted that our sparse approximation reduces the computational complexity of multi-
output regression with GPs to that of applying independent GPs to each output. For larger data sets
the N3 term in the computational complexity and theN2 term in the storage is still likely to be
prohibitive. However, we can be inspired by the analogy of our approach to the PITC approximation
and consider a more radical factorization of the outputs. In the fully independent training conditional
(FITC) [13, 14] a factorization across the data points is assumed. For us that would lead to the
following expression for conditional distribution of the output functions given the inducing variables,
p(y|u,Z,X,θ) =

∏Q
q=1

∏N
n=1 p(yqn|u,Z,X,θ) which can be briefly expressed through (6) with

D = diag
[
Kf ,f −Kf ,uK−1

u,uKu,f

]
=

[
Kf ,f −Kf ,uK−1

u,uKu,f

]
�M, with M = IQ⊗IN . Similar

equations are obtained for the posterior (8), predictive (9) and marginal likelihood distributions (7)
leading to the Fully Independent Training Conditional (FITC) approximation [13, 10]. Note that
the marginal likelihood might be optimized both with respect to the parameters associated with the
covariance matrices and with respect toZ. In supplementary material we include the derivatives of
the marginal likelihood wrt the matricesKf ,f ,Ku,f andKu,u.

4 Related work

There have been several suggestions for constructing multiple output GPs [2, 15, 1]. Under the
convolution process framework, the semiparametric latent factor model (SLFM) proposed in [15]
corresponds to a specific choice for the smoothing kernel function in (1) namely,kqr(x) = φqrδ(x).
The latent functions are assumed to be independent GPs and in such a case,cov [fq(x), fs(x′)] =∑

r φqrφsrkurur (x,x′). This can be written using matrix notation asKf ,f = (Φ⊗I)Ku,u(Φ>⊗I).
For computational speed up the informative vector machine (IVM) is employed [8].

In the multi-task learning model (MTLM) proposed in [1], the covariance matrix is expressed as
Kf ,f = Kf ⊗ k(x,x′), with Kf being constrained positive semi-definite andk(x,x′) a covariance
function over inputs. The Nyström approximation is applied tok(x,x′). As stated in [1] with respect
to SLFM, the convolution process is related with MTLM when the smoothing kernel function is



given again bykqr(x) = φqrδ(x) and there is only one latent function with covariancekuu(x,x′) =
k(x,x′). In this way,cov [fq(x), fs(x′)] = φqφsk(x,x′) and in matrix notationKf ,f = ΦΦ> ⊗
k(x,x′). In [2], the latent processes correspond to white Gaussian noises and the covariance matrix
is given by eq. (3). In this work, the complexity of the computational load is not discussed. Finally,
[12] use a similar covariance function to the MTLM approach but use an IVM style approach to
sparsification.

Note that in each of the approaches detailed above aδ function is introduced into the integral. In the
dependent GP model of [2] it is introduced in the covariance function. Our approach considers the
more general case when neither kernel nor covariance function is given by theδ function.

5 Results

For all our experiments we considered squared exponential covariance functions for the latent pro-

cess of the formkurur (x,x′) = exp
[
− 1

2 (x− x′)> Lr (x− x′)
]

, whereLr is a diagonal matrix

which allows for different length-scales along each dimension. The smoothing kernel had the same

form,kqr(τ ) = Sqr|Lqr|1/2

(2π)p/2 exp
[
− 1

2τ>Lqrτ
]

, whereSqr ∈ R andLqr is a symmetric positive def-
inite matrix. For this kernel/covariance function combination the necessary integrals are tractable
(see supplementary material).

We first setup a toy problem in which we evaluate the quality of the prediction and the speed of
the approximation. The toy problem consists ofQ = 4 outputs, one latent function,R = 1, and
N = 200 observation points for each output. The training data was sampled from the full GP with
the following parameters,S11 = S21 = 1, S31 = S41 = 5, L11 = L21 = 50, L31 = 300, L41 = 200
for the outputs andL1 = 100 for the latent function. For the independent processes,wq (x), we
simply added white noise with variancesσ2

1 = σ2
2 = 0.0125, σ2

3 = 1.2 andσ2
4 = 1. For the sparse

approximations we usedM = 30 fixed inducing points equally spaced between the range of the
input andR = 1. We sought the kernel parameters through maximizing the marginal likelihood
using a scaled conjugate gradient algorithm. For test data we removed a portion of one output as
shown in Figure 1 (points in the interval[−0.8, 0] were removed). The predictions shown correspond
to the full GP (Figure 1(a)), an independent GP (Figure 1(b)), the FITC approximation (Figure 1(c))
and the PITC approximation (Figure 1(d)). Due to the strong dependencies between the signals, our
model is able to capture the correlations and predicts accurately the missing information.

Table 1 shows prediction results over an independent test set. We used 300 points to compute the
standarized mean square error (SMSE) [11] and ten repetitions of the experiment, so that we also
included one standard deviation for the ten repetitions. The training times for iteration of each model
are1.45 ± 0.23 secs for the full GP,0.29 ± 0.02 secs for the FITC and0.48 ± 0.01 for the PITC.
Table 1, shows that the SMSE of the sparse approximations is similar to the one obtained with the
full GP with a considerable reduction of training times.

Method Output 1 Output 2 Output 3 Output 4
Full GP 1.07± 0.08 0.99± 0.03 1.12± 0.07 1.05± 0.07
FITC 1.08± 0.09 1.00± 0.03 1.13± 0.07 1.04± 0.07
PITC 1.07± 0.08 0.99± 0.03 1.12± 0.07 1.05± 0.07

Table 1: Standarized mean square error (SMSE) for the toy problem over an independent test set. All numbers
are to be multiplied by10−2. The experiment was repeated ten times. Table included the value of one standard
deviation over the ten repetitions.

We now follow a similar analysis for a dataset consisting of weather data collected from a sensor net-
work located on the south coast of England. The network includes four sensors (named Bramblemet,
Sotonmet, Cambermet and Chimet) each of which measures several environmental variables [12].
We selected one of the sensors signals, tide height, and applied the PITC approximation scheme
with an additionalsquared exponentialindependent kernel for eachwq (x) [11]. HereQ = 4 and
we choseN = 1000 of the4320 for the training set, leaving the remaining points for testing. For
comparison we also trained a set of independent GP models. We followed [12] in simulating sensor
failure by introducing some missing ranges for these signals. In particular, we have a missing range
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(a) Output 4 using the full GP
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(b) Output 4 using an independent GP
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(c) Output 4 using the FITC approximation
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(d) Output 4 using the PITC approximation

Figure 1: Predictive mean and variance using the full multi-output GP, the sparse approximation and an inde-
pendent GP for output 4. The solid line corresponds to the mean predictive, the shaded region corresponds to
2 standard deviations away from the mean and the dash line is the actual value of the signal without noise. The
dots are the noisy training points. There is a range of missing data in the interval[−0.8, 0.0]. The crosses in
figures 1(c) and 1(d) corresponds to the locations of the inducing inputs.

of [0.6, 1.2] for the Bramblemet tide height sensor and[1.5, 2.1] for the Cambermet. For the other
two sensors we used all1000 training observations. For the sparse approximation we tookM = 100
equally spaced inducing inputs. We see from Figure 2 that the PITC approximation captures the de-
pendencies and predicts closely the behavior of the signal in the missing range. This contrasts with
the behavior of the independent model, which is not able to follow the original signal.

As another example we employ the Jura dataset, which consists of measurements of concentrations
of several heavy metals collected in the topsoil of a14.5 km2 region of the Swiss Jura. The data is
divided into a prediction set (259 locations) and a validation set (100 locations)1. In a typical situ-
ation, referred asundersampledor heterotopiccase, a few expensive measurements of the attribute
of interest are supplemented by more abundant data on correlated attributes that are cheaper to sam-
ple. We follow the experiments described in [5, p. 248,249] in which aprimary variable(cadmium
and copper) at prediction locations in conjunction with somesecondary variables(nickel and zinc
for cadmium; lead, nickel and zinc for copper) at prediction and validation locations, are employed
to predict the concentration of the primary variable at validation locations. We compare results of
independent GP, the PITC approximation, the full GP and ordinary co-kriging. For the PITC ex-
periments, ak-meansprocedure is employed first to find the initial locations of the inducing values
and then these locations are optimized in the same optimization procedure used for the parameters.
Each experiment is repeated ten times. The results for ordinary co-kriging were obtained from [5,
p. 248,249]. In this case, no values for standard deviation are reported. Figure 3 shows results of
prediction for cadmium (Cd) and copper (Cu). From figure 3(a), it can be noticed that using 50 in-
ducing values, the approximation exhibits a similar performance to the co-kriging method. As more

1This data is available athttp://www.ai-geostats.org/
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(a) Bramblemet using an independent GP
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(b) Bramblemet using PITC

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
id

e 
H

ei
gh

t (
m

)

Time (days)

(c) Cambermet using an independent GP
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(d) Cambermet using PITC

Figure 2: Predictive Mean and variance using independent GPs and the PITC approximation for the tide height
signal in the sensor dataset. The dots indicate the training observations while the dash indicates the testing
observations. We have emphasized the size of the training points to differentiate them from the testing points.
The solid line corresponds to the mean predictive. The crosses in figures 2(b) and 2(d) corresponds to the
locations of the inducing inputs.

inducing values are included, the approximation follows the performance of the full GP, as it would
be expected. From figure 3(b), it can be observed that, although the approximation is better that the
independent GP, it does not obtain similar results to the full GP. Summary statistics of the prediction
data ([5, p. 15]) shows higher variability for the copper dataset than for the cadmium dataset, which
explains in some extent the different behaviors.
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Figure 3: Mean absolute error and standard deviation for ten repetitions of the experiment for the Jura dataset
In the bottom of each figure, IGP stands for independent GP, P(M ) stands for PITC withM inducing values,
FGP stands for full GP and CK stands for ordinary co-kriging (see [5] for detailed description).



6 Conclusions

We have presented a sparse approximation for multiple output GPs, capturing the correlated in-
formation among outputs and reducing the amount of computational load for prediction and opti-
mization purposes. The reduction in computational complexity for the PITC approximation is from
O(N3Q3) to O(N3Q). This matches the computational complexity for modeling with independent
GPs. However, as we have seen, the predictive power of independent GPs is lower.

Linear dynamical systems responses can be expressed as a convolution between the impulse re-
sponse of the system with some input function. This convolution approach is an equivalent way of
representing the behavior of the system through a linear differential equation. For systems involving
high amounts of coupled differential equations [4], the approach presented here is a reasonable way
of obtaining approximate solutions and incorporating prior domain knowledge to the model.

One could optimize with respect to positions of the values of the latent functions. As the input
dimension grows, it might be more difficult to obtain an acceptable response. Some solutions to this
problem have already been proposed [14].
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Abstract

Purely data driven approaches for machine
learning present difficulties when data is
scarce relative to the complexity of the model
or when the model is forced to extrapolate.
On the other hand, purely mechanistic ap-
proaches need to identify and specify all the
interactions in the problem at hand (which
may not be feasible) and still leave the is-
sue of how to parameterize the system. In
this paper, we present a hybrid approach us-
ing Gaussian processes and differential equa-
tions to combine data driven modelling with
a physical model of the system. We show how
different, physically-inspired, kernel func-
tions can be developed through sensible, sim-
ple, mechanistic assumptions about the un-
derlying system. The versatility of our ap-
proach is illustrated with three case studies
from computational biology, motion capture
and geostatistics.

1 Introduction

Traditionally, the main focus in machine learning
has been model generation through a data driven
paradigm. The usual approach is to combine a data
set with a (typically fairly flexible) class of models
and, through judicious use of regularization, make use-
ful predictions on previously unseen data. There are
two key problems with purely data driven approaches.
Firstly, if data is scarce relative to the complexity of
the system we may be unable to make accurate predic-
tions on test data. Secondly, if the model is forced to

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

extrapolate, i.e. make predictions in a regime in which
data has not been seen yet, performance can be poor.

Purely mechanistic models, i.e. models which are in-
spired by the underlying physical knowledge of the
system, are common in many areas such as chem-
istry, systems biology, climate modelling and geophys-
ical sciences, etc. They normally make use of a fairly
well characterized physical process that underpins the
system, typically represented with a set of differential
equations. The purely mechanistic approach leaves us
with a different set of problems to those from the data
driven approach. In particular, accurate description
of a complex system through a mechanistic modelling
paradigm may not be possible: even if all the physical
processes can be adequately described, the resulting
model could become extremely complex. Identifying
and specifying all the interactions might not be feasi-
ble, and we would still be faced with the problem of
identifying the parameters of the system.

Despite these problems, physically well characterized
models retain a major advantage over purely data
driven models. A mechanistic model can enable ac-
curate prediction even in regions where there may be
no available training data. For example, Pioneer space
probes have been able to enter different extra terres-
trial orbits despite the absence of data for these orbits.

In this paper we advocate an alternative approach.
Rather than relying on an exclusively mechanistic
or data driven approach we suggest a hybrid system
which involves a (typically overly simplistic) mechanis-
tic model of the system which can easily be augmented
through machine learning techniques. We will start by
considering two dynamical systems, both simple latent
variable models, which incorporate first and second or-
der differential equations. Our inspiration is the work
of (Lawrence et al., 2007; Gao et al., 2008) who en-
coded a first order differential equation in a Gaussian
process (GP). However, their aim was to construct an
accurate model of transcriptional regulation, whereas
ours is to make use of the mechanistic model to in-
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corporate salient characteristics of the data (e.g. in a
mechanical system inertia) without necessarily associ-
ating the components of our mechanistic model with
actual physical components of the system. For exam-
ple, for a human motion capture dataset we develop
a mechanistic model of motion capture that does not
exactly replicate the physics of human movement, but
nevertheless captures salient features of the movement.
Having shown how first and second order dynamical
systems can be incorporated in a GP, we finally show
how partial differential equations can also be incorpo-
rated for modelling systems with multiple inputs.

2 Latent Variables and Physical
Systems

From the perspective of machine learning our approach
can be seen as a type of latent variable model. In a
latent variable model we may summarize a high dimen-
sional data set with a reduced dimensional represen-
tation. For example, if our data consists of N points
in a Q dimensional space we might seek a linear rela-
tionship between the data, Y ∈ RN×Q, and a reduced
dimensional representation, F ∈ RN×R, where R < Q.
From a probabilistic perspective this involves an as-
sumption that we can represent the data as

Y = FW + E, (1)

where E is a matrix-variate Gaussian noise: each col-
umn, ε:,q (1 ≤ q ≤ Q), is a multi-variate Gaussian
with zero mean and covariance Σ, i.e. ε:,q ∼ N (0,Σ).
The usual approach, as undertaken in factor analysis
and principal component analysis (PCA), to dealing
with the unknowns in this model is to integrate out F
under a Gaussian prior and optimize with respect to
W ∈ RR×Q (although it turns out that for a non-linear
variant of the model it can be convenient to do this the
other way around, see e.g. (Lawrence, 2005)). If the
data has a temporal nature, then the Gaussian prior in
the latent space could express a relationship between
the rows of F, ftn = ftn−1 + η, where η ∼ N (0,C)
and ftn is the n-th row of F, which we associate with
time tn. This is known as the Kalman filter/smoother.
Normally the times, tn, are taken to be equally spaced,
but more generally we can consider a joint distribution
for p (F|t), t = [t1 . . . tN ]>, which has the form of a
Gaussian process (GP),

p (F|t) =
R∏
r=1

N
(
f:,r|0,Kf:,r,f:,r

)
,

where we have assumed zero mean and independence
across the R dimensions of the latent space. The GP
makes explicit the fact that the latent variables are
functions, {fr(t)}Rr=1, and we have now described them

with a process prior. The notation used, f:,r, indicates
the r-th column of F, and represents the values of
that function for the r-th dimension at the times given
by t. The matrix Kf:,r,f:,r is the covariance function
associated to fr(t) computed at the times given in t.

Such a GP can be readily implemented. Given the co-
variance functions for {fr(t)} the implied covariance
functions for {yq(t)} are straightforward to derive. In
(Teh et al., 2005) this is known as a semi-parametric
latent factor model (SLFM), although their main fo-
cus is not the temporal case. Historically the Kalman
filter approach has been preferred, perhaps because of
its linear computational complexity in N . However,
recent advances in sparse approximations have made
the general GP framework practical (see (Quiñonero
Candela and Rasmussen, 2005) for a review).

So far the model described relies on the latent variables
to provide the dynamic information. Our main contri-
bution is to include a further dynamical system with
a mechanistic inspiration. We now use a mechanical
analogy to introduce it. Consider the following phys-
ical interpretation of (1): the latent functions, fr(t),
are R forces and we observe the displacement of Q
springs, yq(t), to the forces. Then we can reinterpret
(1) as the force balance equation, YD = FS+Ẽ. Here
we have assumed that the forces are acting, for exam-
ple, through levers, so that we have a matrix of sen-
sitivities, S ∈ RR×Q, and a diagonal matrix of spring
constants, D ∈ RQ×Q. The original model is recovered
by setting W = SD−1 and ε̃:,q ∼ N

(
0,D>ΣD

)
. The

model can be extended by assuming that the spring is
acting in parallel with a damper and that the system
has mass, allowing us to write,

FS = ŸM + ẎC + YD + ε, (2)

where M and C are diagonal matrices of masses and
damping coefficients respectively, Ẏ ∈ RN×Q is the
first derivative of Y w.r.t. time and Ÿ is the second
derivative. The second order mechanical system that
this model describes will exhibit several characteris-
tics which are impossible to represent in the simpler
latent variable model given by (1), such as inertia and
resonance. This model is not only appropriate for
data from mechanical systems. There are many analo-
gous systems which can also be represented by second
order differential equations, e.g. Resistor-Inductor-
Capacitor circuits. A unifying characteristic for all
these models is that the system is beign forced by la-
tent functions, {fr(t)}Rr=1. Hence, we refer to them as
latent force models (LFMs).

One way of thinking of our model is to consider pup-
petry. A marionette is a representation of a human
(or animal) controlled by a limited number of inputs
through strings (or rods) attached to the character.
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This limited number of inputs can lead to a wide range
of character movements. In our model, the data is the
movements of the marionette, and the latent forces are
the inputs to the system from the puppeteer.

Finally, note that it is of little use to include dynam-
ical models of the type specified in (2) if their effects
cannot be efficiently incorporated into the inference
process. Fortunately, as we will see in the case studies,
for an important class of covariance functions it is an-
alytically tractable to compute the implied covariance
functions for {yq(t)}Qq=1. Then, given the data a conju-
gate gradient descent algorithm can be used to obtain
the hyperparameters of the model which minimize the
minus log-likelihood, and inference is performed based
on standard GP regression techniques.

3 First Order Dynamical System

A single input module is a biological network motif
where the transcription of a number of genes is driven
by a single transcription factor. In (Barenco et al.,
2006) a simple first order differential equation was
proposed to model this situation. Then (Lawrence et
al., 2007; Gao et al., 2008) suggested that inference of
the latent transcription factor concentration should be
handled using GPs. In effect their model can be seen as
a latent force model based on a first order differential
equation with a single latent force. Here we consider
the extension of this model to multiple latent forces.
As a mechanistic model, this is a severe over simpli-
fication of the physical system: transcription factors
are known to interact in a non linear manner. Despite
this we will be able to uncover useful information. Our
model is based on the following differential equation,

dyq(t)
dt

+Dqyq(t) = Bq +
R∑
r=1

Srqfr(t). (3)

Here the latent forces, fr(t), represent protein con-
centration (which is difficult to observe directly), the
outputs, yq(t), are the mRNA abundance levels for
different genes, Bq and Dq are respectively the basal
transcription and the decay rates of the q-th gene, and
Srq are coupling constants that quantify the influence
of the r-th input on the q-th output (i.e. the sensitiv-
ity of gene q to the concentration of protein r). Solving
(3) for yq(t), we obtain

yq(t) =
Bq
Dq

+
R∑
r=1

Lrq[fr](t),

where we have ignored transient terms, which are eas-
ily included, and the linear operator is given by the
following linear convolution operator,

Lrq[fr](t) = Srq exp(−Dqt)
∫ t

0

fr(τ) exp(Dqτ)dτ .

If each latent force is taken to be independent with a
covariance function given by

kfr,fr
(t, t′) = exp

(
− (t− t′)2

`2r

)
,

then we can compute the covariance of the outputs
analytically, obtaining (Lawrence et al., 2007)

kypyq (t, t′) =
R∑
r=1

SrpSrq
√
π`r

2
[hqp(t′, t) + hpq(t, t′)],

where

hqp(t′, t) =
exp(ν2

rq)
Dp +Dq

exp(−Dqt
′)

{
exp(Dqt)

×
[
erf
(
t′ − t
`r
− νrq

)
+ erf

(
t

`r
+ νrq

)]
− exp(−Dpt)

[
erf
(
t′

`r
− νrq

)
+ erf(νrq)

]}
,

here erf(x) is the real valued error function, erf(x) =
2√
π

∫ x
0

exp(−y2)dy, and νrq = `rDq/2.

Additionally, we can compute the cross-covariance be-
tween the inputs and outputs,

kyqfr
(t, t′) =

Srq
√
π`r

2
exp(ν2

rq) exp(−Dq(t− t′))

×
[
erf
(
t′ − t
`r
− νrq

)
+ erf

(
t′

`r
+ νrq

)]
.

3.1 p53 Data

Our data is from (Barenco et al., 2006), where
leukemia cell lines were bombarded with radiation to
induce activity of the transcription factor p53. This
transcription factor repairs DNA damage and triggers
a mechanism which pauses the cell-cycle and poten-
tially terminates the cell. In (Barenco et al., 2006)
microarray gene expression levels of known targets of
p53 were used to fit a first order differential equation
model to the data. The model was then used to pro-
vide a ranked list of 50 genes identified as regulated
by p53.

Our aim is to determine if there are additional “la-
tent forces” which could better explain the activity of
some of these genes. The experimental data consists of
measurements of expression levels of 50 genes for three
different replicas. Within each replica, there are mea-
surements at seven different time instants. We con-
structed a latent force model with six latent forces, as-
suming that each replica was independently produced
but fixing the hyperparameters of the kernel across the
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replicas1. We employed a sparse approximation, as
proposed in (Alvarez and Lawrence, 2009), with ten
inducing points for speeding up computation.

Of the six latent functions, two were automatically
switched off by the model. Two further latent func-
tions, shown in Figure 1 as latent forces 1 & 2, were
consistent across all replicas: their shapes were time
translated versions of the p53 profile as identified by
(Barenco et al., 2006; Lawrence et al., 2007; Gao et
al., 2008). This time translation allows genes to ex-
perience different transcriptional delays, a mechanism
not included explicitly in our model, but mimicked by
linear mixing of an early and a late signal. The re-
maining two latent functions were inconsistent across
the replicas (see e.g. latent force 3 in Figure 1). They
appear to represent processes not directly related to
p53. This was backed up by the sensitivity parameters
found in the model. The known p53 targets DDB2,
p21, SESN1/hPA26, BIK and TNFRSF10b were found
to respond to latent forces 1 & 2. Conversely, the
genes that were most responsive to latent force 3 were
MAP4K4, a gene involved in environmental stress sig-
nalling, and FDXR, an electron transfer protein.

4 Second Order Dynamical System

In Section 1 we introduced the analogy of a mari-
onette’s motion being controlled by a reduced number
of forces. Human motion capture data consists of a
skeleton and multivariate time courses of angles which
summarize the motion. This motion can be modelled
with a set of second order differential equations which,
due to variations in the centers of mass induced by
the movement, are non-linear. The simplification we
consider for the latent force model is to linearize these
differential equations, resulting in the following second
order dynamical system,

d2yq(t)
dt2

+Cq
dyq(t)

dt
+Dqyq(t) = Bq+

R∑
r=1

Srqfr(t), (4)

where the mass of the system, without loss of gener-
ality, is normalized to 1. Whilst (4) is not the correct
physical model for our system, it will still be help-
ful when extrapolating predictions across different mo-
tions, as we shall see in the next section. Note also
that, although similar to (3), the dynamic behavior of
this system is much richer than that of the first order
system, since it can exhibit inertia and resonance.

1The decay rates were asssumed equal within replicas.
Although this might be an important restriction for this
experiment, our purpose in this paper is to expose a gen-
eral methodology without delving into the details of each
experimental setup.

For the motion capture data yq(t) corresponds to a
given observed angle over time, and its derivatives rep-
resent angular velocity and acceleration. The system
is summarized by the undamped natural frequency,
ω0q =

√
Dq, and the damping ratio, ζq = 1

2Cq/
√
Dq.

Systems with a damping ratio greater than one are
said to be overdamped, whereas underdamped systems
exhibit resonance and have a damping ratio less than
one. For critically damped systems ζq = 1, and finally,
for undamped systems (i.e. no friction) ζq = 0.

Ignoring the initial conditions once more, the solution
of (4) is again given by a convolution, with the linear
operator now being

Lrq[fr](t) =
Srq
ωq

exp(−αqt)

×
∫ t

0

fr(τ) exp(αqτ) sin(ωq(t− τ))dτ ,

(5)

where ωq =
√

4Dq − C2
q /2 and αq = Cq/2.

Once again, if we consider a latent force governed by
a GP with the RBF covariance function we can solve
(5) analytically, obtaining a closed-form expression for
the covariance matrix of the outputs,

kypyq (t, t′) =
R∑
r=1

SrpSrq
√
π`2r

8ωpωq
k(r)
ypyq

(t, t′).

Here k(r)
ypyq (t, t′) can be considered the cross-covariance

between the p-th and q-th outputs under the effect of
the r-th latent force, and is given by

k(r)
ypyq

(t, t′) = hr(γ̃q, γp, t, t′) + hr(γp, γ̃q, t′, t)

+ hr(γq, γ̃p, t, t′) + hr(γ̃p, γq, t′, t)
− hr(γ̃q, γ̃p, t, t′)− hr(γ̃p, γ̃q, t′, t)
− hr(γq, γp, t, t′)− hr(γp, γq, t′, t),

where γp = αp + jωp, γ̃p = αp − jωp, and

hr(γq, γp, t, t′) =
Υr(γq, t′, t)− exp(−γpt)Υr(γq, t′, 0)

γp + γq
,

with

Υr(γq, t, t′) = 2 exp
(
`2rγ

2
q

4

)
exp(−γq(t− t′))

− exp
(
− (t−t′)2

`2r

)
w(jzrq(t))− exp

(
− (t′)2

`2r

)
× exp(−γqt)w(−jzrq(0)), (6)

and zrq(t) = (t− t′)/`r − (`rγq)/2. Note that zrq(t) ∈
C, and w(jz) in (6), for z ∈ C, denotes Faddeeva’s
function w(jz) = exp(z2)erfc(z), where erfc(z) is the
complex version of the complementary error function,
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(a) Replica 1. Latent force 1.
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(b) Replica 2. Latent force 1.

¿ 0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

(c) Replica 3. Latent force 1.
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(d) Replica 1. Latent force 2.
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(e) Replica 2. Latent force 2.
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(f) Replica 3. Latent force 2.
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(g) Replica 1. Latent force 3.
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(h) Replica 2. Latent force 3.
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(i) Replica 3. Latent force 3.

Figure 1: (a)-(c) and (d)-(f) the two latent forces associated with p53 activity. p53 targets are sensitive to a
combination of these functions allowing them to account for transcriptional delays. (g)-(h) a latent force that
was inconsistent across the replicas. It may be associated with cellular processes not directly related to p53.

erfc(z) = 1− erf(z) = 2√
π

∫∞
z

exp(−v2)dv. Faddeeva’s
function is usually considered the complex equivalent
of the error function, since |w(jz)| is bounded when-
ever the imaginary part of jz is greater or equal than
zero, and is the key to achieving a good numerical sta-
bility when computing (6) and its gradients.

Similarly, the cross-covariance between latent func-
tions and outputs is given by

kyqfr
(t, t′) =

`rSrq
√
π

j4ωq
[Υr(γ̃q, t, t′)−Υr(γq, t, t′)],

A visualization of a covariance matrix with a latent
force and three different outputs (overdamped, under-
damped and critically damped) is given in Figure 2.

4.1 Motion Capture data

Our motion capture data set is from the CMU motion
capture data base2. We considered 3 balancing mo-
tions (18, 19, 20) from subject 49. The subject starts
in a standing position with arms raised, then, over
about 10 seconds, he raises one leg in the air and low-
ers his arms to an outstretched position. Of interest
to us was the fact that, whilst motions 18 and 19 are
relatively similar, motion 20 contains more dramatic
movements. We were interested in training on motions
18 and 19 and testing on the more dramatic movement

2The CMU Graphics Lab Motion Capture Database was
created with funding from NSF EIA-0196217 and is avail-
able at http://mocap.cs.cmu.edu.
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Figure 2: Visualization of the covariance matrix asso-
ciated with the second order kernel. Three outputs and
their correlation with the latent function are shown.
Output 1 is underdamped and the natural frequency
is observable through the bars of alternating correla-
tion and anti correlation in the associated portions of
the covariance matrix. Output 2 is overdamped, note
the more diffuse covariance in comparison to Output
3 which is critically damped.

to assess the model’s ability to extrapolate. The data
was down-sampled by 32 (from 120 frames per second
to just 3.75) and we focused on the subject’s left arm.
Our objective was to reconstruct the motion of this
arm for motion 20 given the angles of the shoulder
and the parameters learned from motions 18 and 19
using two latent functions. First, we train the second
order differential equation latent force model on mo-
tions 18 and 19, treating the sequences as independent
but sharing parameters (i.e. the damping coefficients
and natural frequencies of the two differential equa-
tions associated with each angle were constrained to
be the same). Then, for the test data, we condition on
the observations of the shoulder’s orientation to make
predictions for the rest of the arm’s angles.

For comparison, we considered a regression model that
directly predicts the angles of the arm given the ori-
entation of the shoulder using standard independent
GPs with RBF covariance functions. Results are sum-
marized in Table 1, with some example plots of the
tracks of the angles given in Figure 3.

5 Partial Differential Equations and
Latent Forces

So far we have considered dynamical latent force mod-
els based on ordinary differential equations, leading to
multioutput Gaussian processes which are functions
of a single variable: time. However, the methodology
can also be applied in the context of partial differen-

Table 1: Root mean squared (RMS) angle error for
prediction of the left arm’s configuration in the motion
capture data. Prediction with the latent force model
outperforms the prediction with regression for all apart
from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09

tial equations in order to recover multioutput Gaussian
processes which are functions of several inputs.

5.1 Diffusion in the Swiss Jura

The Jura data is a set of measurements of concentra-
tions of several heavy metal pollutants collected from
topsoil in a 14.5 km2 region of the Swiss Jura. We
consider a latent function that represents how the pol-
lutants were originally laid down. As time passes, we
assume that the pollutants diffuse at different rates
resulting in the concentrations observed in the data
set. We therefore consider a simplified version of the
diffusion equation, known also as the heat equation,

∂yq(x, t)
∂t

=
d∑
j=1

κq
∂2yq(x, t)
∂x2

j

,

where d = 2 is the dimension of x, the measured con-
centration of each pollutant over space and time is
given by yq(x, t), and the latent function fr(x) now
represents the concentration of pollutants at time zero
(i.e. the system’s initial condition). The solution to
the system (Polyanin, 2002) is then given by

yq(x, t) =
R∑
r=1

Srq

∫
Rd

fr(x′)Gq(x,x′, t)dx′

where Gq(x,x′, t) is the Green’s function given as

Gq(x,x′, t) =
1

2dπd/2T d/2q

exp

− d∑
j=1

(xj − x′j)2

4Tq

 ,

with Tq = κqt. Again, if we take the latent function to
be given by a GP with the RBF covariance function
we can compute the multiple output covariance func-
tions analytically. The covariance function between
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Figure 3: (a) Inferred latent force for the motion capture data. The force shown is the weighted sum of the two
forces that drive the system. (b)-(f) Predictions from the latent force model (solid line, grey error bars) and from
direct regression from the shoulder angles (crosses with stick error bars). For these examples noise is high due
to the relatively small length of the bones. Despite this the latent force model does a credible job of capturing
the angle, whereas direct regression with independent GPs fails to capture the trends.

the output functions is obtained as

kypyq (x,x′, t) =
R∑
r=1

SrpSrq|Lr|1/2

|Lrp + Lrq + Lr|1/2

× exp
[
−1

2
(x− x′)> (Lrp + Lrq + Lr)

−1 (x− x′)
]
,

where Lrp,Lrq and Lr are diagonal isotropic matrices
with entries 2κpt, 2κqt and 1/`2r respectively. The co-
variance function between the output and latent func-
tions is given by

kyqfr
(x,x′, t) =

Srq|Lr|1/2

|Lrq + Lr|1/2

× exp
[
−1

2
(x− x′)> (Lrq + Lr)

−1 (x− x′)
]
.

5.2 Prediction of Metal Concentrations

We used our model to replicate the experiments de-
scribed in (Goovaerts, 1997, pp. 248,249) in which a
primary variable (cadmium, copper, lead and cobalt)
is predicted in conjunction with some secondary vari-
ables (nickel and zinc for cadmium; lead, nickel and

zinc for copper; copper, nickel and zinc for lead; nickel
and zinc for cobalt).3 By conditioning on the val-
ues of the secondary variables we can improve the
prediction of the primary variables. We compare re-
sults for the diffusion kernel with results from predic-
tion using independent GPs for the metals and “or-
dinary co-kriging” (as reported by (Goovaerts, 1997,
pp. 248,249)). For our experiments we made use of
10 repeats to report standard deviations. Mean abso-
lute errors and standard deviations are shown in Table
2 ((Goovaerts, 1997) does not report standard devia-
tions for the co-kriging method). Our diffusion model
outperforms co-kriging for all but one example.

6 Discussion

We have proposed a hybrid approach for the use of sim-
ple mechanistic models with Gaussian processes which
allows for the creation of new kernels with physically
meaningful parameters. We have shown how these ker-
nels can be applied to a range of data sets for the
analysis of microarray data, motion capture data and

3Data available at http://www.ai-geostats.org/.
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Table 2: Mean absolute error and standard devia-
tion for ten repetitions of the experiment for the Jura
dataset. IGPs stands for independent GPs, GPDK
stands for GP diffusion kernel, OCK for ordinary co-
kriging, Cd for Cadmium, Cu for Copper, Pb for lead
and Co for Cobalt. For the Gaussian process with dif-
fusion kernel, we learn the diffusion coefficients and the
length-scale of the covariance of the latent function.

Metals IGPs GPDK OCK
Cd 0.5823±0.0133 0.4505±0.0126 0.5
Cu 15.9357±0.0907 7.1677±0.2266 7.8
Pb 22.9141±0.6076 10.1097±0.2842 10.7
Co 2.0735±0.1070 1.7546±0.0895 1.5

geostatistical data. To do this we proposed a range of
linear differential equation models: first order, second
order and a partial differential equation. The solu-
tions to all these differential equations are in the form
of convolutions. When applied to a Gaussian process
latent function they result in a joint GP over the latent
functions and the observed outputs which provides a
general framework for multi-output GP regression.

We are not the first to suggest the use of convolu-
tion processes for multi-output regression, they were
proposed by (Higdon, 2002) and built on by (Boyle
and Frean, 2005) — the ideas in these papers have
also recently been made more computationally practi-
cal through sparse approximations suggested by (Al-
varez and Lawrence, 2009). However, whilst (Boyle
and Frean, 2005) was motivated by the general idea of
constructing multi-output GPs, our aims are different.
Our focus has been embodying GPs with the charac-
teristics of mechanistic models so that our data driven
models can exhibit well understood characteristics of
these physical systems. To maintain tractability these
mechanistic models are necessarily over simplistic, but
our results have shown that they can lead to significant
improvements on a wide range of data sets.
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Mauricio A. Álvarez, David Luengo, Michalis K. Titsias and Neil D. Lawrence

(2010): Efficient Multioutput Gaussian Processes through Variational Inducing

Kernels, in Y. Whye Teh and M. Titterington (Eds.), Proceedings of The Thir-

teenth International Conference on Artificial Intelligence and Statistics (AIS-

TATS) 2010, JMLR: W&CP 9, pp. 25-32, Chia Laguna Resort, Sardinia, Italy,

May 13-15, 2010.

121



         25

Efficient Multioutput Gaussian Processes through Variational Inducing Kernels
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Abstract

Interest in multioutput kernel methods is increas-
ing, whether under the guise of multitask learn-
ing, multisensor networks or structured output
data. From the Gaussian process perspective a
multioutput Mercer kernel is a covariance func-
tion over correlated output functions. One way of
constructing such kernels is based on convolution
processes (CP). A key problem for this approach
is efficient inference. Álvarez and Lawrence re-
cently presented a sparse approximation for CPs
that enabled efficient inference. In this paper,
we extend this work in two directions: we in-
troduce the concept of variational inducing func-
tions to handle potential non-smooth functions
involved in the kernel CP construction and we
consider an alternative approach to approximate
inference based on variational methods, extend-
ing the work by Titsias (2009) to the multiple
output case. We demonstrate our approaches
on prediction of school marks, compiler perfor-
mance and financial time series.

1 Introduction

In this paper we are interested in developing priors over
multiple functions in a Gaussian processes (GP) frame-
work. While such priors can be trivially specified by con-
sidering the functions to be independent, our focus is on
priors which specify correlations between the functions.
Most attempts to apply such priors (Teh et al., 2005; Rogers
et al., 2008; Bonilla et al., 2008) have focused on what
is known in the geostatistics community as “linear model
of coregionalization” (LMC) (Goovaerts, 1997). In these

Appearing in Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics (AISTATS) 2010, Chia La-
guna Resort, Sardinia, Italy. Volume 9 of JMLR: W&CP 9. Copy-
right 2010 by the authors.

models the different outputs are assumed to be linear com-
binations of a set of one or more “latent functions”. GP pri-
ors are placed, independently, over each of the latent func-
tions inducing a correlated covariance function over the D
outputs {fd (x)}Dd=1.

We wish to go beyond the LMC framework, in particu-
lar, our focus is on convolution processes (CPs). Using
CPs for multi-output GPs was proposed by Higdon (2002)
and introduced to the machine learning audience by Boyle
and Frean (2005). Convolution processes allow the inte-
gration of prior information from physical models, such as
ordinary differential equations, into the covariance func-
tion. Álvarez et al. (2009a), inspired by Lawrence et al.
(2007), have demonstrated how first and second order dif-
ferential equations, as well as partial differential equations,
can be accommodated in a covariance function. They in-
terpret the set of latent functions as a set of latent forces,
and they term the resulting models “latent force models”
(LFM). The covariance functions for these models are de-
rived through convolution processes. In the CP framework,
output functions are generated by convolving R indepen-
dent latent processes {ur}Rr=1 with smoothing kernel func-
tions Gd,r(x), for each output d and latent force r,

fd (x) =
R∑

r=1

∫
Z
Gd,r (x− z)ur (z) dz. (1)

The LMC can be seen as a particular case of the CP, in
which the kernel functions Gd,r(x) correspond to a scaled
Dirac δ-function Gd,r (x− z) = ad,rδ(x− z).

A practical problem associated with the CP framework is
that in these models inference has computational complex-
ity O(N3D3) and storage requirements O(N2D2). Re-
cently Álvarez and Lawrence (2009) introduced an efficient
approximation for inference in this multi-output GP model.
Their idea was to exploit a conditional independence as-
sumption over the output functions {fd (x)}Dd=1: if the la-
tent functions are fully observed then the output functions
are conditionally independent of one another (as can be
seen in (1)). Furthermore, if the latent processes are suf-
ficiently smooth, the conditional independence assumption
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will hold approximately even for a finite number of obser-

vations of the latent functions
{
{ur (zk)}Kk=1

}R

r=1
, where

the variables {zk}Kk=1 are usually referred to as the induc-
ing inputs. These assumptions led to approximations that
were very similar in spirit to the PITC and FITC approx-
imations of Snelson and Ghahramani (2006); Quiñonero
Candela and Rasmussen (2005).

In this paper we build on the work of Álvarez and Lawrence
and extend it in two ways. First, we notice that if the
locations of the inducing points are close relative to the
length scale of the latent function, the PITC approxima-
tion will be accurate enough. However, if the length scale
becomes small the approximation requires very many in-
ducing points. In the worst case, the latent process could
be white noise (as suggested by Higdon (2002) and imple-
mented by Boyle and Frean (2005)). In this case the ap-
proximation will fail completely. To deal with such type
of latent functions, we develop the concept of an inducing
function, a generalization of the traditional concept of in-
ducing variable commonly employed in several sparse GP
methods. As we shall see, an inducing function is an arti-
ficial construction generated from a convolution operation
between a smoothing kernel or inducing kernel and the la-
tent functions ur. The artificial nature of the inducing func-
tion is based on the fact that its construction is immersed in
a variational-like inference procedure that does not modify
the marginal likelihood of the true model. This leads us
to the second extension of the paper: a problem with the
FITC and PITC approximations can be their tendency to
overfit when inducing inputs are optimized. A solution to
this problem was given in a recent work by Titsias (2009)
who provided a sparse GP approximation that has an as-
sociated variational bound. In this paper we show how the
ideas of Titsias can be extended to the multiple output case.
Our variational approximation is developed through the in-
ducing functions and the quality of the approximation can
be controlled through the inducing kernels and the num-
ber and location of the inducing inputs. Our approxima-
tion allows us to consider latent force models with a large
number of states, D, and data points N . The use of induc-
ing kernels also allows us to extend the inducing variable
approximation of the latent force model framework to sys-
tems of stochastic differential equations (SDEs). We apply
the approximation to different real world datasets, includ-
ing a multivariate financial time series example.

A similar idea to the inducing function one introduced
in this paper, was simultaneously proposed by Lázaro-
Gredilla and Figueiras-Vidal (2010). Lázaro-Gredilla and
Figueiras-Vidal (2010) introduced the concept of inducing
feature to improve performance over the pseudo-inputs ap-
proach of Snelson and Ghahramani (2006) in sparse GP
models. Our use of inducing functions and inducing ker-
nels is motivated by the necessity to deal with non-smooth
latent functions in the CP model of multiple outputs.

2 Multioutput GPs (MOGPs)

Let yd ∈ RN , where d = 1, . . . , D, be the observed
data associated with the output function yd(x). For sim-
plicity, we assume that all the observations associated with
different outputs are evaluated at the same inputs X (al-
though this assumption is easily relaxed). We will of-
ten use the stacked vector y = (y1, . . . ,yD) to collec-
tively denote the data of all the outputs. Each observed
vector yd is assumed to be obtained by adding indepen-
dent Gaussian noise to a vector of function values fd so
that the likelihood is p(yd|fd) = N (yd|fd, σ2

dI), where
fd is defined via (1). More precisely, the assumption in
(1) is that a function value fd(x) (the noise-free version
of yd(x)) is generated from a common pool of R inde-
pendent latent functions {ur(x)}Rr=1, each having a co-
variance function (Mercer kernel) given by kr (x,x′). No-
tice that the outputs share the same latent functions, but
they also have their own set of parameters ({αdr}Rr=1, σ

2
d)

where αdr are the parameters of the smoothing kernel
Gd,r(·). Because convolution is a linear operation, the co-
variance between any pair of function values fd(x) and
fd′(x′) is given by kfd,fd′ (x,x′) = Cov[fd(x), fd′(x′)] =∑R

r=1

∫
Z Gd,r(x − z)

∫
Z Gd′,r(x′ − z′)kr(z, z′)dzdz′.

This covariance function is used to define a fully-coupled
GP prior p(f1, . . . , fD) over all the function values associ-
ated with the different outputs. The joint probability dis-
tribution of the multioutput GP model can be written as
p({yd, fd}Dd=1) =

∏D
d=1 p(yd|fd)p(f1, . . . , fD). The GP

prior p(f1, . . . , fD) has a zero mean vector and a (ND) ×
(ND) covariance matrix Kf ,f , where f = (f1, . . . , fD),
which consists of N ×N blocks of the form Kfd,fd′ . Ele-
ments of each block are given by kfd,fd′ (x,x′) for all pos-
sible values of x. Each such block is a cross-covariance (or
covariance) matrix of pairs of outputs.

Prediction using the above GP model, as well as the maxi-
mization of the marginal likelihood p(y) = N(y|0,Kf ,f +
Σ), where Σ = diag(σ2

1I, . . . , σ2
DI), requires O(N3D3)

time and O(N2D2) storage which rapidly becomes infea-
sible even when only a few hundred outputs and data points
are considered. Efficient approximations are needed in or-
der to make the above multioutput GP model more practi-
cal.

3 PITC-like approximation for MOGPs

Before we propose our variational sparse inference method
for multioutput GP regression in Section 4, we review
the sparse method proposed by Álvarez and Lawrence
(2009). This method is based on a likelihood approxima-
tion. More precisely, each output function yd(x) is in-
dependent from the other output functions given the full-
length of each latent function ur(x). This means, that the
likelihood of the data factorizes according to p(y|u) =
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∏D
d=1 p(yd|u) =

∏D
d=1 p(yd|fd), with u = {ur}Rr=1 the

set of latent functions. The sparse method in Álvarez and
Lawrence (2009) makes use of this factorization by as-
suming that it remains valid even when we are only al-
lowed to exploit the information provided by a finite set
of function values, ur, instead of the full-length function
ur(x) (which involves uncountably many points). Let ur,
for r = 1, . . . , R, be a K-dimensional vector of values
from the function ur(x) which are evaluated at the in-
puts Z = {zk}Kk=1. The vector u = (u1, . . . ,uR) de-
notes all these variables. The sparse method approximates
the exact likelihood function p(y|u) with the likelihood
p(y|u) =

∏D
d=1 p(yd|u) =

∏D
d=1N (yd|µfd|u,Σfd|u +

σ2
dI), where µfd|u = Kfd,uK−1

u,uu and Σfd|u = Kfd,fd −
Kfd,uK−1

u,uKu,fd are the mean and covariance matrices of
the conditional GP priors p(fd|u). The matrix Ku,u is
a block diagonal covariance matrix where the rth block
Kur,ur

is obtained by evaluating kr(z, z′) at the inducing
inputs Z. Further, the matrix Kfd,u is defined by the cross-
covariance function Cov[fd(x), ur(z)] =

∫
Z Gd,r(x −

z′)kr(z′, z)dz′. The variables u follow the GP prior
p(u) = N(u|0,Ku,u) and can be integrated out to give the
following approximation to the exact marginal likelihood:

p(y|θ) = N (y|0,D + Kf ,uK−1
u,uKu,f + Σ). (2)

Here, D is a block-diagonal matrix, where each block is
given by Kfd,fd − Kfd,uK−1

u,uKu,fd for all d. This ap-
proximate marginal likelihood represents exactly each di-
agonal (output-specific) block Kfd,fd while each off diag-
onal (cross-output) block Kfd,fd′ is approximated by the
Nyström matrix Kfd,uK−1

u,uKu,fd′ .

The above sparse method has a similar structure to the
PITC approximation introduced for single-output regres-
sion (Quiñonero Candela and Rasmussen, 2005). Because
of this similarity, Álvarez and Lawrence (2009) call their
multioutput sparse approximation PITC as well. Two of the
properties of this PITC approximation (which may some-
times be seen as limitations) are:

1. It assumes that all latent functions u are smooth.

2. It is based on a modification of the initial full GP
model. This implies that the inducing inputs Z are
extra kernel hyparameters in the modified GP model.

Because of point 1, the method is not applicable when
the latent functions are white noise processes. An impor-
tant class of problems where we have to deal with white
noise processes arise in linear SDEs where the above sparse
method is currently not applicable there. Because of 2, the
maximization of the marginal likelihood in eq. (2) with re-
spect to (Z,θ), where θ are model hyperparameters, may
be prone to overfitting especially when the number of vari-
ables in Z is large. Moreover, fitting a modified sparse GP
model implies that the full GP model is not approximated

in a systematic and rigorous way since there is no distance
or divergence between the two models that is minimized.

In the next section, we address point 1 above by introduc-
ing the concept of variational inducing kernels that allow us
to efficiently sparsify multioutput GP models having white
noise latent functions. Further, these inducing kernels are
incorporated into the variational inference method of Tit-
sias (2009) (thus addressing point 2) that treats the induc-
ing inputs Z as well as other quantities associated with the
inducing kernels as variational parameters. The whole vari-
ational approach provides us with a very flexible, robust to
overfitting, approximation framework that overcomes the
limitations of the PITC approximation.

4 Sparse variational approximation

In this section, we introduce the concept of variational in-
ducing kernels (VIKs). VIKs give us a way to define more
general inducing variables that have larger approximation
capacity than the u inducing variables used earlier and im-
portantly allow us to deal with white noise latent functions.
To motivate the idea, we first explain why the u variables
can work when the latent functions are smooth and fail
when these functions become white noises.

In PITC, we assume each latent function ur(x) is smooth
and we sparsify the GP model through introducing, ur, in-
ducing variables which are direct observations of the latent
function, ur(x), at particular input points. Because of the
latent function’s smoothness, the ur variables also carry
information about other points in the function through the
imposed prior over the latent function. So, having observed
ur we can reduce the uncertainty of the whole function.

With the vector of inducing variables u, if chosen to be
sufficiently large relative to the length scales of the la-
tent functions, we can efficiently represent the functions
{ur(x)}Rr=1 and subsequently variables f which are just
convolved versions of the latent functions.1 When the re-
construction of f from u is perfect, the conditional prior
p(f |u) becomes a delta function and the sparse PITC ap-
proximation becomes exact. Figure 1(a) shows a cartoon
description of a summarization of ur(x) by ur.

In contrast, when some of the latent functions are white
noise processes the sparse approximation will fail. If ur(z)
is white noise2 it has a covariance function δ(z− z′). Such
processes naturally arise in the application of stochastic dif-
ferential equations (see section 6) and are the ultimate non-

1This idea is like a “soft version” of the Nyquist-Shannon sam-
pling theorem. If the latent functions were bandlimited, we could
compute exact results given a high enough number of inducing
points. In general they won’t be bandlimited, but for smooth func-
tions low frequency components will dominate over high frequen-
cies, which will quickly fade away.

2Such a process can be thought as the “time derivative” of the
Wiener process.
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(a) Latent function is smooth (b) Latent function is noise

Figure 1: With a smooth latent function as in (a), we can use some inducing variables ur (red dots) from the complete latent process
ur(x) (in black) to generate smoothed versions (for example the one in blue), with uncertainty described by p(ur|ur). However, with a
white noise latent function as in (b), choosing inducing variables ur (red dots) from the latent process (in black) does not give us a clue
about other points (for example the blue dots).

smooth processes where two values ur(z) and ur(z′) are
uncorrelated when z 6= z′. When we apply the sparse ap-
proximation a vector of “white-noise” inducing variables
ur does not carry information about ur(z) at any input
z that differs from all inducing inputs Z. In other words
there is no additional information in the conditional prior
p(ur(z)|ur) over the unconditional prior p(ur(z)). Figure
1(b) shows a pictorial representation. The lack of structure
makes it impossible to exploit the correlations in the stan-
dard sparse methods like PITC.3

Our solution to this problem is the following. We will de-
fine a more powerful form of inducing variable, one based
not around the latent function at a point, but one given by
the convolution of the latent function with a smoothing ker-
nel. More precisely, let us replace each inducing vector ur

with variables λr which are evaluated at the inputs Z and
are defined according to

λr(z) =
∫
Tr(z− v)ur(v)dv, (3)

where Tr(x) is a smoothing kernel (e.g. Gaussian) which
we call the inducing kernel (IK). This kernel is not nec-
essarily related to the model’s smoothing kernels. These
newly defined inducing variables can carry information
about ur(z) not only at a single input location but from
the entire input space. We can even allow a separate IK
for each inducing point, this is, if the set of inducing points
is Z = {zk}Kk=1, then λr(zk) =

∫
Tr,k(zk − v)ur(v)dv,

with the advantage of associating to each inducing point zk

its own set of adaptive parameters in Tr,k. For the PITC
approximation, this adds more hyperparameters to the like-
lihood, perhaps leading to overfitting. However, in the vari-
ational approximation we define all these new parameters
as variational parameters and therefore they do not cause
the model to overfit.

If ur(z) has a white noise4 GP prior the covariance function
3Returning to our sampling theorem analogy, the white noise

process has infinite bandwidth. It is therefore impossible to rep-
resent it by observations at a few fixed inducing points.

4It is straightforward to generalize the method for rough latent

for λr(x) is

Cov[λr(x), λr(x′)] =
∫
Tr(x− z)Tr(x′ − z)dz (4)

and the cross-covariance between fd(x) and λr(x′) is

Cov[fd(x), λr(x′)] =
∫
Gd,r(x− z)Tr(x′ − z)dz. (5)

Notice that this cross-covariance function, unlike the case
of u inducing variables, maintains a weighted integration
over the whole input space. This implies that a single in-
ducing variable λr(x) can properly propagate information
from the full-length process ur(x) into f .

It is possible to combine the IKs defined above with the
PITC approximation of Álvarez and Lawrence (2009), but
in this paper our focus will be on applying them within the
variational framework of Titsias (2009). We therefore refer
to the kernels as variational inducing kernels (VIKs).

Variational inference

We now extend the variational inference method of Titsias
(2009) to deal with multiple outputs and incorporate them
into the VIK framework.

We compactly write the joint probability model
p({yd, fd}Dd=1) as p(y, f) = p(y|f)p(f). The first
step of the variational method is to augment this model
with inducing variables. For our purpose, suitable inducing
variables are defined through VIKs. More precisely,
let λ = (λ1, . . . ,λR) be the whole vector of inducing
variables where each λr is a K-dimensional vector of
values obtained according to eq. (3). λr’s role is to carry
information about the latent function ur(z). Each λr is
evaluated at the inputs Z and has its own VIK, Tr(x), that
depends on parameters θTr

. The λ variables augment the
GP model according to p(y, f ,λ) = p(y|f)p(f |λ)p(λ).
Here, p(λ) = N (λ|0,Kλ,λ) and Kλ,λ is a block diagonal

functions that are not white noise or to combine smooth latent
functions with white noise.
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matrix where each block Kλr,λr
is obtained by evaluating

the covariance function in eq. (4) at the inputs Z. Addition-
ally, p(f |λ) = N (f |Kf ,λK−1

λ,λλ,Kf ,f −Kf ,λK−1
λ,λKλ,f )

where the cross-covariance Kf ,λ is computed through
eq. (5). Because of the consistency condition∫
p(f |λ)p(λ)dλ = p(f), performing exact inference

in the above augmented model is equivalent to performing
exact inference in the initial GP model. Crucially, this
holds for any values of the augmentation parameters
(Z, {θTr}Rr=1). This is the key property that allows us
to turn these augmentation parameters into variational
parameters by applying approximate sparse inference.

Our method now proceeds along the lines of Titsias
(2009). We introduce the variational distribution q(f ,λ) =
p(f |λ)φ(λ), where p(f |λ) is the conditional GP prior de-
fined earlier and φ(λ) is an arbitrary variational distribu-
tion. By minimizing the KL divergence between q(f ,λ)
and the true posterior p(f ,λ|y), we can compute the fol-
lowing Jensen’s lower bound on the true log marginal like-
lihood (a detailed derivation of the bound is available in
Álvarez et al. (2009b)):

FV = logN
(
y|0,Kf ,λK−1

λ,λKλ,f + Σ
)
−1

2
tr
(
Σ−1K̃

)
,

where Σ is the covariance function associated with the ad-
ditive noise process and K̃ = Kf ,f−Kf ,λK−1

λ,λKλ,f . Note
that this bound consists of two parts. The first part is the
log of a GP prior with the only difference that now the co-
variance matrix has a particular low rank form. This form
allows the inversion of the covariance matrix to take place
inO(NDK2) time rather thanO(N3D3). The second part
can be seen as a penalization term that regularizes the es-
timation of the parameters. Notice also that only the diag-
onal of the exact covariance matrix Kf ,f needs to be com-
puted. Overall, the computation of the bound can be done
efficiently in O(NDK2) time.

The bound can be maximized with respect to all parameters
of the covariance function; both model parameters and vari-
ational parameters. The variational parameters are the in-
ducing inputs Z and the parameters θTr of each VIK which
are rigorously selected so that the KL divergence is mini-
mized. In fact each VIK is also a variational quantity and
one could try different forms of VIKs in order to choose
the one that gives the best lower bound.

The form of the bound is very similar to the projected pro-
cess approximation, also known as DTC (Csató and Op-
per, 2001; Seeger et al., 2003; Rasmussen and Williams,
2006). However, the bound has an additional trace term
that penalizes the movement of inducing inputs away from
the data. This term converts the DTC approximation to a
lower bound and prevents overfitting. In what follows, we
refer to this approximation as DTCVAR, where the VAR
suffix refers to the variational framework.

5 Experiments

We present results of applying the method proposed for
two real-world datasets that will be described in short.
We compare the results obtained using PITC, the intrin-
sic coregionalization model (ICM)5 employed in Bonilla et
al. (2008) and the method using variational inducing ker-
nels. For PITC we estimate the parameters through the
maximization of the approximated marginal likelihood of
equation (2) using the scaled-conjugate gradient method.
We use one latent function and both the covariance func-
tion of the latent process, kr(x,x′), and the kernel smooth-
ing function, Gd,r(x), follow a Gaussian form, this is
k(x,x′) = N (x − x′|0,C), where C is a diagonal ma-
trix. For the DTCVAR approximations, we maximize the
variational bound FV . Optimization is also performed us-
ing scaled conjugate gradient. We use one white noise la-
tent function and a corresponding inducing function. The
inducing kernels and the model kernels follow the same
Gaussian form. Using this form for the covariance or ker-
nel, all convolution integrals are solved analytically.

5.1 Exam score prediction

In this experiment the goal is to predict the exam score
obtained by a particular student belonging to a particular
school. The data comes from the Inner London Education
Authority (ILEA).6 It consists of examination records from
139 secondary schools in years 1985, 1986 and 1987. It is a
random 50% sample with 15362 students. The input space
consists of features related to each student and features re-
lated to each school. From the multiple output point of
view, each school represents one output and the exam score
of each student a particular instantiation of that output.

We follow the same preprocessing steps employed in
Bonilla et al. (2008). The only features used are the
student-dependent ones (year in which each student took
the exam, gender, VR band and ethnic group), which are
categorical variables. Each of them is transformed to a bi-
nary representation. For example, the possible values that
the variable year of the exam can take are 1985, 1986 or
1987 and are represented as 100, 010 or 001. The trans-
formation is also applied to the variables gender (two bi-
nary variables), VR band (four binary variables) and ethnic
group (eleven binary variables), ending up with an input
space with dimension 20. The categorical nature of data
restricts the input space to 202 unique input feature vec-
tors. However, two students represented by the same in-
put vector x and belonging both to the same school d, can
obtain different exam scores. To reduce this noise in the

5The ICM is a particular case of the LMC with one latent func-
tion (Goovaerts, 1997).

6Data is available at http://www.cmm.bristol.ac.
uk/learning-training/multilevel-m-support/
datasets.shtml
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data, we follow Bonilla et al. (2008) in taking the mean of
the observations that, within a school, share the same in-
put vector and use a simple heteroskedastic noise model in
which the variance for each of these means is divided by
the number of observations used to compute it. The perfor-
mance measure employed is the percentage of unexplained
variance defined as the sum-squared error on the test set as
a percentage of the total data variance.7 The performance
measure is computed for ten repetitions with 75% of the
data in the training set and 25% of the data in the test set.

Figure 5.1 shows results using PITC, DTCVAR with one
smoothing kernel and DTCVAR with as many inducing
kernels as inducing points (DTCVARS in the figure). For
50 inducing points all three alternatives lead to approx-
imately the same results. PITC keeps a relatively con-
stant performance for all values of inducing points, while
the DTCVAR approximations increase their performance
as the number of inducing points increases. This is consis-
tent with the expected behaviour of the DTCVAR methods,
since the trace term penalizes the model for a reduced num-
ber of inducing points. Notice that all the approximations
outperform independent GPs and the best result of the ICM
presented in Bonilla et al. (2008).
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Figure 2: Exam score prediction results for the school dataset. Re-
sults include the mean of the percentage of unexplained variance
of ten repetitions of the experiment, together with one standard
deviation. In the bottom, SM X stands for sparse method with X
inducing points, DTCVAR refers to the DTC variational approx-
imation with one smoothing kernel and DTCVARS to the same
approximation using as many inducing kernels as inducing points.
Results using the ICM model and independent GPs (appearing as
IND in the figure) have also been included.

5.2 Compiler prediction performance

In this dataset the outputs correspond to the speed-up of 11
C programs after some transformation sequence has been
applied to them. The speed-up is defined as the execution
time of the original program divided by the execution time
of the transformed program. The input space consists of
13-dimensional binary feature vectors, where the presence

7In Bonilla et al. (2008), results are reported in terms of ex-
plained variance.

of a one in these vectors indicates that the program has re-
ceived that particular transformation. The dataset contains
88214 observations for each output and the same number of
input vectors. All the outputs share the same input space.
Due to technical requirements, it is important that the pre-
diction of the speed-up for the particular program is made
using few observations in the training set. We compare our
results to the ones presented in Bonilla et al. (2008) and use
N = 16, 32, 64 and 128 for the training set. The remaining
88214−N observations are used for testing, employing as
performance measure the mean absolute error. The experi-
ment is repeated ten times and standard deviations are also
reported. We only include results for the average perfor-
mance over the 11 outputs.

Figure 3 shows the results of applying independent GPs
(IND in the figure), the intrinsic coregionalization model
(ICM in the figure), PITC, DTCVAR with one inducing
kernel (DTCVAR in the figure) and DTCVAR with as many
inducing kernels as inducing points (DTCVARS in the fig-
ure). Since the training sets are small enough, we also in-
clude results of applying the GP generated using the full co-
variance matrix of the convolution construction (see FULL
GP in the figure). We repeated the experiment for different
values of K, but show results only for K = N/2. Re-
sults for ICM and IND were obtained from Bonilla et al.
(2008). In general, the DTCVAR variants outperform the
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Figure 3: Mean absolute error and standard deviation over ten
repetitions of the compiler experiment as a function of the train-
ing points. IND stands for independent GPs, ICM stands for in-
trinsic coregionalization model, DTCVAR refers to the DTCVAR
approximation using one inducing kernel, DTCVARS refers to
the DTCVAR approximation using as many inducing kernels as
inducing points and FULL GP stands for the GP for the multiple
outputs without any approximation.

ICM method, and the independent GPs forN = 16, 32 and
64. In this case, using as many inducing kernels as inducing
points improves on average the performance. All methods,
including the independent GPs are better than PITC. The
size of the test set encourages the application of the sparse
methods: for N = 128, making the prediction of the whole
dataset using the full GP takes in average 22 minutes while
the prediction with DTCVAR takes 0.65 minutes. Using
more inducing kernels improves the performance, but also
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makes the evaluation of the test set more expensive. For
DTCVARS, the evaluation takes in average 6.8 minutes.
Time results are average results over the ten repetitions.

6 Stochastic Latent Force Models

The starting point of stochastic differential equations is
a stochastic version of the equation of motion, which is
called Langevin’s equation:

df(t)
dt

= −Cf(t) + Su(t), (6)

where f(t) is the velocity of the particle, −Cf(t) is a sys-
tematic friction term, u(t) is a random fluctuation external
force, i.e. white noise, and S indicates the sensitivity of the
ouput to the random fluctuations. In the mathematical prob-
ability literature, the above is written more rigorously as
df(t) = −Cf(t)dt + SdW (t) where W (t) is the Wiener
process (standard Brownian motion). Since u(t) is a GP
and the equation is linear, f(t) must be also a GP which
turns out to be the Ornstein-Uhlenbeck (OU) process.

Here, we are interested in extending the Langevin equation
to model multivariate time series. The way that the model
in (6) is extended is by adding more output signals and
more external forces. The forces can be either smooth (sys-
tematic or drift-type) forces or white noise forces. Thus,

dfd(t)
dt

= −Ddfd(t) +
R∑

r=1

Sd,rur(t), (7)

where fd(t) is the dth output signal. Each ur(t) can be ei-
ther a smooth latent force that is assigned a GP prior with
covariance function kr(t, t′) or a white noise force that has
a GP prior with covariance function δ(t − t′). That is, we
have a composition of R latent forces, where Rs of them
correspond to smooth latent forces and Ro correspond to
white noise processes. The intuition behind this combi-
nation of input forces is that the smooth part can be used
to represent medium/long term trends that cause a depar-
ture from the mean of the output processes, whereas the
stochastic part is related to short term fluctuations around
the mean. A model with Rs = 1 and Ro = 0 was proposed
by Lawrence et al. (2007) to describe protein transcription
regulation in a single input motif (SIM) gene network.

Solving the differential equation (7), we obtain

fd(t) = e−Ddtfd0 +
R∑

r=1

Sd,r

∫ t

0

e−Dd(t−z)ur(z)dz,

where fd0 arises from the initial condition. This model now
is a special case of the multioutput regression model dis-
cussed in sections 1 and 2 where each output signal yd(t) =
fd(t) + ε has a mean function e−Ddtfd0 and each model
kernel Gd,r(x) is equal to Sd,re

−Dd(t−z). The above
model can be viewed as a stochastic latent force model
(SLFM) following the work of Álvarez et al. (2009a).

Latent market forces

The application considered is the inference of missing data
in a multivariate financial data set: the foreign exchange
rate w.r.t. the dollar of 10 of the top international curren-
cies (Canadian Dollar [CAD], Euro [EUR], Japanese Yen
[JPY], Great British Pound [GBP], Swiss Franc [CHF],
Australian Dollar [AUD], Hong Kong Dollar [HKD], New
Zealand Dollar [NZD], South Korean Won [KRW] and
Mexican Peso [MXN]) and 3 precious metals (gold [XAU],
silver [XAG] and platinum [XPT]).8 We considered all the
data available for the calendar year of 2007 (251 working
days). In this data there are several missing values: XAU,
XAG and XPT have 9, 8 and 42 days of missing values re-
spectively. On top of this, we also introduced artificially
long sequences of missing data. Our objective is to model
the data and test the effectiveness of the model by imputing
these missing points. We removed a test set from the data
by extracting contiguous sections from 3 currencies asso-
ciated with very different geographic locations: we took
days 50–100 from CAD, days 100–150 from JPY and days
150–200 from AUD. The remainder of the data comprised
the training set, which consisted of 3051 points, with the
test data containing 153 points. For preprocessing we re-
moved the mean from each output and scaled them so that
they all had unit variance.

It seems reasonable to suggest that the fluctuations of the
13 correlated financial time-series are driven by a smaller
number of latent market forces. We therefore modelled
the data with up to six latent forces which could be noise
or smooth GPs. The GP priors for the smooth latent
forces are assumed to have a Gaussian covariance function,
kurur

(t, t′) = (1/
√

2π`2r) exp(−((t − t′)2)/2`2r), where
the hyperparameter `r is known as the lengthscale.

We present an example withR = 4. For this value ofR, we
consider all the possible combinations of Ro and Rs. The
training was performed in all cases by maximizing the vari-
ational bound using the scale conjugate gradient algorithm
until convergence was achieved. The best performance in
terms of achieving the highest value for FV was obtained
for Rs = 1 and Ro = 3. We compared against the LMC
model for different values of the latent functions in that
framework. While our best model resulted in an standard-
ized mean square error of 0.2795, the best LMC (withR=2)
resulted in 0.3927. We plotted predictions from the latent
market force model to characterize the performance when
filling in missing data. In figure 4 we show the output
signals obtained using the model with the highest bound
(Rs = 1 and Ro = 3) for CAD, JPY and AUD. Note
that the model performs better at capturing the deep drop
in AUD than it does for the fluctuations in CAD and JPY.

8Data is available at http://fx.sauder.ubc.ca/
data.html.
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Figure 4: Predictions from the model with Rs = 1 and Ro = 3 are shown as solid lines for the mean and grey bars for error bars at 2
standard deviations. For CAD, JPY and AUD the data was artificially held out. The true values are shown as a dotted line. Crosses on
the x-axes of all plots show the locations of the inducing inputs.

7 Conclusions

We have presented a variational approach to sparse approx-
imations in convolution processes. Our main focus was to
provide efficient mechanisms for learning in multiple out-
put Gaussian processes when the latent function is fluctuat-
ing rapidly. In order to do so, we have introduced the con-
cept of inducing function, which generalizes the idea of in-
ducing point, traditionally employed in sparse GP methods.
The approach extends the variational approximation of Tit-
sias (2009) to the multiple output case. Using our approach
we can perform efficient inference on latent force models
which are based around SDEs, but also contain a smooth
driving force. Our approximation is flexible enough and
has been shown to be applicable to a wide range of data
sets, including high-dimensional ones.
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Abstract

Latent force models encode the interaction between multiple related dynamical
systems in the form of a kernel or covariance function. Each variable to be mod-
eled is represented as the output of a differential equation and each differential
equation is driven by a weighted sum of latent functions with uncertainty given
by a Gaussian process prior. In this paper we consider employing the latent force
model framework for the problem of determining robot motor primitives. To deal
with discontinuities in the dynamical systems or the latent driving force we intro-
duce an extension of the basic latent force model, that switches between different
latent functions and potentially different dynamical systems. This creates a ver-
satile representation for robot movements that can capture discrete changes and
non-linearities in the dynamics. We give illustrative examples on both synthetic
data and for striking movements recorded using a Barrett WAM robot as haptic in-
put device. Our inspiration is robot motor primitives, but we expect our model to
have wide application for dynamical systems including models for human motion
capture data and systems biology.

1 Introduction
Latent force models [1] are a new approach for modeling data that allows combining dimensionality
reduction with systems of differential equations. The basic idea is to assume an observed set of
D correlated functions to arise from an unobserved set of R forcing functions. The assumption is
that the R forcing functions drive the D observed functions through a set of differential equation
models. Each differential equation is driven by a weighted mix of latent forcing functions. Sets
of coupled differential equations arise in many physics and engineering problems particularly when
the temporal evolution of a system needs to be described. Learning such differential equations has
important applications, e.g., in the study of human motor control and in robotics [6]. A latent force
model differs from classical approaches as it places a probabilistic process prior over the latent
functions and hence can make statements about the uncertainty in the system. A joint Gaussian
process model over the latent forcing functions and the observed data functions can be recovered
using a Gaussian process prior in conjunction with linear differential equations [1]. The resulting
latent force modeling framework allows the combination of the knowledge of the systems dynamics
with a data driven model. Such generative models can be used to good effect, for example in ranked
target prediction for transcription factors [5].

If a single Gaussian process prior is used to represent each latent function then the models we con-
sider are limited to smooth driving functions. However, discontinuities and segmented latent forces
are omnipresent in real-world data. For example, impact forces due to contacts in a mechanical
dynamical system (when grasping an object or when the feet touch the ground) or a switch in an
electrical circuit result in discontinuous latent forces. Similarly, most non-rhythmic natural mo-
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tor skills consist of a sequence of segmented, discrete movements. If these segments are separate
time-series, they should be treated as such and not be modeled by the same Gaussian process model.

In this paper, we extract a sequence of dynamical systems motor primitives modeled by second
order linear differential equations in conjunction with forcing functions (as in [1, 6]) from human
movement to be used as demonstrations of elementary movements for an anthropomorphic robot.
As human trajectories have a large variability: both due to planned uncertainty of the human’s
movement policy, as well as due to motor execution errors [7], a probabilistic model is needed to
capture the underlying motor primitives. A set of second order differential equations is employed
as mechanical systems are of the same type and a temporal Gaussian process prior is used to allow
probabilistic modeling [1]. To be able to obtain a sequence of dynamical systems, we augment the
latent force model to include discontinuities in the latent function and change dynamics. We intro-
duce discontinuities by switching between different Gaussian process models (superficially similar
to a mixture of Gaussian processes; however, the switching times are modeled as parameters so that
at any instant a single Gaussian process is driving the system). Continuity of the observed functions
is then ensured by constraining the relevant state variables (for example in a second order differential
equation velocity and displacement) to be continuous across the switching points. This allows us
to model highly non stationary multivariate time series. We demonstrate our approach on synthetic
data and real world movement data.

2 Review of Latent force models (LFM)
Latent force models [1] are hybrid models that combine mechanistic principles and Gaussian pro-
cesses as a flexible way to introduce prior knowledge for data modeling. A set of D functions
{yd(t)}Dd=1 is modeled as the set of output functions of a series of coupled differential equations,
whose common input is a linear combination of R latent functions, {ur(t)}Rr=1. Here we focus on a
second order ordinary differential equation (ODE). We assume the output yd(t) is described by

Ad
d2yd(t)

dt2
+ Cd

dyd(t)
dt

+ κdyd(t) =
∑R
r=1Sd,rur(t),

where, for a mass-spring-damper system, Ad would represent the mass, Cd the damper and κd, the
spring constant associated to the output d. We refer to the variables Sd,r as the sensitivity parameters.
They are used to represent the relative strength that the latent force r exerts over the output d. For
simplicity we now focus on the case where R = 1, although our derivations apply more generally.
Note that models that learn a forcing function to drive a linear system have proven to be well-suited
for imitation learning for robot systems [6]. The solution of the second order ODE follows

yd(t) = yd(0)cd(t) + ẏd(0)ed(t) + fd(t, u), (1)

where yd(0) and ẏd(0) are the output and the velocity at time t = 0, respectively, known as the
initial conditions (IC). The angular frequency is given by ωd =

√
(4Adκd − C2

d)/(4A
2
d) and the

remaining variables are given by

cd(t) = e−αdt
[
cos(ωdt) +

αd
ωd

sin(ωdt)
]
, ed(t) =

e−αdt

ωd
sin(ωdt),

fd(t, u) =
Sd
Adωd

∫ t

0

Gd(t− τ)u(τ)dτ =
Sd
Adωd

∫ t

0

e−αd(t−τ) sin[(t− τ)ωd]u(τ)dτ,

with αd = Cd/(2Ad). Note that fd(t, u) has an implicit dependence on the latent function u(t). The
uncertainty in the model of Eq. (1) is due to the fact that the latent force u(t) and the initial conditions
yd(0) and ẏd(0) are not known. We will assume that the latent function u(t) is sampled from a zero
mean Gaussian process prior, u(t) ∼ GP(0, ku,u(t, t′)), with covariance function ku,u(t, t′).
If the initial conditions, yIC = [y1(0), y2(0), . . . , yD(0), v1(0), v2(0), . . . , vD(0)]>, are indepen-
dent of u(t) and distributed as a zero mean Gaussian with covariance KIC the covariance function
between any two output functions, d and d′ at any two times, t and t′, kyd,yd′ (t, t

′) is given by

cd(t)cd′(t′)σyd,yd′ + cd(t)ed′(t′)σyd,vd′ + ed(t)cd′(t′)σvd,yd′ + ed(t)ed′(t′)σvd,vd′ + kfd,fd′ (t, t
′),

where σyd,yd′ , σyd,vd′ , σvd,yd′ and σvd,vd′ are entries of the covariance matrix KIC and

kfd,fd′ (t, t
′) = K0

∫ t
0
Gd(t− τ)

∫ t′
0
Gd′(t′ − τ ′)ku,u(t, t′)dτ ′dτ, (2)
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where K0 = SdSd′/(AdAd′ωdωd′). So the covariance function kfd,fd′ (t, t
′) depends on the covari-

ance function of the latent force u(t). If we assume the latent function has a radial basis function
(RBF) covariance, ku,u(t, t′) = exp[−(t − t′)2/`2], then kfd,fd′ (t, t

′) can be computed analyti-
cally [1] (see also supplementary material). The latent force model induces a joint Gaussian process
model across all the outputs. The parameters of the covariance function are given by the parameters
of the differential equations and the length scale of the latent force. Given a multivariate time series
data set these parameters may be determined by maximum likelihood.
The model can be thought of as a set of mass-spring-dampers being driven by a function sampled
from a Gaussian process. In this paper we look to extend the framework to the case where there can
be discontinuities in the latent functions. We do this through switching between different Gaussian
process models to drive the system.

3 Switching dynamical latent force models (SDLFM)
We now consider switching the system between different latent forces. This allows us to change the
dynamical system and the driving force for each segment. By constraining the displacement and
velocity at each switching time to be the same, the output functions remain continuous.

3.1 Definition of the model
We assume that the input space is divided in a series of non-overlapping intervals [tq−1, tq]

Q
q=1.

During each interval, only one force uq−1(t) out ofQ forces is active, that is, there are {uq−1(t)}Qq=1

forces. The force uq−1(t) is activated after time tq−1 (switched on) and deactivated (switched off)
after time tq . We can use the basic model in equation (1) to describe the contribution to the output
due to the sequential activation of these forces. A particular output zd(t) at a particular time instant
t, in the interval (tq−1, tq), is expressed as

zd(t) = yqd(t− tq−1) = cqd(t− tq−1)y
q
d(tq−1) + eqd(t− tq−1)ẏ

q
d(tq−1) + fqd (t− tq−1, uq−1).

This equation is assummed to be valid for describing the output only inside the interval (tq−1, tq).
Here we highlighted this idea by including the superscript q in yqd(t− tq−1) to represent the interval
q for which the equation holds, although later we will omit it to keep the notation uncluttered. Note
that for Q = 1 and t0 = 0, we recover the original latent force model given in equation (1). We also
define the velocity żd(t) at each time interval (tq−1, tq) as

żd(t) = ẏqd(t− tq−1) = gqd(t− tq−1)y
q
d(tq−1) + hqd(t− tq−1)ẏ

q
d(tq−1) +mq

d(t− tq−1, uq−1),

where gd(t) = −e−αdt sin(ωdt)(α2
dω
−1
d + ωd) and

hd(t) = −e−αdt

[
αd
ωd

sin(ωdt)− cos(ωdt)
]
, md(t) =

Sd
Adωd

d
dt

(∫ t

0

Gd(t− τ)u(τ)dτ
)
.

Given the parameters θ = {{Ad, Cd, κd, Sd}Dd=1, {`q−1}Qq=1}, the uncertainty in the outputs is
induced by the prior over the initial conditions yqd(tq−1), ẏ

q
d(tq−1) for all values of tq−1 and the

prior over latent force uq−1(t) that is active during (tq−1, tq). We place independent Gaussian
process priors over each of these latent forces uq−1(t), assuming independence between them.

For initial conditions yqd(tq−1), ẏ
q
d(tq−1), we could assume that they are either parameters to

be estimated or random variables with uncertainty governed by independent Gaussian distribu-
tions with covariance matrices Kq

IC as described in the last section. However, for the class
of applications we will consider: mechanical systems, the outputs should be continuous across
the switching points. We therefore assume that the uncertainty about the initial conditions
for the interval q, yqd(tq−1), ẏ

q
d(tq−1) are proscribed by the Gaussian process that describes the

outputs zd(t) and velocities żd(t) in the previous interval q − 1. In particular, we assume
yqd(tq−1), ẏ

q
d(tq−1) are Gaussian-distributed with mean values given by yq−1

d (tq−1 − tq−2) and
ẏq−1
d (tq−1 − tq−2) and covariances kzd,zd′ (tq−1, tq′−1) = cov[yq−1

d (tq−1 − tq−2), y
q−1
d′ (tq−1 −

tq−2)] and kżd,żd′ (tq−1, tq′−1) = cov[ẏq−1
d (tq−1 − tq−2), ẏ

q−1
d′ (tq−1 − tq−2)]. We also consider

covariances between zd(tq−1) and żd′(tq′−1), this is, between positions and velocities for different
values of q and d.

Example 1. Let us assume we have one output (D = 1) and three switching intervals (Q = 3)
with switching points t0, t1 and t2. At t0, we assume that yIC follows a Gaussian distribution with
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mean zero and covariance KIC . From t0 to t1, the output z(t) is described by

z(t) = y1(t− t0) = c1(t− t0)y1(t0) + e1(t− t0)ẏ1(t0) + f1(t− t0, u0).

The initial condition for the position in the interval (t1, t2) is given by the last equation evaluated a
t1, this is, z(t1) = y2(t1) = y1(t1 − t0). A similar analysis is used to obtain the initial condition
associated to the velocity, ż(t1) = ẏ2(t1) = ẏ1(t1 − t0). Then, from t1 to t2, the output z(t) is

z(t) = y2(t− t1) = c2(t− t1)y2(t1) + e2(t− t1)ẏ2(t1) + f2(t− t1, u1),

= c2(t− t1)y1(t1 − t0) + e2(t− t1)ẏ1(t1 − t0) + f2(t− t1, u1).

Following the same train of thought, the output z(t) from t2 is given as

z(t) = y3(t− t2) = c3(t− t2)y3(t2) + e3(t− t2)ẏ3(t2) + f3(t− t2, u2),

where y3(t2) = y2(t2 − t1) and ẏ3(t2) = ẏ2(t2 − t1). Figure 1 shows an example of the switching
dynamical latent force model scenario. To ensure the continuity of the outputs, the initial condition
is forced to be equal to the output of the last interval evaluated at the switching point.

3.2 The covariance function

y1(t− t0)

y2(t− t1)

y3(t− t2)

y1(t0)

y1(t1 − t0)

y2(t1)

y2(t2 − t1)

y3(t2)

z(t)

t0 t1 t2

Figure 1: Representation of an output constructed through a switching dynam-
ical latent force model with Q = 3. The initial conditions yq(tq−1) for each
interval are matched to the value of the output in the last interval, evaluated at
the switching point tq−1, this is, yq(tq−1) = yq−1(tq−1 − tq−2).

The derivation of the co-
variance function for the
switching model is rather
involved. For contin-
uous output signals, we
must take into account con-
straints at each switching
time. This causes initial
conditions for each inter-
val to be dependent on final
conditions for the previous
interval and induces cor-
relations across the inter-
vals. This effort is worth-
while though as the result-
ing model is very flexible
and can take advantage of
the switching dynamics to represent a range of signals.

As a taster, Figure 2 shows samples from a covariance function of a switching dynamical latent
force model with D = 1 and Q = 3. Note that while the latent forces (a and c) are discrete,
the outputs (b and d) are continuous and have matching gradients at the switching points. The
outputs are highly nonstationary. The switching times turn out to be parameters of the covariance
function. They can be optimized along with the dynamical system parameters to match the location
of the nonstationarities. We now give an overview of the covariance function derivation. Details are
provided in the supplementary material.

(a) System 1. Samples
from the latent force.
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(b) System 1. Samples
from the output.
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(c) System 2. Samples
from the latent force.
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(d) System 2. Samples
from the output.
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Figure 2: Joint samples of a switching dynamical LFM model with one output, D = 1, and three intervals,
Q = 3, for two different systems. Dashed lines indicate the presence of switching points. While system 2
responds instantaneously to the input force, system 1 delays its reaction due to larger inertia.
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In general, we need to compute the covariance kzd,zd′ (t, t
′) = cov[zd(t), zd′(t′)] for zd(t) in time

interval (tq−1, tq) and zd′(t′) in time interval (tq′−1, tq′). By definition, this covariance follows

cov[zd(t), zd′(t′)] = cov
[
yqd(t− tq−1), y

q′

d′(t− tq′−1))
]
.

We assumme independence between the latent forces uq(t) and independence between the initial
conditions yIC and the latent forces uq(t).1 With these conditions, it can be shown2 that the covari-
ance function3 for q = q′ is given as

cqd(t− tq−1)c
q
d′(t
′ − tq−1)kzd,zd′ (tq−1, tq−1) + cqd(t− tq−1)e

q
d′(t
′ − tq−1)kzd,żd′ (tq−1, tq−1)

+eqd(t− tq−1)c
q
d′(t
′ − tq−1)kżd,zd′ (tq−1, tq−1) + eqd(t− tq−1)e

q
d′(t
′ − tq−1)kżd,żd′ (tq−1, tq−1)

+kqfd,fd′
(t, t′), (3)

where
kzd,zd′ (tq−1, tq−1) = cov[yqd(tq−1)y

q
d′(tq−1)], kzd,żd′ (tq−1, tq−1) = cov[yqd(tq−1)ẏ

q
d′(tq−1)],

kżd,zd′ (tq−1, tq−1) = cov[ẏqd(tq−1)y
q
d′(tq−1)], kżd,żd′ (tq−1, tq−1) = cov[ẏqd(tq−1)ẏ

q
d′(tq−1)].

kqfd,fd′
(t, t′) = cov[fqd (t− tq−1)f

q
d′(t
′ − tq−1)].

In expression (3), kzd,zd′ (tq−1, tq−1) = cov[yq−1
d (tq−1 − tq−2), y

q−1
d′ (tq−1 − tq−2)] and values

for kzd,żd′ (tq−1, tq−1), kżd,zd′ (tq−1, tq−1) and kżd,żd′ (tq−1, tq−1) can be obtained by similar ex-
pressions. The covariance kqfd,fd′

(t, t′) follows a similar expression that the one for kfd,fd′ (t, t
′) in

equation (2), now depending on the covariance kuq−1,uq−1(t, t
′). We will assume that the covari-

ances for the latent forces follow the RBF form, with length-scale `q .

When q > q′, we have to take into account the correlation between the initial conditions yqd(tq−1),
ẏqd(tq−1) and the latent force uq′−1(t′). This correlation appears because of the contribution of
uq′−1(t′) to the generation of the initial conditions, yqd(tq−1), ẏ

q
d(tq−1). It can be shown4 that the

covariance function cov[zd(t), zd′(t′)] for q > q′ follows

cqd(t− tq−1)c
q′

d′(t
′ − tq′−1)kzd,zd′ (tq−1, tq′−1) + cqd(t− tq−1)e

q′

d′(t
′ − tq′−1)kzd,żd′ (tq−1, tq′−1)

+eqd(t− tq−1)c
q′

d′(t
′ − tq′−1)kżd,zd′ (tq−1, tq′−1) + eqd(t− tq−1)e

q′

d′(t
′ − tq′−1)kżd,żd′ (tq−1, tq′−1)

+cqd(t− tq−1)X 1
d k

q′

fd,fd′
(tq′−1, t

′) + cqd(t− tq−1)X 2
d k

q′

md,fd′
(tq′−1, t

′)

+eqd(t− tq−1)X 3
d k

q′

fd,fd′
(tq′−1, t

′) + eqd(t− tq−1)X 4
d k

q′

md,fd′
(tq′−1, t

′), (4)

where
kzd,zd′ (tq−1, tq′−1) = cov[yqd(tq−1)y

q′

d′(tq′−1)], kzd,żd′ (tq−1, tq′−1) = cov[yqd(tq−1)ẏ
q′

d′(tq′−1)],

kżd,zd′ (tq−1, tq′−1) = cov[ẏqd(tq−1)y
q′

d′(tq′−1)], kżd,żd′ (tq−1, tq′−1) = cov[ẏqd(tq−1)ẏ
q′

d′(tq′−1)],

kqmd,fd′
(t, t′) = cov[mq

d(t− tq−1)f
q
d′(t
′ − tq−1)],

and X 1
d , X 2

d , X 3
d and X 4

d are functions of the form
∑q−q′
n=2

∏q−q′
i=2 xq−i+1

d (tq−i+1 − tq−i), with
xq−i+1
d being equal to cq−i+1

d , eq−i+1
d , gq−i+1

d or hq−i+1
d , depending on the values of q and q′.

A similar expression to (4) can be obtained for q′ > q. Examples of these functions for specific
values of q and q′ and more details are also given in the supplementary material.

4 Related work
There has been a recent interest in employing Gaussian processes for detection of change points in
time series analysis, an area of study that relates to some extent to our model. Some machine learning
related papers include [3, 4, 9]. [3, 4] deals specifically with how to construct covariance functions

1Derivations of these equations are rather involved. In the supplementary material, section 2, we include a
detailed description of how to obtain the equations (3) and (4)

2See supplementary material, section 2.2.1.
3We will write fq

d (t− tq−1, uq−1) as fq
d (t− tq−1) for notational simplicity.

4See supplementary material, section 2.2.2
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in the presence of change points (see [3], section 4). The authors propose different alternatives
according to the type of change point. From these alternatives, the closest ones to our work appear
in subsections 4.2, 4.3 and 4.4. In subsection 4.2, a mechanism to keep continuity in a covariance
function when there are two regimes described by different GPs, is proposed. The authors call this
covariance continuous conditionally independent covariance function. In our switched latent force
model, a more natural option is to use the initial conditions as the way to transit smoothly between
different regimes. In subsections 4.3 and 4.4, the authors propose covariances that account for a
sudden change in the input scale and a sudden change in the output scale. Both type of changes
are automatically included in our model due to the latent force model construction: the changes in
the input scale are accounted by the different length-scales of the latent force GP process and the
changes in the output scale are accounted by the different sensitivity parameters. Importantly, we
also concerned about multiple output systems.

On the other hand, [9] proposes an efficient inference procedure for Bayesian Online Change Point
Detection (BOCPD) in which the underlying predictive model (UPM) is a GP. This reference is less
concerned about the particular type of change that is represented by the model: in our application
scenario, the continuity of the covariance function between two regimes must be assured beforehand.

5 Implementation
In this section, we describe additional details on the implementation, i.e., covariance function, hy-
perparameters, sparse approximations.

Additional covariance functions. The covariance functions kżd,zd′ (t, t
′), kzd,żd′ (t, t

′) and
kżd,żd′ (t, t

′) are obtained by taking derivatives of kzd,zd′ (t, t
′) with respect to t and t′ [10].

Estimation of hyperparameters. Given the number of outputs D and the number of intervals
Q, we estimate the parameters θ by maximizing the marginal-likelihood of the joint Gaussian pro-
cess {zd(t)}Dd=1 using gradient-descent methods. With a set of input points, t = {tn}Nn=1, the
marginal-likelihood is given as p(z|θ) = N (z|0,Kz,z + Σ), where z = [z>1 , . . . , z

>
D]>, with

zd = [zd(t1), . . . , zd(tN )]>, Kz,z is a D × D block-partitioned matrix with blocks Kzd,zd′ . The
entries in each of these blocks are evaluated using kzd,zd′ (t, t

′). Furthermore, kzd,zd′ (t, t
′) is com-

puted using the expressions (3), and (4), according to the relative values of q and q′.

Efficient approximations Optimizing the marginal likelihood involves the inversion of the ma-
trix Kz,z, inversion that grows with complexity O(D3N3). We use a sparse approximation based
on variational methods presented in [2] as a generalization of [11] for multiple output Gaussian
processes. The approximations establish a lower bound on the marginal likelihood and reduce com-
putational complexity to O(DNK2), being K a reduced number of points used to represent u(t).

6 Experimental results

We now show results with artificial data and data recorded from a robot performing a basic set of
actions appearing in table tennis.

6.1 Toy example

Using the model, we generate samples from the GP with covariance function as explained before.
In the first experiment, we sample from a model with D = 2, R = 1 and Q = 3, with switching
points t0 = −1, t1 = 5 and t2 = 12. For the outputs, we have A1 = A2 = 0.1, C1 = 0.4, C2 = 1,
κ1 = 2, κ2 = 3. We restrict the latent forces to have the same length-scale value `0 = `1 = `2 =
1e−3, but change the values of the sensitivity parameters as S1,1 = 10, S2,1 = 1, S1,2 = 10, S2,2 =
5, S1,3 = −10 and S2,3 = 1, where the first subindex refers to the output d and the second subindex
refers to the force in the interval q. In this first experiment, we wanted to show the ability of the
model to detect changes in the sensitivities of the forces, while keeping the length scales equal along
the intervals. We sampled 5 times from the model with each output having 500 data points and add
some noise with variance equal to ten percent of the variance of each sampled output. In each of the
five repetitions, we took N = 200 data points for training and the remaining 300 for testing.
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Q = 1 Q = 2 Q = 3 Q = 4 Q = 5

1 SMSE 76.27±35.63 14.66±11.74 0.30±0.02 0.31±0.03 0.72±0.56
MSLL −0.98±0.46 −1.79±0.26 −2.90±0.03 −2.87±0.04 −2.55±0.41

2 SMSE 7.27±6.88 1.08±0.05 1.10±0.05 1.06±0.05 1.10±0.09
MSLL −1.79±0.28 −2.26±0.02 −2.25±0.02 −2.27±0.03 −2.26±0.06

Table 1: Standarized mean square error (SMSE) and mean standardized log loss (MSLL) using different values
of Q for both toy examples. The figures for the SMSE must be multiplied by 10−2. See the text for details.

(a) Latent force toy example 1.
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(b) Output 1 toy example 1.
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(c) Output 2 toy example 1.
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(d) Latent force toy example 2.
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(e) Output 1 toy example 2.
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(f) Output 3 toy example 2.
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Figure 4: Mean and two standard deviations for the predictions over the latent force and two of the three outputs
in the test set. Dashed lines indicate the final value of the swithcing points after optimization. Dots indicate
training data.

Figure 3: Data collection was
performed using a Barrett WAM
robot as haptic input device.

Optimization of the hyperparameters (including t1 and t2) is done
by maximization of the marginal likelihood through scaled conju-
gate gradient. We train models forQ = 1, 2, 3, 4 and 5 and measure
the mean standarized log loss (MSLL) and the mean standarized
mean square error (SMSE) [8] over the test set for each value of Q.
Table 1, first two rows, show the corresponding average results over
the 5 repetitions together with one standard deviation. Notice that
for Q = 3, the model gets by the first time the best performance,
performance that repeats again for Q = 4. The SMSE performance
remains approximately equal for values of Q greater than 3. Fig-
ures 4(a), 4(b) and 4(c) shows the kind of predictions made by the
model for Q = 3.

We generate also a different toy example, in which the length-scales of the intervals are different.
For the second toy experiment, we assume D = 3, Q = 2 and switching points t0 = −2 and
t1 = 8. The parameters of the outputs are A1 = A2 = A3 = 0.1, C1 = 2, C2 = 3, C3 = 0.5,
κ1 = 0.4, κ2 = 1, κ3 = 1 and length scales `0 = 1e − 3 and `1 = 1. Sensitivities in this case are
S1,1 = 1, S2,1 = 5, S3,1 = 1, S1,2 = 5, S2,2 = 1 and S3,2 = 1. We follow the same evaluation
setup as in toy example 1. Table 1, last two rows, show the performance again in terms of MLSS
and SMSE. We see that for values of Q > 2, the MLSS and SMSE remain similar. In figures 4(d),
4(e) and 4(f), the inferred latent force and the predictions made for two of the three outputs.

6.2 Segmentation of human movement data for robot imitation learning
In this section, we evaluate the feasibility of the model for motion segmentation with possible appli-
cations in the analysis of human movement data and imitation learning. To do so, we had a human
teacher take the robot by the hand and have him demonstrate striking movements in a cooperative
game of table tennis with another human being as shown in Figure 3. We recorded joint positions,

7
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Figure 5: Employing the switching dynamical LFM model on the human movement data collected as in
Fig.3 leads to plausible segmentations of the demonstrated trajectories. The first row corresponds to the log-
likelihood, latent force and one of four outputs for trial one. Second row shows the same quantities for trial two.
Crosses in the bottom of the figure refer to the number of points used for the approximation of the Gaussian
process, in this case K = 50.

angular velocities, and angular acceleration of the robot for two independent trials of the same ta-
ble tennis exercise. For each trial, we selected four output positions and train several models for
different values of Q, including the latent force model without switches (Q = 1). We evaluate the
quality of the segmentation in terms of the log-likelihood. Figure 5 shows the log-likelihood, the
inferred latent force and one output for trial one (first row) and the corresponding quantities for trial
two (second row). Figures 5(a) and 5(d) show peaks for the log-likelihood atQ = 9 for trial one and
Q = 10 for trial two. As the movement has few gaps and the data has several output dimensions,
it is hard even for a human being to detect the transitions between movements (unless it is visual-
ized as in a movie). Nevertheless, the model found a maximum for the log-likelihood at the correct
instances in time where the human transits between two movements. At these instances the human
usually reacts due to an external stimulus with a large jerk causing a jump in the forces. As a result,
we obtained not only a segmentation of the movement but also a generative model for table tennis
striking movements.

7 Conclusion
We have introduced a new probabilistic model that develops the latent force modeling framework
with switched Gaussian processes. This allows for discontinuities in the latent space of forces. We
have shown the application of the model in toy examples and on a real world robot problem, in
which we were interested in finding and representing striking movements. Other applications of the
switching latent force model that we envisage include modeling human motion capture data using
the second order ODE and a first order ODE for modeling of complex circuits in biological networks.
To find the order of the model, this is, the number of intervals, we have used cross-validation. Future
work includes proposing a less expensive model selection criteria.
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1 Introduction

The motor primitive idea is similar to the latent force model one. We want to use a set of templates
for basic motions in order to generate more complex ones. The analogy we can think of is the
generation of speech, in which phonemes are used to generate words and sentences.

Motor primitive model

Motor primitives employ the concept of autonomous dynamical system in which the independent
variable is first parameterized by a first order homogenous dynamical system. The output of this
system is used as the independent variable of the inducing force of a second order differential equa-
tion [2]. The first system is known as the canonical system and its form depends on the type of
movement that is to be represented: point attractive and limit cycle behaviors are the two most ba-
sic behaviors of nonlinear dynamical systems. In motor control these correspond to discrete and
rythmic movements.

Latent force model

The latent force model was first introduced in [1]. A set of coupled second order ordinary differential
equations was employed for human-balancing movement representation. Here we only review the
basic form for the covariance function in the Gaussian process formulation of the Latent force model.
More details and applications can be found in [1].

A set of D outputs {fd(t)}Dd=1 (where each of them describes the relative position of a particle wrt
to a set of reference points in a spring-damper-mass system) is represented by a Gaussian process
with covariance function,

kfdfd′ (t, t
′) =

Q∑
q=1

SqdSqd′
√
π`2q

8AdAd′ωdωd′
k

(q)
fdfd′

(t, t′),

with Ad the mass of system d, ωd the angular frequency, Sqd the relative strength of latent force
q over output d, `q the length-scale of the RBF covariance for the Gaussian process that describes
the latent force q and k(q)

fdfd′
(t, t′), the cross-covariance between the d-th and d′-th outputs under the

effect of the q-th latent force, and is given by

k
(q)
fdfd′

(t, t′) = hq(γ̃d′ , γd, t, t′) + hq(γd, γ̃d′ , t′, t) + hq(γd′ , γ̃d, t, t′) + hq(γ̃d, γd′ , t′, t)

− hq(γ̃d′ , γ̃d, t, t′)− hq(γ̃d, γ̃d′ , t′, t)− hq(γd′ , γd, t, t′)− hq(γd, γd′ , t′, t),

1



where γd = αd + jωd, γ̃d = αd − jωd, and

hq(γd′ , γd, t, t′) =
1

γd + γd′
[Υq(γd′ , t′, t)− exp(−γdt)Υq(γd′ , t′, 0)] .

Υq(γd′ , t, t′) = 2 exp

(
`2qγ

2
d′

4

)
exp(−γd′(t− t′))︸ ︷︷ ︸

ψq(γd′ ,t,t
′)

− exp
(
− (t− t′)2

`2q

)
w(jz(t, t′))︸ ︷︷ ︸

υq(γd′ ,t,t
′)

− exp
(
− (t′)2

`2q

)
exp(−γd′t)w(−jz(0, t′))︸ ︷︷ ︸
ϕq(γd′ ,t,t

′)

= ψq(γd′ , t, t′)− υq(γd′ , t, t′)− ϕq(γd′ , t, t′),
and z(t, t′) = (t− t′)/`q − (`qγd′)/2. Note that z(t, t′) ∈ C, and w(jz) in the above equation, for
z ∈ C, denotes Faddeeva’s function w(jz) = exp(z2)erfc(z), where erfc(z) is the complex version
of the complementary error function, erfc(z) = 1 − erf(z) = 2√

π

∫∞
z

exp(−v2)dv. Faddeeva’s
function is usually considered the complex equivalent of the error function, since |w(jz)| is bounded
whenever the imaginary part of jz is greater or equal than zero, and is the key to achieving a good
numerical stability when computing Υq(γd′ , t, t′) and its gradients.

2 Switching forces

Figure 1 shows a cartoon representation of output zd(t) switching its behavior between points t0, t1,
t2 and t3. For each interval (ti−1, ti), only the latent force ui−1(t) is active.

t = t0 t = t1 t = t2 t = t3

u0(t) u1(t)
u2(t)

pd(t, t0, t1, u0)

pd(t, t1, t2, u1)

pd(t, t2, t3, u2)

zd(t)

Figure 1: A pictorial representation of the switching scenario for zd(t)

2.1 Definition of the model

Taking into account the initial conditions, the solution to the second order model is given as

yd(t) = yd(0)e−αdt

[
cos(ωdt) +

αd
ωd

sin(ωdt)
]

+ ẏd(0)
[
e−αdt

ωd
sin(ωdt)

]
+

Sd
Adωd

∫ t

0

e−αd(t−τ) sin[(t− τ)ωd]u(τ)dτ,
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where yd(0) and ẏd(0) are the initial conditions. This is the basic equation we need to use to express
the covariance function for the switching model. The uncertainty in this model is due to the latent
force u(t) and the initial conditions yd(0) and ẏd(0). For simplicity, we write the above equation as

yd(t) = cd(t)yd(0) + ed(t)ẏd(0) + fd(t), (1)

with

cd(t) = e−αdt

[
cos(ωdt) +

αd
ωd

sin(ωdt)
]

ed(t) =
[
e−αdt

ωd
sin(ωdt)

]
fd(t) =

Sd
Adωd

∫ t

0

e−αd(t−τ) sin[(t− τ)ωd]u(τ)dτ =
∫ t

0

Gd(t− τ)u(τ)dτ.

We’ll need also the velocity vd(t), which is is given as

vd(t) =
dyd(t)

dt
= gd(t)yd(0) + hd(t)ẏd(0) +md(t), (2)

with

gd(t) =
dcd(t)

dt
= −e−αdt sin(ωdt)

(
α2
d

ωd
+ ωd

)
hd(t) =

ded(t)
dt

= −e−αdt

[
αd
ωd

sin(ωdt)− cos(ωdt)
]

md(t) =
d
dt

(∫ t

0

Gd(t− τ)u(τ)dτ
)
.

Furthermore, we also need the acceleration, given as

ad(t) =
dvd(t)

dt
= rd(t)yd(0) + bd(t)ẏd(0) + wd(t), (3)

with

rd(t) =
dhd(t)

dt
= e−αdt

(
α2
d

ωd
+ ωd

)[
αd sin(ωdt)− ωd cos(ωdt)

]
bd(t) =

dgd(t)
dt

= e−αdt

[(
α2
d

ωd
− ωd

)
sin(ωdt)− 2αd cos(ωdt)

]
wd(t) =

d2

dt2

(∫ t

0

Gd(t− τ)u(τ)dτ
)
.

The input space is divided in non-overlapping intervals [tq−1, tq]
Q
q=1 and for each one of these in-

tervals, only one force uq−1(t) out of Q forces is active, this is, there are {uq−1}Qq=1 forces. The
force uq−1(t) is activated after time tq−1 and desactivated after time tq . We can use the basic model
in the equation before to describe the contribution to the output due to the sequential activation of
these forces. An output zd(t) at a particular time instant t, in the interval (tq−1, tq), is expressed as

zd(t, tq−1, tq) = pd(t, tq−1, tq, uq−1), for 1 ≤ d ≤ D,
where pd(t, tq−1, tq, uq−1) uses the model for yd(t) in equation (1) as

pd(t, tq−1, tq, uq−1) = yd(t)
∣∣
tq−1

= cd(t− tq−1)yd(tq−1) + ed(t− tq−1)ẏd(tq−1)

+ fd(t, tq−1, tq, uq−1).

Notice that there are as many intervals {(tq−1, tq)}Qq=1 as latent forces {uq(t)}Qq=1. For simplicity,
we write zd(t, tq−1, tq) as zd(t). In the above equation, yd(t)

∣∣
tq−1

expresses that yd(t) has to be
evaluated with the initial condition specified at tq−1 and

fd(t, tq−1, tq, uq−1) =
∫ t−tq−1

0

Gd(t− tq−1 − τ)uq−1(τ)dτ. (4)
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Expression fd(t, tq−1, tq, uq−1) is a function of four arguments: the first argument, t, refers to
the independent variable inside the kernel smoothing function Gd(t − τ) and in the upper limit
of the convolution transform; the second argument, tq−1, and third argument tq specify the lower
and upper limits of the time interval for which the convolution is being computed and the fourth
argument, uq−1, specifies the latent force acting in this interval. Additionally, we define a similar
function for the velocity żd(t) as

żd(t, tq, tq−1) = ξd(t, tq−1, tq, uq−1), for 1 ≤ d ≤ D,
where

ξd(t, tq−1, tq, uq−1) = vd(t)
∣∣
tq−1

= gd(t− tq−1)yd(tq−1) + hd(t− tq−1)ẏd(tq−1)

+md(t, t, tq−1, tq, uq−1),

and md(t, tq−1, tq, uq−1) follows

md(t, tq−1, tq, uq−1) =
d
dt

(∫ t−tq−1

0

Gd(t− tq−1 − τ)uq−1(τ)dτ
)
. (5)

Again, for simplicity, we write żd(t, tq, tq−1) as żd(t). The initial conditions yd(tq−1) and ẏd(tq−1)
can be defined again in terms of zd(t) and żd(t)

yd(tq−1) = zd(tq−1) = pd(tq−1, tq−2, tq−1, uq−2),
ẏd(tq−1) = żd(tq−1) = ξd(tq−1, tq−2, tq−1, uq−2).

Without loss of generality, we assume that the initial conditions at t = t0 for all d, are parameters of
the model. This is yd(t0) and ẏd(t0) are parameters that need to be estimated. Eventually, we might
need to put a prior over them. A similar expression is obtained for the acceleration z̈d(t).

Example 1. Suppose we have Q = 3 as in figure 1. Then, the outputs zd(t) will be
given as zd(t, t0, t1) = pd(t, t0, t1, u0), zd(t, t1, t2) = pd(t, t1, t2, u1) and zd(t, t2, t3) =
pd(t, t2, t3, u2). Equally, the velocities żd(t) will follow żd(t, t0, t1) = ξd(t, t0, t1, u0),
żd(t, t1, t2) = ξd(t, t1, t2, u1) and żd(t, t2, t3) = ξd(t, t2, t3, u2). We also have the initial condi-
tions. For t0, the initial conditions are parameters yd(t0) and ẏd(t0). For the intervals starting at t1
and t2, the initial conditions are given as yd(t1) = pd(t1, t0, t1, u0) and yd(t2) = pd(t2, t1, t2, u1).
And for the velocities ẏd(t1) = ξd(t1, t1, t0, t1, u0) and ẏd(t2) = ξd(t2, t1, t2, u1).

2.2 Covariance for the outputs

In general, we need to compute the covariance cov[zd(t), zd′(t′)] for every time interval (tq−1, tq)
and for intervals (tq−1, tq) and (tq′−1, t

′
q). The covariance cov[zd(t), zd′(t′)] for time interval

(tq−1, tq) is given as

cov[zd(t), zd′(t′)] = cov
[
pd(t, tq−1, tq, uq−1), pd′(t′, tq−1, tq, uq−1)

]
. (6)

And the covariance cov[zd(t), zd′(t′)] for time intervals (tq−1, tq) and (tq′−1, t
′
q) is given as

cov[zd(t), zd′(t′)] = cov
[
pd(t, t, tq−1, tq, uq−1), pd′(t′, tq′−1, tq′ , uq′−1)

]
. (7)

2.2.1 Covariance for interval (tq−1, tq)

The covariance in equation (6), follows

cov{[cd(t− tq−1)yd(tq−1) + ed(t− tq−1)ẏd(tq−1) + fd(t, t, tq−1, tq, uq−1)]

[cd′(t
′ − tq−1)yd′(tq−1) + ed′(t

′ − tq−1)ẏd′(tq−1) + fd′(t
′, t′, tq−1, tq, uq−1)}

= cd(t− tq−1)cd′(t
′ − tq−1) cov{yd(tq−1)yd′(tq−1)}+ cd(t− tq−1)ed′(t

′ − tq−1) cov{yd(tq−1)ẏd′(tq−1)}
+cd(t− tq−1) cov{yd(tq−1)fd′(t

′, t′, tq−1, tq, uq−1)}+ ed(t− tq−1)cd′(t
′ − tq−1) cov{ẏd(tq−1)yd′(tq−1)}

+ed(t− tq−1)ed′(t
′ − tq−1) cov{ẏd(tq−1)ẏd′(tq−1)}+ ed(t− tq−1) cov{ẏd(tq−1)fd′(t

′, t′, tq−1, tq, uq−1)}
+cd′(t

′ − tq−1) cov{fd(t, t, tq−1, tq, uq−1)yd′(tq−1)}+ ed′(t
′ − tq−1) cov{fd(t, t, tq−1, tq, uq−1)ẏd′(tq−1)}

+cov{fd(t, t, tq−1, tq, uq−1)fd′(t
′, t′, tq−1, tq, uq−1)}.
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The terms cov{yd(tq−1)yd′(tq−1)}, cov{yd(tq−1)ẏd′(tq−1)}, cov{ẏd(tq−1)yd′(tq−1)} and
cov{ẏd(tq−1)ẏd′(tq−1)} are obtained from the covariance already computed. These terms
are equivalent as kzd,zd′ (tq−1, tq−1) = cov{yd(tq−1)yd′(tq−1)}, kzd,żd′ (tq−1, tq−1) =
cov{yd(tq−1)ẏd′(tq−1)}, kżd,zd′ (tq−1, tq−1) = cov{ẏd(tq−1)yd′(tq−1)} and kżd,żd′ (tq−1, tq−1) =
cov{ẏd(tq−1)ẏd′(tq−1)}. The expressions cov{yd(tq−1)fd′(t′, t′, tq−1, tq, uq−1)},
cov{ẏd(tq−1)fd′(t′, t′, tq−1, tq, uq−1)}, cov{fd(t, t, tq−1, tq, uq−1)yd′(tq−1)} and
cov{fd(t, t, tq−1, tq, uq−1)ẏd′(tq−1)} are zero. This can be seen from the fact that terms
like yd(tq−1) are a obtained as a result of terms yd(tk−1) and fd(tk−1, tk−1, tk, uk), for k < q,
and the covariance between those terms with fd(t, tq−1, tq, uq−1) is zero. Finally, the term
cov{fd(t, tq−1, tq, uq−1)fd′(t′, tq−1, tq, uq−1)} is denoted as k(q−1)

fd,fd′
(t, t′).

In this way the covariance cov
[
pd(t, t, tq−1, tq, uq−1), pd′(t′, t′, tq−1, tq, uq−1)

]
is equal to

cd(t− tq−1)cd′(t′ − tq−1)kzd,zd′ (tq−1, tq−1) + cd(t− tq−1)ed′(t′ − tq−1)kzd,żd′ (tq−1, tq−1)

+ed(t− tq−1)cd′(t′ − tq−1)kżd,zd
(tq−1, tq−1) + ed(t− tq−1)ed′(t′ − tq−1)kżd,żd′ (tq−1, tq−1)

+ k
(q−1)
fd,fd′

(t, t′). (8)

The term kzd,zd′ (tq−1, tq−1) is equal to cov[zd(tq−1, tq−2, tq−1), zd′(tq−1, tq−2, tq−1)] and analog
expressions are obtained for kzd,żd′ (tq−1, tq−1), kżd,zd′ (tq−1, tq−1) and kżd,żd′ (tq−1, tq−1).

Example 1 (Continued). We continue with the example in figure 1. We need to compute the
covariance kzd,zd′ (t, t

′) in the intervals (t0, t1], (t1, t2] and (t2, t3]. For the covariance in the interval
(t0, t1], we have

cov[zd(t), zd′(t′)] = cov[pd(t, t0, t1, u0), pd′(t, t0, t1, u0)]

= cd(t− t0)cd′(t′ − t0)kzd,zd′ (t0, t0) + cd(t− t0)ed′(t′ − t0)kzd,żd′ (t0, t0)

+ ed(t− t0)cd′(t′ − t0)kżd,zd
(t0, t0) + ed(t− t0)ed′(t′ − t0)kżd,żd′ (t0, t0)

+ k
(0)
fd,fd′

(t, t′).

We assume the terms kzd,zd′ (t0, t0), kzd,żd′ (t0, t0), kżd,zd
(t0, t0) and kżd,żd′ (t0, t0) are parame-

ters that have to be estimated in the inference process. We also have access to cov[zd(t), żd′(t′)],
cov[żd(t), zd′(t′)] and cov[żd(t), żd′(t′)]. With these expressions we compute kzd,zd′ (t1, t1) =
cov[zd(t1), zd′(t1)], kzd,żd′ (t1, t1) = cov[zd(t1), żd′(t1)], kżd,zd

(t1, t1) = cov[żd(t1), zd′(t1)] and
kżd,żd′ (t1, t1) = cov[żd(t1), żd′(t1)], that are needed to compute the covariance in the next interval.

For the covariance in the interval (t1, t2], we have

cov[zd(t), zd′(t′)] = cov[pd(t, t1, t2, u1), pd′(t′, t1, t2, u1)], (9)

which follows the same form that equation (8)

cd(t− t1)cd′(t′ − t1)kzd,zd′ (t1, t1) + cd(t− t1)ed′(t′ − t1)kzd,żd′ (t1, t1)

+ ed(t− t1)cd′(t′ − t1)kżd,zd
(t1, t1) + ed(t− t1)ed′(t′ − t1)kżd,żd′ (t1, t1) + k

(1)
fd,fd′

(t, t′).

With the final expression for cov[zd(t, t1, t2), zd′(t′, t1, t2)], we compute kzd,zd′ (t2, t2) =
cov[zd(t2), zd′(t2)], kzd,żd′ (t2, t2) = cov[zd(t2), żd′(t2)], kżd,zd

(t2, t2) = cov[żd(t2), zd′(t2)] and
kżd,żd′ (t2, t2) = cov[żd(t2), żd′(t2)], that are needed to compute the covariance in the next interval.

We finally need the covariance for the interval (t2, t3]. This covariance is computed as

cov[zd(t), zd′(t′)] = cov[pd(t, t2, t3, u2), pd′(t′, t2, t3, u2)], (10)

given as

cd(t− t2)cd′(t′ − t2)kzd,zd′ (t2, t2) + cd(t− t2)ed′(t′ − t2)kzd,żd′ (t2, t2)

+ ed(t− t2)cd′(t′ − t2)kżd,zd
(t2, t2) + ed(t− t2)ed′(t′ − t2)kżd,żd′ (t2, t2) + k

(2)
fd,fd′

(t, t′).
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2.2.2 Covariance for intervals (tq−1, tq) and (tq′−1, t
′
q)

For the covariance in equation (7), we have two regimes

1. q > q′.

2. q < q′.

The case for which q = q′ was analized in the subsection before this one. We are interested in
computing the term cov

[
pd(t, t, tq−1, tq, uq−1), pd′(t′, t′, tq′−1, tq′ , uq′−1)

]
, for q > q′ and q < q′.

For q > q′, we have

cd(t− tq−1)cd′(t
′ − tq′−1) cov{yd(tq−1)yd′(tq′−1)}+ cd(t− tq−1)ed′(t

′ − tq′−1) cov{yd(tq−1)ẏd′(tq′−1)}
+cd(t− tq−1) cov{yd(tq−1)fd′(t

′,tq′−1, tq′ , uq′−1)}+ ed(t− tq−1)cd′(t
′ − tq′−1) cov{ẏd(tq−1)yd′(tq′−1)}

+ed(t− tq−1)ed′(t
′ − tq′−1) cov{ẏd(tq−1)ẏd′(tq′−1)}+ ed(t− tq−1) cov{ẏd(tq−1)fd′(t

′, tq′−1, tq, uq′−1)}
+cd′(t

′ − tq−1) cov{fd(t, tq−1,tq, uq−1)yd′(tq′−1)}+ ed′(t
′ − tq−1) cov{fd(t, tq−1, tq, uq−1)ẏd′(tq′−1)}

+ cov{fd(t, tq−1, tq, uq−1)fd′(t
′, tq′−1, tq′ , uq′−1)}.

The terms cov{yd(tq−1)yd′(tq′−1)}, cov{yd(tq−1)ẏd′(tq′−1)}, cov{ẏd(tq−1)yd′(tq′−1)} and
cov{ẏd(tq−1)ẏd′(tq′−1)} are obtained from the covariance already computed. The term
cov{fd(t, tq−1, tq, uq−1)fd′(t′, tq′−1, t

′
q, uq′−1)} is equal to zero, because there is no correlation

between uq−1 and uq′−1. Also, the covariances cd′(t′ − tq−1) cov{fd(t, tq−1, tq, uq−1)yd′(tq′−1)}
and ed′(t′−tq−1) cov{fd(t, tq−1, tq, uq−1)ẏd′(tq′−1)} are zero, since q > q′, there is no correlation
between force uq−1 and any force uk−1 for k <= q′ − 2. We can rewrite the above expression as

cd(t− tq−1)cd′(t
′ − tq′−1) cov{yd(tq−1)yd′(tq′−1)}+ cd(t− tq−1)ed′(t

′ − tq′−1) cov{yd(tq−1)ẏd′(tq′−1)}
+ed(t− tq−1)cd′(t

′ − tq′−1) cov{ẏd(tq−1)yd′(tq′−1)}+ ed(t− tq−1)ed′(t
′ − tq′−1) cov{ẏd(tq−1)ẏd′(tq′−1)}

+cd(t− tq−1) cov{yd(tq−1)fd′(t
′, tq′−1, tq′ , uq′−1)}+ ed(t− tq−1) cov{ẏd(tq−1)fd′(t

′, tq′−1, tq, uq′−1)}

Terms like cov{yd(tq−1)fd′(t′, t′, tq′−1, tq′ , uq′−1)} and cov{ẏd(tq−1)fd′(t′, t′, tq′−1, tq, uq′−1)}
requiere further analysis.

Let’s look in detail the term cov{yd(tq−1)fd′(t′, tq′−1, tq′ , uq′−1)}. This term is equal to

cov{yd(tq−1)fd′(t′, tq′−1, tq′ , uq′−1)} = cov
{
pd(tq−1, tq−2, tq−1, uq−2)fd′(t′, tq′−1, tq′ , uq′−1)

}
= cov

{[
cd(tq−1 − tq−2)yd(tq−2) + ed(tq−1 − tq−2)ẏd(tq−2)

+ fd(tq−1, tq−2, tq−1, uq−2)
]
fd′(t′, tq′−1, tq′ , uq′−1)

}
= cd(tq−1 − tq−2) cov{yd(tq−2)fd′(t′, tq′−1, tq′ , uq′−1)}︸ ︷︷ ︸

A

+ ed(tq−1 − tq−2) cov{ẏd(tq−2)fd′(t′, tq′−1, tq′ , uq′−1)}︸ ︷︷ ︸
B

+ cov{fd(tq−1, tq−2, tq−1, uq−2)fd′(t′, t′, tq′−1, tq′ , uq′−1)}.
The term cov{fd(tq−1, tq−2, tq−1, uq−2)fd′(t′, tq′−1, tq′ , uq′−1)} is only different from zero for
q = q′ + 1 and it would reduce to k̂(q′−1)

fd,fd′
(tq−1, t

′). For A and B, if q < q′ + 1, the terms in the
are zero because there is no correlation between forces uq′−1 and forces uq−2, for q < q′ + 1. For
q > q′ + 1, the term in A is equal to

cd(tq−1 − tq−2) cov
{[
cd(tq−2 − tq−3)yd(tq−3) + ed(tq−2 − tq−3)ẏd(tq−3)

+ fd(tq−2, tq−3, tq−2, uq−3)
]
fd′(t′, tq′−1, tq′ , uq′−1)

}
= cd(tq−1 − tq−2)cd(tq−2 − tq−3) cov{yd(tq−3)fd′(t′, tq′−1, tq′ , uq′−1)}︸ ︷︷ ︸

A′

+ cd(tq−1 − tq−2)ed(tq−2 − tq−3) cov{ẏd(tq−3)fd′(t′, tq′−1, tq′ , uq′−1)}︸ ︷︷ ︸
B′

+ cd(tq−1 − tq−2) cov{fd(tq−2, tq−3, tq−2, uq−3)fd′(t′, tq′−1, tq′ , uq′−1)}.
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The last term in the above equation is different from zero for q = q′+ 2. Thus, this last term follows

cd(tq−1 − tq−2)k(q′−1)
fd,fd′

(tq−2, t
′).

The terms A′ and B′ follow the same form that the terms A and B. Again, if q < q′ + 2, then
the particular terms in are zeros. If, q > q′ + 2, the recursion repeats until the most inner term in
cov{yd(tq−n)fd′(t′, tq′−1, tq′ , uq′−1)} is such that q = q′ + n. A similar expression can analysis
can be made for the term B. The final covariance would then be equal to

cd(t− tq−1)cd′(t′ − tq′−1)kzd,zd′ (tq−1, tq′−1) + cd(t− tq−1)ed′(t′ − tq′−1)kzd,żd′ (tq−1, tq′−1)

+ed(t− tq−1)cd′(t′ − tq′−1)kżd,zd′ (tq−1, tq′−1) + ed(t− tq−1)ed′(t′ − tq′−1)kżd,żd′ (tq−1, tq′−1)

+cd(t− tq−1)f1(tq−1, tq−1, . . . , tq−n)k(q′−1)
fd,f ′d

(tq−n, t′)

+cd(t− tq−1)f2(tq−1, tq−1, . . . , tq−n)k(q′−1)
md,f ′d

(tq−n, t′)

+ed(t− tq−1)f3(tq−1, tq−1, . . . , tq−n)k(q′−1)
fd,f ′d

(tq−n, t′)

+ed(t− tq−1)f4(tq−1, tq−1, . . . , tq−n)k(q′−1)
md,f ′d

(tq−n, t′),

where f1(·), f2(·), f3(·) and f4(·) are functions of the form∑
x(tq−1 − tq−2)x(tq−2 − tq−3) . . . x(tq−n+1 − tq−n),

with x being equal to cd, ed, gd or hd, depending on the case. To compute the exact form of the
expression f1(·), f2(·), f3(·) and f4(·) we use the following set of rules

– After a cd(·) term, only cd(·) and ed(·) terms follow.

– After a ed(·) term, only gd(·) and hd(·) terms follow.

– After a gd(·) term, only cd(·) and ed(·) terms follow.

– After a hd(·) term, only hd(·) and gd(·) terms follow.

Figures 2, 3, 4 and 5 show examples of the kind of recursions that are generated. In all figures,
red indicates a term like cd(·), blue indicates a term like ed(·), green indicates a term like gd(·) and
purple indicates hd(·).

cd(t− tq−1)

cd(tq−1 − tq−2)

cd(tq−2 − tq−3)

cd(tq−3 − tq−4)

cd(tj+1 − tj) cd(tj+1 − tj)

ed(tq−2 − tq−3)

ed(tq−3 − tq−4)

ed(tj+1 − tj)

ed(tj+1 − tj)

gd(tq−3 − tq−4)

gd(tj+1 − tj) gd(tj+1 − tj)

hd(tq−3 − tq−4)

hd(tj+1 − tj) hd(tj+1 − tj)

k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′) k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)

Figure 2: This figure represents the innermost covariances involved when computing the term A′

For q′ > q we can make a similar analysis (not presented here).
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cd(t− tq−1)

ed(tq−1 − tq−2)

gd(tq−2 − tq−3)

cd(tq−3 − tq−4)

cd(tj+1 − tj) cd(tj+1 − tj)

hd(tq−2 − tq−3)

ed(tq−3 − tq−4)

ed(tj+1 − tj)

ed(tj+1 − tj)

gd(tq−3 − tq−4)

gd(tj+1 − tj) gd(tj+1 − tj)

hd(tq−3 − tq−4)

hd(tj+1 − tj) hd(tj+1 − tj)

k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′) k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)

Figure 3: This figure represents the innermost covariances involved when computing the term B′

ed(t− tq−1)

gd(tq−1 − tq−2)

cd(tq−2 − tq−3)

cd(tq−3 − tq−4)

cd(tj+1 − tj) cd(tj+1 − tj)

ed(tq−2 − tq−3)

ed(tq−3 − tq−4)

ed(tj+1 − tj)

ed(tj+1 − tj)

gd(tq−3 − tq−4)

gd(tj+1 − tj) gd(tj+1 − tj)

hd(tq−3 − tq−4)

hd(tj+1 − tj) hd(tj+1 − tj)

k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′) k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)

Figure 4: This figure represents the innermost covariances involved when computing the term C′

Example 1 (Continued). We continue with the example in figure 1. First, we compute the covari-
ance between intervals (t1, t2] and (t0, t1]. For this covariance we have

cov[zd(t), zd′(t′)] = cov
[
pd(t, t1, t2, u1), pd′(t′, t0, t1, u0)

]
.

This covariance is equal to

cd(t− t1)cd′(t′ − t0) cov{yd(t1)yd′(t0)}+ cd(t− t1)ed′(t′ − t0) cov{yd(t1)ẏd′(t0)}
+ed(t− t1)cd′(t′ − t0) cov{ẏd(t1)yd′(t0)}+ ed(t− t1)ed′(t′ − t0) cov{ẏd(t1)ẏd′(t0)}

+cd(t− t1) cov{yd(t1)fd′(t′, t0, t1, u0)}+ ed(t− t1) cov{ẏd(t1)fd′(t′, t0, t1, u0)},
which reduces to

cd(t− t1)cd′(t′ − t0)kzd,zd′ (t1, t0) + cd(t− t1)ed′(t′ − t0)kzd,żd′ (t1, t0)

+ed(t− t1)cd′(t′ − t0)kżd,zd′ (t1, t0) + ed(t− t1)ed′(t′ − t0)kżd,żd′ (t1, t0)

+cd(t− t1)k(0)
fd,fd′

(t1, t′) + ed(t− t1)k(0)
md,fd′

(t1, t′).
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ed(t− tq−1)

hd(tq−1 − tq−2)

gd(tq−2 − tq−3)

cd(tq−3 − tq−4)

cd(tj+1 − tj) cd(tj+1 − tj)

hd(tq−2 − tq−3)

ed(tq−3 − tq−4)

ed(tj+1 − tj)

ed(tj+1 − tj)

gd(tq−3 − tq−4)

gd(tj+1 − tj) gd(tj+1 − tj)

hd(tq−3 − tq−4)

hd(tj+1 − tj) hd(tj+1 − tj)

k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′) k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)

Figure 5: This figure represents the innermost covariances involved when computing the term D′

Now we compute the covariance between intervals (t2, t3] and (t0, t1]. For this covariance we have

cov[zd(t), zd′(t′)] = cov
[
pd(t, t, t2, t3, u2), pd′(t′, t′, t0, t1, u0)

]
.

We then have

cd(t− t2)cd′(t′ − t0) cov{yd(t2)yd′(t0)}+ cd(t− t2)ed′(t′ − t0) cov{yd(t2)ẏd′(t0)}
+ed(t− t2)cd′(t′ − t0) cov{ẏd(t2)yd′(t0)}+ ed(t− t2)ed′(t′ − t0) cov{ẏd(t2)ẏd′(t0)}

+cd(t− t2) cov{yd(t2)fd′(t′, t0, t1, u0)}+ ed(t− t2) cov{ẏd(t2)fd′(t′, t0, t1, u0)}.
Using yd(t2) = zd(t2, t1, t2) and ẏd(t2) = żd(t2.t1, t2),

yd(t2) = zd(t2, t1, t2) = pd(t2, t1, t2, u1) = cd(t2 − t1)yd(t1) + ed(t2 − t1)ẏd(t1) + fd(t2, t1, t2, u1)
ẏd(t2) = żd(t2, t1, t2) = ξd(t2, t1, t2, u1) = gd(t2 − t1)yd(t1) + hd(t2 − t1)ẏd(t1) +md(t2, t1, t2, u1),

we have for cov{yd(t2)fd′(t′, t′, t0, t1, u0)} and cov{ẏd(t2)fd′(t′, t′, t0, t1, u0)}
cov{yd(t2)fd′(t′, t0, t1, u0)} = cd(t2 − t1) cov{yd(t1)fd′(t′, t0, t1, u0)}

+ ed(t2 − t1) cov{ẏd(t1)fd′(t′, t0, t1, u0)}
cov{ẏd(t2)fd′(t′, t′, t0, t1, u0)} = gd(t2 − t1) cov{yd(t1)fd′(t′, t0, t1, u0)}

+ hd(t2 − t1) cov{ẏd(t1)fd′(t′, t0, t1, u0)}.
Furthermore,

yd(t1) = zd(t1, t0, t1) = pd(t1, t0, t1, u0) = cd(t1 − t0)yd(t0) + ed(t1 − t0)ẏd(t0) + fd(t1, t0, t1, u0)
ẏd(t1) = żd(t2, t1, t2) = ξd(t1, t0, t1, u0) = gd(t1 − t0)yd(t0) + hd(t1 − t0)ẏd(t0) +md(t1, t0, t1, u0).

Then we get cov{yd(t1)fd′(t′, t0, t1, u0)} = k
(0)
fd,fd′

(t1, t′) and cov{ẏd(t1)fd′(t′, t0, t1, u0)} =

k
(0)
md,fd′

(t1, t′). Putting all these expressions together, we get

cd(t− t2)cd′(t′ − t0)kzd,zd′ (t2, t0) + cd(t− t2)ed′(t′ − t0)kzd,żd′ (t2, t0)

+ed(t− t2)cd′(t′ − t0)kżd,zd′ (t2, t0) + ed(t− t2)ed′(t′ − t0)kżd,żd′

+cd(t− t2)cd(t2 − t1)k(0)
fd,fd′

(t1, t′) + cd(t− t2)ed(t2 − t1)k(0)
md,fd′

(t1, t′)

+ed(t− t2)gd(t2 − t1)k(0)
fd,fd′

(t1, t′) + ed(t− t2)hd(t2 − t1)k(0)
md,fd′

(t1, t′)

Next we compute the covariance between intervals (t2, t3] and (t1, t2]. For this covariance we have

cov[zd(t), zd′(t′)] = cov
[
pd(t, t2, t3, u2), pd′(t′, t1, t2, u1)

]
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We have

cd(t− t2)cd′(t′ − t1)kzd,zd′ (t2, t1) + cd(t− t2)ed′(t′ − t1)kzd,żd′ (t2, t1)

+ed(t− t2)cd′(t′ − t1)kżd,zd′ (t2, t1) + ed(t− t2)ed′(t′ − t1)kżd,żd′ (t2, t1)

+cd(t− t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ ed(t− t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}.
The covariance cov{yd(t2)fd′(t′, t1, t2, u1)} = k

(1)
fd,f ′d

(t2, t′) and cov{ẏd(t2)fd′(t′, t1, t2, u1)} =

k
(1)
md,f ′d

(t2, t′). Then, the complete covariance would be equal to

cd(t− t2)cd′(t′ − t1)kzd,zd′ (t2, t1) + cd(t− t2)ed′(t′ − t1)kzd,żd′ (t2, t1)

+ed(t− t2)cd′(t′ − t1)kżd,zd′ (t2, t1) + ed(t− t2)ed′(t′ − t1)kżd,żd′ (t2, t1)

+cd(t− t2)k(1)
fd,f ′d

(t2, t′) + ed(t− t2)k(1)
md,f ′d

(t2, t′).

Suppose we need to compute the covariance between the intervals (t4, t5] and (t1, t2]. For this q = 4
and q′ = 1. The covariance is given as

cov{[cd(t− t4)yd(t4) + ed(t− t4)ẏd(t4) + fd(t, t4, t5, u4)]

[cd′(t′ − t1)yd′(t1) + ed′(t′ − t1)ẏd′(t1) + fd′(t′, t1, t2, u1)}
= cd(t− t4)cd′(t′ − t1) cov{yd(t4)yd′(t1)}+ cd(t− t4)ed′(t′ − t1) cov{yd(t4)ẏd′(t1)}
+ed(t− t4)cd′(t′ − t1) cov{ẏd(t4)yd′(t1)}+ ed(t− t4)ed′(t′ − t1) cov{ẏd(t4)ẏd′(t1)}

+cd(t− t4) cov{yd(t4)fd′(t′, t1, t2, u1)}+ ed(t− t4) cov{ẏd(t4)fd′(t′, t1, t2, u1)}
We need to compute the covariances cov{yd(t4)fd′(t′, t1, t2, u1)} and
cov{ẏd(t4)fd′(t′, t1, t2, u1)}. The expression for yd(t4) is

yd(t4) = zd(t4, t3, t4) = pd(t4, t3, t4, u3) = cd(t4 − t3)yd(t3) + ed(t4 − t3)ẏd(t3) + fd(t4, t3, t4, u3)
ẏd(t4) = żd(t4, t3, t4) = ξd(t4, t3, t4, u3) = gd(t4 − t3)yd(t3) + hd(t4 − t3)ẏd(t3) +md(t4, t3, t4, u3)

Then the covariances cov{yd(t4)fd′(t′, t1, t2, u1)} and cov{ẏd(t4)fd′(t′, t1, t2, u1)} are equal to

cd(t4 − t3) cov{yd(t3)fd′(t′, t1, t2, u1)}+ ed(t4 − t3) cov{ẏd(t3)fd′(t′, t1, t2, u1)},
gd(t4 − t3) cov{yd(t3)fd′(t′, t1, t2, u1)}+ hd(t4 − t3) cov{ẏd(t3)fd′(t′, t1, t2, u1)}.

At the same time, in the above expression, we have that yd(t2) and ẏd(t2) follow

yd(t3) = cd(t3 − t2)yd(t2) + ed(t3 − t2)ẏd(t2) + fd(t3, t2, t3, u2)
ẏd(t3) = gd(t3 − t2)yd(t2) + hd(t3 − t2)ẏd(t2) +md(t3, t2, t3, u2)

Then, we can write the expression for cov{yd(t4)fd′(t′, t1, t2, u1)} as

cd(t4 − t3)
[
cd(t3 − t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ ed(t3 − t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}]

+ ed(t4 − t3)
[
gd(t3 − t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ hd(t3 − t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}].

The expression for cov{ẏd(t4)fd′(t′, t1, t2, u1)} would follow

gd(t4 − t3)
[
cd(t3 − t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ ed(t3 − t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}]

+ hd(t4 − t3)
[
gd(t3 − t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ hd(t3 − t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}].

From the expression for yd(t2) and ẏd(t2), we get cov{yd(t2)fd′(t′, t1, t2, u1)} = k
(1)
fd,fd′

(t2, t′)

and cov{ẏd(t2)fd′(t′, t1, t2, u1)} = k
(1)
md,fd′

(t2, t′). The total covariance then would be equal to

cd(t− t4)cd′(t′ − t1)kzd,zd′ (t4, t1) + cd(t− t4)ed′(t′ − t1)kzd,żd′ (t4, t1)

+ ed(t− t4)cd′(t′ − t1)kżd,zd′ (t4, t1) + ed(t− t4)ed′(t′ − t1)kżd,żd′ (t4, t1)

+ cd(t− t4)
[
cd(t4 − t3)

[
cd(t3 − t2)k(1)

fd,fd′
(t2, t′) + ed(t3 − t2)k(1)

md,fd′
(t2, t′)

]
+ ed(t4 − t3)

[
gd(t3 − t2)k(1)

fd,fd′
(t2, t′) + hd(t3 − t2)k(1)

md,fd′
(t2, t′)

]]
+ ed(t− t4)

[
gd(t4 − t3)

[
cd(t3 − t2)k(1)

fd,fd′
(t2, t′) + ed(t3 − t2)k(1)

md,fd′
(t2, t′)

]
+ hd(t4 − t3)

[
gd(t3 − t2)k(1)

fd,fd′
(t2, t′) + hd(t3 − t2)k(1)

md,fd′
(t2, t′)

]]
.

10



Reorganizing, we get
cd(t− t4)cd′(t′ − t1)kzd,zd′ (t4, t1) + cd(t− t4)ed′(t′ − t1)kzd,żd′ (t4, t1)

+ ed(t− t4)cd′(t′ − t1)kżd,zd′ (t4, t1) + ed(t− t4)ed′(t′ − t1)kżd,żd′ (t4, t1)

+ cd(t− t4)
[
cd(t4 − t3)cd(t3 − t2) + ed(t4 − t3)gd(t3 − t2)

]
k

(1)
fd,fd′

(t2, t′)

+ cd(t− t4)
[
cd(t4 − t3)ed(t3 − t2) + ed(t4 − t3)hd(t3 − t2)

]
k

(1)
md,fd′

(t2, t′)

+ ed(t− t4)
[
gd(t4 − t3)cd(t3 − t2) + hd(t4 − t3)gd(t3 − t2)

]
k

(1)
fd,fd′

(t2, t′)

+ ed(t− t4)
[
gd(t4 − t3)ed(t3 − t2) + hd(t4 − t3)hd(t3 − t2)

]
k

(1)
md,fd′

(t2, t′).
Or in a more familiar expression,

cd(t− t4)cd′(t′ − t1)kzd,zd′ (t4, t1) + cd(t− t4)ed′(t′ − t1)kzd,żd′ (t4, t1)

+ ed(t− t4)cd′(t′ − t1)kżd,zd′ (t4, t1) + ed(t− t4)ed′(t′ − t1)kżd,żd′ (t4, t1)

+ cd(t− t4)f1(t4, t3, t2)k(1)
fd,fd′

(t2, t′) + cd(t− t4)f2(t4, t3, t2)k(1)
md,fd′

(t2, t′)

+ ed(t− t4)f3(t4, t3, t2)k(1)
fd,fd′

(t2, t′) + ed(t− t4)f4(t4, t3, t2)k(1)
md,fd′

(t2, t′).

where, f1(t4, t3, t2) = cd(t4 − t3)cd(t3 − t2) + ed(t4 − t3)gd(t3 − t2), f2(t4, t3, t2) = cd(t4 −
t3)ed(t3−t2)+ed(t4−t3)hd(t3−t2), f3(t4, t3, t2) = gd(t4−t3)cd(t3−t2)+hd(t4−t3)gd(t3−t2)
and f4(t4, t3, t2) = gd(t4 − t3)ed(t3 − t2) + hd(t4 − t3)hd(t3 − t2).

2.3 Covariances between outputs and latent functions

For inference purposes, we’ll also need the cross-covariances between the ouputs zd(t, tq−1, tq) and
the latent forces uq′−1(t′). If q′ > q, then this covariance is zero. We are left with the cases q′ = q
and q′ < q.

2.3.1 Covariance between zd(t, tq−1, tq) and uq′−1(t′), with q′ = q

We have
cov[zd(t, tq−1, tq), uq−1(t′)] = cov [pd(t, tq−1, tq, uq−1)uq−1(t′)] ,

which is given as
cd(t− tq−1) cov [yd(tq−1)uq−1(t)] + ed(t− tq−1) cov [ẏd(tq−1)uq−1(t)]

+ cov [fd(t, tq−1, tq, uq−1)uq−1(t′)] .
From the above equation, the only term different from zero is cov [fd(t, tq−1, tq, uq−1)uq−1(t′)] =
kfd,uq−1(t, t′). Then, we have cov [pd(t, tq−1, tq, uq−1)uq−1(t′)] = kfd,uq−1(t, t′).

2.3.2 Covariance between zd(t, tq−1, tq) and uq′−1(t′), with q′ < q

We have
cov[zd(t, tq−1, tq), uq′−1(t′)] = cov [pd(t, tq−1, tq, uq−1)uq′−1(t′)] .

It would be
cd(t− tq−1) cov [yd(tq−1)uq′−1(t′)] + ed(t− tq−1) cov [ẏd(tq−1)uq′−1(t′)]

+ cov [fd(t, tq−1, tq, uq−1)uq′−1] .
Being q strictly greater than q′, we only need to compute cov [yd(tq−1)uq′−1(t′)] and
cov [ẏd(tq−1)uq′−1(t′)]. For the first term, we have

cov [yd(tq−1)uq′−1(t′)] = cov
[(
cd(tq−1 − tq−2)yd(tq−2) + ed(tq−1 − tq−2)ẏd(tq−2)

+ fd(tq−1, tq−2, tq−1, uq−2)
)
uq′−1(t′)

]
= cd(tq−1 − tq−2) cov [yd(tq−2)uq′−1(t′)]︸ ︷︷ ︸

A

+ ed(tq−1 − tq−2) cov [ẏd(tq−2)uq′−1(t′)]︸ ︷︷ ︸
B

+ cov [fd(tq−1, tq−2, tq−1, uq−2)uq′−1(t′)] .
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The terms A and B, repeat again in a recursion similar to the ones in section 2.2.2. The final
expression is then equal to

cd(t− tq−1)f1(tq−1, tq−1, . . . , tq−n)k(q′−1)
fd,uq′−1

(tq−n, t′)

+cd(t− tq−1)f2(tq−1, tq−1, . . . , tq−n)k(q′−1)
md,uq′−1

(tq−n, t′)

+ed(t− tq−1)f3(tq−1, tq−1, . . . , tq−n)k(q′−1)
fd,uq′−1

(tq−n, t′)

+ed(t− tq−1)f4(tq−1, tq−1, . . . , tq−n)k(q′−1)
md,uq′−1

(tq−n, t′),

where f1(·), f2(·), f3(·) and f4(·) are again functions of the form∑
x(tq−1 − tq−2)x(tq−2 − tq−3) . . . x(tq−n+1 − tq−n),

with x being equal to cd, ed, gd or hd, depending on the case.

Example 1 (continued). We continue with the example. We want to compute the following terms

cov[zd(t, t0, t1), u0(t′)] cov[zd(t, t0, t1), u1(t′)] cov[zd(t, t0, t1), u2(t′)]

cov[zd(t, t1, t2), u0(t′)] cov[zd(t, t1, t2), u1(t′)] cov[zd(t, t1, t2), u2(t′)]

cov[zd(t, t2, t3), u0(t′)] cov[zd(t, t2, t3), u1(t′)] cov[zd(t, t2, t3), u2(t′)]

From the above analysis, the terms cov[zd(t, t0, t1), u1(t′)], cov[zd(t, t0, t1), u2(t′)]
and cov[zd(t, t1, t2), u2(t′)] are zero. Furthermore, the terms cov[zd(t, t0, t1), u0(t′)],
cov[zd(t, t1, t2), u1(t′)] and cov[zd(t, t2, t3), u2(t′)] are

cov[zd(t, t0, t1), u0(t′)] = kfd,u0(t, t′)

cov[zd(t, t1, t2), u1(t′)] = kfd,u1(t, t′)

cov[zd(t, t2, t3), u2(t′)] = kfd,u2(t, t′).

We are left with the terms cov[zd(t, t1, t2), u0(t′)], cov[zd(t, t2, t3), u0(t′)] and
cov[zd(t, t2, t3), u1(t′)]. The term cov[zd(t, t1, t2), u0(t′)] follows as

cov[zd(t, t1, t2), u0(t′)] = cov{[pd(t, t1, t2, u1)]u0(t′)}
= cov{[cd(t− t1)yd(t1) + ed(t− t1)ẏd(t1) + fd(t, t1, t2, u1)]u0(t′)}
= cd(t− t1) cov [yd(t1)u0(t′)] + ed(t− t1) cov [ẏd(t1)u0(t′)] .

The terms cov [yd(t1)u0(t′)] and cov [ẏd(t1)u0(t′)] are

cov [yd(t1)u0(t′)] = cov [(cd(t1 − t0)yd(t0) + ed(t1 − t0)ẏd(t0) + fd(t1, t0, t1, u0))u0(t′)]

= kfd,u0(t1, t′)

cov [ẏd(t1)u0(t′)] = cov [(gd(t1 − t0)yd(t0) + hd(t1 − t0)ẏd(t0) +md(t1, t0, t1, u0))u0(t′)]

= kmd,u0(t1, t′).

The final covariance is then

cov[zd(t, t1, t2), u0(t′)] = cd(t− t1)kfd,u0(t1, t′) + ed(t− t1)kmd,u0(t1, t′).

Now, we compute the term cov[zd(t, t2, t3), u0(t′)], which will be given as

cov[zd(t, t2, t3), u0(t′)] = cov{[pd(t, t, t2, t3, u2)]u0(t′)}
= cov{[cd(t− t2)yd(t2) + ed(t− t2)ẏd(t2) + fd(t, t2, t3, u2)]u0(t′)}
= cd(t− t2) cov [yd(t2)u0(t′)] + ed(t− t2) cov [ẏd(t2)u0(t′)] .

The term cov [yd(t2)u0(t′)] follows

cov[yd(t2), u0(t′)] = cov{pd(t2, t1, t2, u1)u0(t′)}
= cd(t2 − t1) cov[yd(t1)u0(t′)] + ed(t2 − t1) cov[ẏd(t1)u0(t′)].
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The term cov [ẏd(t2)u0(t′)] follows

cov[ẏd(t2), u0(t′)] = cov{ξd(t2, t1, t2, u1)u0(t′)}
= gd(t2 − t1) cov[yd(t1)u0(t′)] + hd(t2 − t1) cov[ẏd(t1)u0(t′)]

Putting together all these terms, the covariance cov[zd(t, t2, t3), u0(t′)] is given as

cov[zd(t, t2, t3), u0(t′)] = cd(t− t2) [cd(t2 − t1)kfd,u0(t1, t′) + ed(t2 − t1)kmd,u0(t1, t′)]

+ ed(t− t2) [gd(t2 − t1)kfd,u0(t1, t′) + hd(t2 − t1)kmd,u0(t1, t′)] .

Or in a more familiar form

cov[zd(t, t2, t3), u0(t′)] = cd(t− t2)f1(t2, t1)kfd,u0(t1, t′) + cd(t− t2)f2(t2, t1)kmd,u0(t1, t′)

+ ed(t− t2)f3(t2, t1)kfd,u0(t1, t′) + ed(t− t2)f4(t2, t1)kmd,u0(t1, t′),

where f1(t2, t1) = cd(t2 − t1), f2(t2, t1) = ed(t2 − t1), f3(t2, t1) = gd(t2 − t1) and f4(t2, t1) =
hd(t2 − t1).
Finally, we compute cov[zd(t, t2, t3), u1(t′)] as

cov[zd(t, t2, t3), u1(t′)] = cov{pd(t, t2, t3, u2)u1(t′)}
= cov{[cd(t− t2)yd(t2) + ed(t− t2)ẏd(t2) + fd(t, t2, t3, u2)]u1(t′)}
= cd(t− t2)kfd,u1(t2, t′) + ed(t− t2)kmd,u1(t2, t′).

3 Covariance for the velocities and accelerations

To get expressions for the covariances cov
[
zd(t), żd′(t′)

]
(Position - Velocity), cov

[
żd(t), zd′(t′)

]
(Velocity - Position), cov

[
żd(t), żd′(t′)

]
(Velocity - Velocity), cov

[
zd(t), z̈d′

]
(Position - Accel-

eration), cov
[
z̈d(t), zd′(t′)

]
(Acceleration - Position), cov

[
żd(t), z̈d′

]
(Velocity - Acceleration),

cov
[
z̈d(t), żd′(t′)

]
(Acceleration - Velocity) and cov

[
z̈d(t), z̈d′(t′)

]
(Acceleration - Acceleration),

we take the appropiate number of derivatives with respect to t and t′ [3].
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Abstract
Recently there has been an increasing interest in regression methods that deal with multiple out-
puts. This has been motivated partly by frameworks like multitask learning, multisensor networks
or structured output data. From a Gaussian processes perspective, the problem reduces to spec-
ifying an appropriate covariance function that, whilst being positive semi-definite, captures the
dependencies between all the data points and across all the outputs. One approach to account for
non-trivial correlations between outputs employs convolution processes. Under a latent function
interpretation of the convolution transform we establish dependencies between output variables.
The main drawbacks of this approach are the associated computational and storage demands. In
this paper we address these issues. We present different efficient approximations for dependent out-
put Gaussian processes constructed through the convolution formalism. We exploit the conditional
independencies present naturally in the model. This leads to a form of the covariance similar in
spirit to the so called PITC and FITC approximations for a single output. We show experimental
results with synthetic and real data, in particular, we showresults in school exams score prediction,
pollution prediction and gene expression data.

Keywords: Gaussian processes, convolution processes, efficient approximations, multitask learn-
ing, structured outputs, multivariate processes

1. Introduction

Accounting for dependencies between model outputs has important applications in several areas. In
sensor networks, for example, missing signals from failing sensors may bepredicted due to correla-
tions with signals acquired from other sensors (Osborne et al., 2008). In geostatistics, prediction of
the concentration of heavy pollutant metals (for example, Copper), that are expensive to measure,
can be done using inexpensive and oversampled variables (for example, pH) as a proxy (Goovaerts,
1997). Within the machine learning community this approach is sometimes known as multitask
learning. The idea in multitask learning is that information shared between the tasks leads to im-
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proved performance in comparison to learning the same tasks individually (Caruana, 1997; Bonilla
et al., 2008).

In this paper, we consider the problem of modeling related outputs in a Gaussian process (GP).
A Gaussian process specifies a prior distribution over functions. When using a GP for multiple
related outputs, our purpose is to develop a prior that expresses correlation between the outputs.
This information is encoded in the covariance function. The class of valid covariance functions is
the same as the class of reproducing kernels.1 Such kernel functions for single outputs are widely
studied in machine learning (see, for example, Rasmussen and Williams, 2006). More recently the
community has begun to turn its attention to covariance functions for multiple outputs.One of the
paradigms that has been considered (Teh et al., 2005; Osborne et al., 2008; Bonilla et al., 2008)
is known in the geostatistics literature asthe linear model of coregionalization(LMC) (Journel
and Huijbregts, 1978; Goovaerts, 1997). In the LMC, the covariance function is expressed as the
sum of Kronecker products betweencoregionalization matricesand a set of underlying covariance
functions. The correlations across the outputs are expressed in the coregionalization matrices, while
the underlying covariance functions express the correlation between different data points.

Multitask learning has also been approached from the perspective ofregularization theory(Ev-
geniou and Pontil, 2004; Evgeniou et al., 2005). Thesemultitask kernelsare obtained as generaliza-
tions of the regularization theory to vector-valued functions. They can also be seen as examples of
LMCs applied to linear transformations of the input space.

In the linear model of coregionalization each output can be thought of as an instantaneous mix-
ing of the underlying signals/processes. An alternative approach to constructing covariance func-
tions for multiple outputs employsconvolution processes(CP). To obtain a CP in the single output
case, the output of a given process is convolved with a smoothing kernelfunction. For example,
a white noise process may be convolved with a smoothing kernel to obtain a covariance function
(Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998). Ver Hoefand Barry (1998) and then Hig-
don (2002) noted that if a single input process was convolved with different smoothing kernels
to produce different outputs, then correlation between the outputs could be expressed. This idea
was introduced to the machine learning audience by Boyle and Frean (2005). We can think of this
approach to generating multiple output covariance functions as a non-instantaneous mixing of the
base processes.

The convolution process framework is an elegant way for constructing dependent output pro-
cesses. However, it comes at the price of having to consider the full covariance function of the
joint GP. ForD output dimensions andN data points the covariance matrix scales asDN lead-
ing toO(N3D3) computational complexity andO(N2D2) storage. We are interested in exploiting
the richer class of covariance structures allowed by the CP framework, but reducing the additional
computational overhead they imply.

In this paper, we propose different efficient approximations for the full covariance matrix in-
volved in the multiple output convolution process. We exploit the fact that, in theconvolution
framework, each of the outputs is conditional independent of all others ifthe input process is fully
observed. This leads to an approximation that turns out to be strongly related to the partially in-
dependent training conditional (PITC) (Quiñonero-Candela and Rasmussen, 2005) approximation
for a single output GP. This analogy inspires us to consider a further conditional independence

1. In this paper we will use kernel to refer to both reproducing kernels and smoothing kernels. Reproducing kernels are
those used in machine learning that conform to Mercer’s theorem. Smoothing kernels are kernel functions which are
convolved with a signal to create a smoothed version of that signal.
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assumption across data points. This leads to an approximation which shares the form of the fully in-
dependent training conditional (FITC) approximation (Snelson and Ghahramani, 2006; Quĩnonero-
Candela and Rasmussen, 2005). This reduces computational complexity toO(NDK2) and storage
to O(NDK) with K representing a user specified value for the number of inducing points in the
approximation.

The rest of the paper is organized as follows. First we give a more detailed review of related
work, with a particular focus on relating multiple output work in machine learningto other fields.
Despite the fact that there are several other approaches to multitask learning (see for example Caru-
ana, 1997, Heskes, 2000, Bakker and Heskes, 2003, Xue et al., 2007 and references therein), in this
paper, we focus our attention to those that address the problem of constructing the covariance or
kernel function for multiple outputs, so that it can be employed, for example,together with Gaus-
sian process prediction. Then we review the convolution process approach in Section 3 and Section
4. We demonstrate how our conditional independence assumptions can be used to reduce the com-
putational load of inference in Section 5. Experimental results are shown inSection 6 and finally
some discussion and conclusions are presented in Section 7.

2. Related Work

In geostatistics, multiple output models are used to model the co-occurrence of minerals or pollu-
tants in a spatial field. Many of the ideas for constructing covariance functions for multiple outputs
have first appeared within the geostatistical literature, where they are known as linear models of
coregionalization (LMC). We present the LMC and then review how several models proposed in the
machine learning literature can be seen as special cases of the LMC.

2.1 The Linear Model of Coregionalization

The term linear model of coregionalization refers to models in which the outputsare expressed as
linear combinations of independent random functions. If the independent random functions are
Gaussian processes then the resulting model will also be a Gaussian process with a positive semi-
definite covariance function. Consider a set ofD output functions{fd(x)}Dd=1 wherex ∈ ℜp is the
input domain. In a LMC each output function,fd(x), is expressed as (Journel and Huijbregts, 1978)

fd(x) =
Q∑

q=1

ad,quq(x). (1)

Under the GP interpretation of the LMC, the functions{uq(x)}
Q
q=1 are taken (without loss of gener-

ality) to be drawn from a zero-mean GP withcov[uq(x),uq′(x′)] = kq(x,x′) if q = q′ and zero oth-
erwise. Some of these base processes might have the same covariance, this iskq(x,x′) = kq′(x,x′),
but they would still be independently sampled. We can group together the base processes that share
latent functions (Journel and Huijbregts, 1978; Goovaerts, 1997), allowing us to express a given
output as

fd(x) =
Q∑

q=1

Rq∑

i=1

aid,qu
i
q(x), (2)
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where the functions
{
uiq(x)

}Rq

i=1
, i = 1, . . . ,Rq, represent the latent functions that share the same

covariance functionkq(x,x′). There are nowQ groups of functions, each member of a group shares
the same covariance, but is sampled independently.

In geostatistics it is common to simplify the analysis of these models by assuming that the pro-
cessesfd(x) are stationary and ergodic (Cressie, 1993). The stationarity and ergodicity conditions
are introduced so that the prediction stage can be realized through an optimal linear predictor using
a single realization of the process (Cressie, 1993). Such linear predictors receive the general name
of cokriging. The cross covariance between any two functionsfd(x) andfd′(x) is given in terms of
the covariance functions foruiq(x)

cov[fd(x),fd′(x
′)] =

Q∑

q=1

Q∑

q′=1

Rq∑

i=1

Rq∑

i′=1

aid,qa
i′

d′,q′ cov[u
i
q(x),u

i′

q′(x
′)].

Because of the independence of the latent functionsuiq(x), the above expression can be reduced to

cov[fd(x),fd′(x
′)] =

Q∑

q=1

Rq∑

i=1

aid,qa
i
d′,qkq(x,x

′) =

Q∑

q=1

bqd,d′kq(x,x
′), (3)

with bqd,d′ =
∑Rq

i=1a
i
d,qa

i
d′,q.

For a numberN of input vectors, letfd be the vector of values from the outputd evaluated at
X = {xn}Nn=1. If each output has the same set of inputs the system is known asisotopic. In general,

we can allow each output to be associated with a different set of inputs,X(d) = {x(d)n }Nd

n=1, this is
known asheterotopic.2 For notational simplicity, we restrict ourselves to the isotopic case, but our
analysis can also be completed for heterotopic setups. The covariance matrix for fd is obtained
expressing Equation (3) as

cov[fd, fd′ ] =
Q∑

q=1

Rq∑

i=1

aid,qa
i
d′,qK q =

Q∑

q=1

bqd,d′K q,

whereK q ∈ ℜN×N has entries given by computingkq(x,x′) for all combinations fromX. We now
define f to be a stacked version of the outputs so thatf = [f⊤1 , . . . , f

⊤
D]

⊤. We can now write the
covariance matrix for the joint process overf as

K f,f =

Q∑

q=1

AqA⊤
q ⊗K q =

Q∑

q=1

Bq⊗K q, (4)

where the symbol⊗ denotes the Kronecker product,Aq ∈ℜD×Rq has entriesaid,q andBq =AqA⊤
q ∈

ℜD×D has entriesbqd,d′ and is known as thecoregionalization matrix. The covariance matrixK f,f

is positive semi-definite as long as the coregionalization matricesBq are positive semi-definite and
kq(x,x′) is a valid covariance function. By definition, coregionalization matricesBq fulfill the
positive semi-definiteness requirement. The covariance functions for thelatent processes,kq(x,x′),
can simply be chosen from the wide variety of covariance functions (reproducing kernels) that are

2. These names come from geostatistics.
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used for the single output case. Examples include the squared exponential (sometimes called the
Gaussian kernel or RBF kernel) and the Matérn class of covariance functions (see Rasmussen and
Williams, 2006, Chapter 4).

The linear model of coregionalization represents the covariance functionas a product of the
contributions of two covariance functions. One of the covariance functions models the dependence
between the functions independently of the input vectorx, this is given by the coregionalization
matrix Bq, whilst the other covariance function models the input dependence independently of the
particular set of functionsfd(x), this is the covariance functionkq(x,x′).

We can understand the LMC by thinking of the functions having been generated as a two step
process. Firstly we sample a set of independent processes from the covariance functions given by
kq(x,x′), takingRq independent samples for eachkq(x,x′). We now haveR =

∑Q
q=1Rq indepen-

dently sampled functions. These functions areinstantaneously mixed3 in a linear fashion. In other
words the output functions are derived by application of a scaling and a rotation to an output space
of dimensionD.

2.1.1 INTRINSIC COREGIONALIZATION MODEL

A simplified version of the LMC, known as the intrinsic coregionalization model (ICM) (Goovaerts,
1997), assumes that the elementsbqd,d′ of the coregionalization matrixBq can be written asbqd,d′ =
υd,d′bq. In other words, as a scaled version of the elementsbq which do not depend on the particular
output functionsfd(x). Using this form forbqd,d′ , Equation (3) can be expressed as

cov[fd(x),fd′(x
′)] =

Q∑

q=1

υd,d′bqkq(x,x
′) = υd,d′

Q∑

q=1

bqkq(x,x′).

The covariance matrix forf takes the form

K f,f =Υ⊗K , (5)

whereΥ ∈ ℜD×D, with entriesυd,d′ , andK =
∑Q

q=1 bqK q is an equivalent valid covariance func-
tion.

The intrinsic coregionalization model can also be seen as a linear model of coregionalization
where we haveQ= 1. In such case, Equation (4) takes the form

K f,f = A1A⊤
1 ⊗K1 = B1⊗K1, (6)

where the coregionalization matrixB1 has elementsb1d,d′ =
∑R1

i=1a
i
d,1a

i
d′,1. The value ofR1 deter-

mines the rank of the matrixB1.
As pointed out by Goovaerts (1997), the ICM is much more restrictive than the LMC since it

assumes that each basic covariancekq(x,x′) contributes equally to the construction of the autoco-
variances and cross covariances for the outputs.

3. The term instantaneous mixing is taken from blind source separation. Ofcourse, if the underlying processes are not
temporal but spatial, instantaneous is not being used in its original sense.However, it allows us to distinguish this
mixing from convolutional mixing.
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2.1.2 LINEAR MODEL OF COREGIONALIZATION IN MACHINE LEARNING

Several of the approaches to multiple output learning in machine learning based on kernels can be
seen as examples of the linear model of coregionalization.

Semiparametric latent factor model.The semiparametric latent factor model (SLFM) proposed
by Teh et al. (2005) turns out to be a simplified version of Equation (4). Inparticular, ifRq = 1 (see
Equation 1), we can rewrite Equation (4) as

K f,f =

Q∑

q=1

aqa⊤q ⊗K q,

whereaq ∈ℜD×1 with elementsad,q. With some algebraic manipulations that exploit the properties
of the Kronecker product4 we can write

K f,f =

Q∑

q=1

(aq⊗ IN )K q(a⊤q ⊗ IN ) = (Ã⊗ IN )K̃(Ã⊤⊗ IN ),

whereIN is theN -dimensional identity matrix,̃A ∈ ℜD×Q is a matrix with columnsaq andK̃ ∈
ℜQN×QN is a block diagonal matrix with blocks given byK q.

The functionsuq(x) are considered to be latent factors and the semiparametric name comes from
the fact that it is combining a nonparametric model, this is a Gaussian process,with a parametric
linear mixing of the functionsuq(x). The kernel for each basic processq, kq(x,x′), is assumed to
be of Gaussian type with a different length scale per input dimension. For computational speed up
the informative vector machine (IVM) is employed (Lawrence et al., 2003).

Multi-task Gaussian processes.The intrinsic coregionalization model has been employed in
Bonilla et al. (2008) for multitask learning. We refer to this approach as multi-task Gaussian pro-
cesses (MTGP). The covariance matrix is expressed asK f(x),f(x′) = Kf ⊗ k(x,x′), with f(x) =

[f1(x), . . . ,fD(x)]⊤, Kf being constrained positive semi-definite andk(x,x′) a covariance func-
tion over inputs. It can be noticed that this expression has is equal to the one in (5), when it is
evaluated forx,x′ ∈ X. In Bonilla et al. (2008),Kf (equal toΥ in Equation 5 orB1 in Equation
6) expresses the correlation between tasks or inter-task dependenciesand it is represented through a
probabilistic principal component analysis (PPCA) model. In turn, the spectral factorization in the
PPCA model is replaced by an incomplete Cholesky decomposition to keep numerical stability, so
thatKf ≈ L̃ L̃⊤, whereL̃ ∈ ℜD×R1 . An application of MTGP for obtaining the inverse dynamics
of a robotic manipulator was presented in Chai et al. (2009).

It can be shown that if the outputs are considered to be noise-free, prediction using the intrinsic
coregionalization model under an isotopic data case is equivalent to independent prediction over
each output (Helterbrand and Cressie, 1994). This circumstance is alsoknown as autokrigeability
(Wackernagel, 2003) and it can also be seen as the cancellation of inter-task transfer (Bonilla et al.,
2008).

Multi-output Gaussian processes.The intrinsic coregionalization model has been also used in
Osborne et al. (2008). MatrixΥ in Expression (5) is assumed to be of the spherical parametrisation
kind, Υ = diag(e)S⊤Sdiag(e), wheree gives a description for the length scale of each output
variable andS is an upper triangular matrix whosei-th column is associated with particular spherical

4. See Brookes (2005) for a nice overview.
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coordinates of points inℜi (for details see Osborne and Roberts, 2007, Section 3.4). Function
k(x,x′) is represented through a Mátern kernel, where different parametrisations of the covariance
allow the expression of periodic and non-periodic terms. Sparsification for this model is obtained
using an IVM style approach.

Multi-task kernels in regularization theory.Kernels for multiple outputs have also been studied
in the context of regularization theory. The approach is based mainly on thedefinition of kernels for
multitask learning provided in Evgeniou and Pontil (2004) and Evgeniou et al. (2005), derived based
on the theory of kernels for vector-valued functions. LetD = {1, . . . ,D}. According to Evgeniou
et al. (2005), the following lemma can be used to construct multitask kernels,

Lemma 1 If G is a kernel onT ×T and, for everyd∈D there are prescribed mappingsΦd :X →T
such that

kd,d′(x,x
′) = k((x,d),(x′,d′)) =G(Φd(x),Φd′(x

′)), x,x′ ∈ ℜp, d,d′ ∈ D,

thenk(·) is a multitask or multioutput kernel.

A linear multitask kernel can be obtained if we setT = ℜm, Φd(x) = Cdx with Φd ∈ ℜm and
G :ℜm×ℜm →ℜ as the polynomial kernelG(z,z′) = (z⊤z′)n with n= 1, leading tokd,d′(x,x′) =
x⊤C⊤

d Cd′x′. The lemma above can be seen as the result of applying kernel propertiesto the mapping
Φd(x) (see Genton, 2001, p. 2). Notice that this corresponds to a generalization of the semipara-
metric latent factor model where each output is expressed through its own basic process acting over
the linear transformationCdx, this is,ud(Φd(x)) = ud(Cdx). In general, it can be obtained from
fd(x) =

∑D
q=1ad,quq(Φq(x)), wheread,q = 1 if d= q or zero, otherwise.

A more detailed analysis of the LMC and more connections with other methods in statistics and
machine learning can be found ińAlvarez et al. (2011b).

3. Convolution Processes for Multiple Outputs

The approaches introduced above all involve some form of instantaneousmixing of a series of
independent processes to construct correlated processes. Instantaneous mixing has some limitations.
If we wanted to model two output processes in such a way that one process was a blurred version
of the other, we cannot achieve this through instantaneous mixing. We can achieve blurring through
convolving a base process with a smoothing kernel. If the base process isa Gaussian process, it turns
out that the convolved process is also a Gaussian process. We can therefore exploit convolutions
to construct covariance functions (Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998; Higdon,
1998, 2002). A recent review of several extensions of this approach for the single output case is
presented in Calder and Cressie (2007). Applications include the construction of nonstationary
covariances (Higdon, 1998; Higdon et al., 1998; Fuentes, 2002a,b; Paciorek and Schervish, 2004)
and spatiotemporal covariances (Wikle et al., 1998; Wikle, 2002, 2003).

Ver Hoef and Barry (1998) first, and Higdon (2002) later, suggestedusing convolutions to con-
struct multiple output covariance functions. The approach was introduced to the machine learn-
ing community by Boyle and Frean (2005). Consider again a set ofD functions{fd(x)}Dd=1.
Now each function could be expressed through a convolution integral between a smoothing ker-
nel,{Gd(x)}Dd=1, and a latent functionu(x),

fd(x) =
∫

X

Gd(x−z)u(z)dz. (7)
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More generally, and in a similar way to the linear model of coregionalization, wecan consider the
influence of more than one latent function,uiq(z), with q = 1, . . . ,Q andi= 1, . . . ,Rq to obtain

fd(x) =
Q∑

q=1

Rq∑

i=1

∫

X

Gi
d,q(x−z)uiq(z)dz.

As in the LMC, there areQ groups of functions, each member of the group has the same covariance
kq(x,x′), but is sampled independently. Under the same independence assumptions used in the
LMC, the covariance betweenfd(x) andfd′(x′) follows

cov
[
fd(x),fd′(x

′)
]
=

Q∑

q=1

Rq∑

i=1

∫

X

Gi
d,q(x−z)

∫

X

Gi
d′,q(x

′−z′)kq(z,z′)dz′dz. (8)

SpecifyingGi
d,q(x−z) andkq(z,z′) in (8), the covariance for the outputsfd(x) can be constructed

indirectly. Note that if the smoothing kernels are taken to be the Dirac delta function such that,

Gi
d,q(x−z) = aid,qδ(x−z),

whereδ(·) is the Dirac delta function, the double integral is easily solved and the linear model of
coregionalization is recovered. This matches to the concept ofinstantaneous mixingwe introduced
to describe the LMC. In a convolutional process the mixing is more general, for example the latent
process could be smoothed for one output, but not smoothed for anotherallowing correlated output
functions of different length scales.

The traditional approach to convolution processes in statistics and signal processing is to assume
that the latent functionsuq(z) are independent white Gaussian noise processes,kq(z,z′) = σ2

qδ(z−
z′). This allows us to simplify (8) as

cov
[
fd(x),fd′(x

′)
]
=

Q∑

q=1

Rq∑

i=1

σ2
q

∫

X

Gi
d,q(x−z)Gi

d′,q(x
′−z)dz.

In general, though, we can consider any type of latent process, for example, we could assume GPs
for the latent functions with general covarianceskq(z,z′).

As well as this covariance across outputs, the covariance between the latent function,uiq(z), and
any given output,fd(x), can be computed,

cov
[
fd(x),uiq(z)

]
=

∫

X

Gi
d,q(x−z′)kq(z′,z)dz′. (9)

Additionally, we can corrupt each of the outputs of the convolutions with an independent process
(which could also include a noise term),wd(x), to obtain

yd(x) = fd(x)+wd(x). (10)

The covariance between two different outputsyd(x) andyd′(x′) is then recovered as

cov
[
yd(x),yd′(x

′)
]
=cov

[
fd(x),fd′(x

′)
]
+cov

[
wd(x),wd′(x

′)
]
δd,d′ ,
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whereδd,d′ is the Kronecker delta function.5

As mentioned before, Ver Hoef and Barry (1998) and Higdon (2002) proposed the direct use of
convolution processes for constructing multiple output Gaussian processes. Lawrence et al. (2007)
arrive at a similar construction from solving a physical model: a first order differential equation (see
also Gao et al., 2008). This idea of using physical models to inspire multiple output systems has
been further extended ińAlvarez et al. (2009) who give examples using the heat equation and a sec-
ond order system. A different approach using Kalman Filtering ideas has been proposed in Calder
(2003, 2007). Calder proposed a model that incorporates dynamical systems ideas to the process
convolution formalism. Essentially, the latent processes are of two types: random walks and in-
dependent cyclic second-order autoregressions. With this formulation,it is possible to construct a
multivariate output process using convolutions over these latent processes. Particular relationships
between outputs and latent processes are specified using a special transformation matrix ensuring
that the outputs are invariant under invertible linear transformations of the underlying factor pro-
cesses (this matrix is similar in spirit to the sensitivity matrix of Lawrence et al. (2007) and it is
given a particular form so that not all latent processes affect the whole set of outputs).

Bayesian kernel methods.The convolution process is closely related to the Bayesian kernel
method (Pillai et al., 2007; Liang et al., 2009) for constructing reproducible kernel Hilbert spaces
(RKHS), assigning priors to signed measures and mapping these measuresthrough integral opera-
tors. In particular, define the following space of functions,

F =
{
f
∣∣∣f(x) =

∫

X

G(x,z)γ(dz), γ ∈ Γ
}
,

for some spaceΓ ⊆ B(X ) of signed Borel measures. In Pillai et al. (2007, Proposition 1), the au-
thors show that forΓ = B(X ), the space of all signed Borel measures,F corresponds to a RKHS.
Examples of these measures that appear in the form of stochastic processes include Gaussian pro-
cesses, Dirichlet processes and Lévy processes. This framework can be extended for the multiple
output case, expressing the outputs as

fd(x) =

∫

X

Gd(x,z)γ(dz).

The analysis of the mathematical properties of such spaces of functions is beyond the scope of this
paper and is postponed for future work.

Other connections of the convolution process approach with methods in statistics and machine
learning are further explored ińAlvarez et al. (2011b).

A general purpose convolution kernel for multiple outputs.A simple general purpose kernel
for multiple outputs based on the convolution integral can be constructed assuming that the kernel
smoothing function,Gd,q(x), and the covariance for the latent function,kq(x,x′), follow both a
Gaussian form. A similar construction using a Gaussian form forG(x) and a white noise process
for u(x) has been used in Paciorek and Schervish (2004) to propose a nonstationary covariance
function in single output regression. It has also been used in Boyle and Frean (2005) as an example
of constructing dependent Gaussian processes.

The kernel smoothing function is given as

Gd,q(x) = Sd,qN (x|0,P−1
d ),

5. We have slightly abused of the delta notation to indicate the Kronecker delta for discrete arguments and the Dirac
function for continuous arguments. The particular meaning should be understood from the context.
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whereSd,q is a variance coefficient that depends both on the outputd and the latent functionq and
Pd is the precision matrix associated to the particular outputd. The covariance function for the
latent process is expressed as

kq(x,x′) =N (x−x′|0,Λ−1
q ),

with Λq the precision matrix of the latent functionq.
Expressions for the kernels are obtained applying systematically the identity for the product of

two Gaussian distributions. LetN (x|µ,P−1) denote a Gaussian forx, then

N (x|µ1,P−1
1 )N (x|µ2,P−1

2 ) =N (µ1|µ2,P−1
1 +P−1

2 )N (x|µc,P−1
c ), (11)

whereµc = (P1+P2)
−1 (P1µ1+P2µ2) andP−1

c = (P1+P2)
−1. For all integrals we assume that

X = ℜp. Using these forms forGd,q(x) andkq(x,x′), expression (8) (withRq = 1) can be written
as

kfd,fd′ (x,x
′) =

Q∑

q=1

Sd,qSd′,q

∫

X

N (x−z|0,P−1
d )

∫

X

N (x′−z′|0,P−1
d′ )N (z−z′|0,Λ−1

q )dz′dz.

Since the Gaussian covariance is stationary, we can write it asN (x−x′|0,P−1)=N (x′−x|0,P−1)=
N (x|x′,P−1) =N (x′|x,P−1). Using the identity in Equation (11) twice, we get

kfd,fd′ (x,x
′) =

Q∑

q=1

Sd,qSd′,qN (x−x′|0,P−1
d +P−1

d′ +Λ
−1
q ). (12)

For a high value of the input dimension,p, the term1/[(2π)p/2|P−1
d +P−1

d′ +Λ
−1
q |1/2] in each of

the Gaussian’s normalization terms will dominate, making values go quickly to zero. We can fix this
problem, by scaling the outputs using the factors1/[(2π)p/4|2P−1

d +Λ
−1
q |1/4] and1/[(2π)p/4|2P−1

d′ +

Λ
−1
q |1/4]. Each of these scaling factors correspond to the standard deviation associated tokfd,fd(x,x)

andkfd′ ,fd′ (x,x).
Equally for the covariancecov [fd(x),uq(x′))] in Equation (9), we obtain

kfd,uq
(x,x′) = Sd,qN (x−x′|0,P−1

d +Λ
−1
q ).

Again, this covariance must be standardized when working in higher dimensions.

4. Hyperparameter Learning

Given the convolution formalism, we can construct a full GP over the set ofoutputs. The likelihood
of the model is given by

p(y|X,θ) =N (y|0,K f,f +Σ), (13)

wherey =
[
y⊤1 , . . . ,y

⊤
D

]⊤
is the set of output functions withyd = [yd(x1), . . . ,yd(xN )]⊤; K f,f ∈

ℜDN×DN is the covariance matrix arising from the convolution. It expresses the covariance of each
data point at every other output and data point and its elements are given by cov [fd(x),fd′(x′)] in
(8). The termΣ represents the covariance associated with the independent processesin (10),wd(x).
It could contain structure, or alternatively could simply represent noise that is independent across
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the data points. The vectorθ refers to the hyperparameters of the model. For exposition we will
focus on the isotopic case (although our implementations allow heterotopic modeling), so we have a
matrixX = {x1, . . . ,xN} which is the common set of training input vectors at which the covariance
is evaluated.

The predictive distribution for a new set of input vectorsX∗ is (Rasmussen and Williams, 2006)

p(y∗|y,X,X∗,θ) =N
(
y∗|K f∗,f(K f,f +Σ)−1y,K f∗,f∗ −K f∗,f(K f,f +Σ)−1K f,f∗ +Σ∗

)
,

where we have usedK f∗,f∗ as a compact notation to indicate when the covariance matrix is evalu-
ated at the inputsX∗, with a similar notation forK f∗,f . Learning from the log-likelihood involves
the computation of the inverse ofK f,f +Σ giving the problematic complexity ofO(N3D3). Once
the parameters have been learned, prediction isO(ND) for the predictive mean andO(N2D2) for
the predictive variance.

As we have mentioned before, the main focus of this paper is to present someefficient approxi-
mations for the multiple output convolved Gaussian Process. Given the methods presented before,
we now show an application that benefits from the non-instantaneous mixing element brought by
the convolution process framework.

Comparison between instantaneous mixing and non-instantaneous mixing for regression in
genes expression data.Microarray studies have made the simultaneous measurement of mRNA
from thousands of genes practical. Transcription is governed by the presence or absence of tran-
scription factor (TF) proteins that act as switches to turn on and off the expression of the genes. Most
of these methods are based on assuming that there is an instantaneous linear relationship between
the gene expression and the protein concentration. We compare the performance of the intrinsic
coregionalization model (Section 2.1.1) and the convolved GPs for two independent time series or
replicas of 12 time points collected hourly throughout Drosophila embryogenesis in wild-type em-
bryos (Tomancak et al., 2002). For preprocessing the data, we follow Honkela et al. (2010). We
concentrate on a particular transcription factor protein, namelytwi, and the genes associated with it.
The information about the network connections is obtained from the ChIP-chip experiments. This
particular TF is key regulator of mesoderm and muscle development in Drosophila (Zinzen et al.,
2009).

After preprocessing the data, we end up with a data set of1621 genes with expression data for
N = 12 time points. It is believed that this set of genes are regulated by at least thetwi transcription
factor. For each one of these genes, we have access to 2 replicas. Werandomly selectD = 50 genes
from replica 1 for training a full multiple output GP model based on either the LMC framework
or the convolved GP framework. The corresponding50 genes of replica 2 are used for testing
and results are presented in terms of the standardized mean square error (SMSE) and the mean
standardized log loss (MSLL) as defined in Rasmussen and Williams (2006).6 The parameters of
both the LMC and the convolved GPs are found through the maximization of the marginal likelihood
in Equation (13). We repeated the experiment10 times using a different set of50 genes each
time. We also repeated the experiment selecting the50 genes for training from replica 2 and the
corresponding50 genes of replica 1 for testing.

6. The definitions for the SMSE and the MSLL we have used here are slightlydifferent from the ones provided in
Rasmussen and Williams (2006). Instead of comparing against a Gaussian with a global mean and variance com-
puted from all the outputs in the training data, we compare against a Gaussian with local means and local variances
computed from the training data associated to each output.

1435
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We are interested in a reduced representation of the data so we assume thatQ= 1 andRq = 1,
for the LMC and the convolved multiple output GP in Equations (2) and (8), respectively. For the
LMC model, we follow Bonilla et al. (2008) and assume an incomplete Cholesky decomposition
for B1 = L̃L̃⊤, whereL̃ ∈ ℜ50×1 and as the basic covariancekq(x,x′) we assume the squared
exponential covariance function (p. 83, Rasmussen and Williams, 2006).For the convolved multiple
output GP we employ the covariance described in Section 3, Equation (12),with the appropriate
scaling factors.

Train set Test set Method Average SMSE Average MSLL

Replica 1 Replica 2
LMC 0.6069±0.0294 −0.2687±0.0594

CMOC 0.4859±0.0387 −0.3617±0.0511

Replica 2 Replica 1
LMC 0.6194±0.0447 −0.2360±0.0696

CMOC 0.4615±0.0626 −0.3811±0.0748

Table 1: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for the
gene expression data for50 outputs. CMOC stands for convolved multiple output covari-
ance. The experiment was repeated ten times with a different set of50 genes each time.
Table includes the value of one standard deviation over the ten repetitions. More negative
values of MSLL indicate better models.

Table 1 shows the results of both methods over the test set for the two different replicas. It can be
seen that the convolved multiple output covariance (appearing as CMOC in the table), outperforms
the LMC covariance both in terms of SMSE and MSLL.

Figure 1 shows the prediction made over the test set (replica 2 in this case) by the two models
for two particular genes, namely FBgn0038617 (Figure 1, first row) and FBgn0032216 (Figure 1,
second row). The black dots in the figures represent the gene expression data of the particular genes.
Figures 1(a) and 1(c) show the response of the LMC and Figures 1(b)and 1(d) show the response of
the convolved multiple output covariance. It can be noticed from the data that the two genes differ
in their responses to the action of the transcription factor, that is, while geneFBgn0038617 has
a rapid decay around time2 and becomes relatively constant for the rest of the time interval, gene
FBgn0032216 has a smoother response within the time frame. The linear modelof coregionalization
is driven by a latent function with a length-scale that is shared across the outputs. Notice from
Figures 1(a) and 1(c) that the length-scale for both responses is the same. On the other hand, due-
to the non-instantaneous mixing of the latent function, the convolved multiple output framework,
allows the description of each output using its own length-scale, which gives an added flexibility for
describing the data.

Table 2 (first four rows) shows the performances of both models for thegenes of Figure 1.
CMOC outperforms the linear model of coregionalization for both genes in terms of SMSE and
MSLL.

A similar analysis can be made for Figures 2(a), 2(b), 2(c) and 2(d). Inthis case, the test set is
replica 1 and we have chosen two different genes, FBgn0010531 andFBgn0004907 with a similar
behavior. Table 2 (last four rows) also highlights the performances of both models for the genes of
Figure 2. Again, CMOC outperforms the linear model of coregionalization for both genes and in
terms of SMSE and MSLL.
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(a) LMC for a short length-scale output
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(b) CMOC for a short length-scale output
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(c) LMC for a long length-scale output
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(d) CMOC for a long length-scale output

Figure 1: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216 (sec-
ond row) using the linear model of coregionalization in Figures 1(a) and 1(c) and the
convolved multiple-output covariance in Figures 1(b) and 1(d), withQ = 1 andRq = 1.
The training data comes from replica 1 and the testing data from replica 2. Thesolid line
corresponds to the predictive mean, the shaded region corresponds to2 standard devia-
tions of the prediction. Performances in terms of SMSE and MSLL are givenin the title
of each figure and appear also in Table 2. The adjectives “short” and “long” given to the
length-scales in the captions of each figure, must be understood like relative to each other.

Having said this, we can argue that the performance of the LMC model can be improved by
either increasing the value ofQ or the valueRq, or both. For the intrinsic coregionalization model,
we would fix the value ofQ= 1 and increase the value ofR1. Effectively, we would be increasing
the rank of the coregionalization matrixB1, meaning that more latent functions sampled from the
same covariance function are being used to explain the data. In a extreme case in which each output
has its own length scale, this translates into equating the number of latent functions to the number

1437
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Test replica Test genes Method SMSE MSLL

Replica 2
FBgn0038617

LMC 0.2729 −0.6018
CMOC 0.0565 −1.3965

FBgn0032216
LMC 0.7621 −0.0998

CMOC 0.1674 −0.8443

Replica 1
FBgn0010531

LMC 0.2572 −0.5699
CMOC 0.0446 −1.3434

FBgn0004907
LMC 0.4984 −0.3069

CMOC 0.0971 −1.0841

Table 2: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for the
genes in Figures 1 and 2 for LMC and CMOC. Genes FBgn0038617 and FBgn0010531
have a shorter length-scale when compared to genes FBgn0032216 and FBgn0004907.

of outputs, or in other words assuming a full rank for the matrixB1. This leads to the need of
estimating the matrixB1 ∈ ℜD×D, that might be problematic ifD is high. For the semiparametric
latent factor model, we would fix the value ofRq = 1 and increaseQ, the number of latent functions
sampled fromQ different GPs. Again, in the extreme case of each output having its own length-
scale, we might need to estimate a matrixÃ ∈ ℜD×D, which could be problematic for a high value
of outputs. In a more general case, we could also combine values ofQ> 1 andRq > 1. We would
need then, to find values ofQ andRq that fit the different outputs with different length scales.

In practice though, we will see in the experimental section, that both the linearmodel of core-
gionalization and the convolved multiple output GPs can perform equally well insome data sets.
However, the convolved covariance could offer an explanation of the data through a simpler model
or converge to the LMC, if needed.

5. Efficient Approximations for Convolutional Processes

Assuming that the double integral in Equation (8) is tractable, the principle challenge for the con-
volutional framework is computing the inverse of the covariance matrix associated with the outputs.
ForD outputs, each havingN data points, the inverse has computational complexityO(D3N3) and
associated storage ofO(D2N2). We show how through making specific conditional independence
assumptions, inspired by the model structure (Álvarez and Lawrence, 2009), we arrive at a efficient
approximation similar in form to the partially independent training conditional model (PITC, see
Quiñonero-Candela and Rasmussen, 2005). The relationship with PITC theninspires us to make
further conditional independence assumptions.

5.1 Latent Functions as Conditional Means

For notational simplicity, we restrict the analysis of the approximations to one latent functionu(x).
The key to all approximations is based on the form we assume for the latent functions. From the
perspective of a generative model, Equation (7) can be interpreted as follows: first we draw a sample
from the Gaussian process priorp(u(z)) and then solve the integral for each of the outputsfd(x)
involved. Uncertainty aboutu(z) is also propagated through the convolution transform.

1438



COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0010531 MSLL −0.56996 SMSE 0.25721

G
en

e
ex

pr
es

si
on

le
ve

l

Time

(a) LMC for a short length-scale output
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(b) CMOC for a short length-scale output
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(c) LMC for a long length-scale output
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(d) CMOC for a long length-scale output

Figure 2: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907 (sec-
ond row) using the linear model of coregionalization in Figures 2(a) and 2(c), and the
convolved multiple-output covariance in Figures 2(b) and 2(d), withQ = 1 andRq = 1.
The difference with Figure 1 is that now the training data comes from replica 2while the
testing data comes from replica 1. The solid line corresponds to the predictive mean, the
shaded region corresponds to 2 standard deviations of the prediction. Performances in
terms of SMSE and MSLL are given in the title of each figure.

For the set of approximations, instead of drawing a sample fromu(z), we first draw a sample
from a finite representation ofu(z), u(Z) = [u(z1), . . . ,u(zK)]⊤, whereZ = {zk}

K
k=1 is the set of in-

put vectors at whichu(z) is evaluated. Due to the properties of a Gaussian process,p(u(Z)) follows
a multivariate Gaussian distribution. Conditioning onu(Z), we next sample from the conditional
prior p(u(z)|u(Z)) and use this function to solve the convolution integral for eachfd(x).7 Under

7. For simplicity in the notation, we just writeu to refer tou(Z).
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this generative approach, we can approximate each functionfd(x) using

fd(x)≈
∫

X

Gd(x−z)E[u(z)|u]dz. (14)

Replacingu(z) for E[u(z)|u] is a reasonable approximation as long asu(z) is a smooth function
so that the infinite dimensional objectu(z) can be summarized byu. Figure 3 shows a cartoon
example of the quality of the approximations for two outputs as the size of the setZ increases. The
first column represents the conditional priorp(u(z)|u) for a particular choice ofu(z). The second
and third columns represent the outputsf1(x) andf2(x) obtained when using Equation (14).

Using expression (14), the likelihood function forf follows

p(f|u,Z,X,θ) =N
(

f|K f,uK−1
u,uu,K f,f −K f,uK−1

u,uK⊤
f,u

)
, (15)

whereKu,u is the covariance matrix between the samples from the latent functionu(Z), with ele-
ments given byku,u(z,z′) andK f,u =K⊤

u,f is the cross-covariance matrix between the latent function
u(z) and the outputsfd(x), with elementscov [fd(x),u(z)] in (9).

Given the set of pointsu, we can have different assumptions about the uncertainty of the out-
puts in the likelihood term. For example, we could assume that the outputs are independent or
uncorrelated, keeping only the uncertainty involved for each output in thelikelihood term. Another
approximation assumes that the outputs are deterministic, this isK f,f = K f,uK−1

u,uK⊤
f,u. The only

uncertainty left would be due to the priorp(u). Next, we present different approximations of the
covariance of the likelihood that lead to a reduction in computational complexity.

5.1.1 PARTIAL INDEPENDENCE

We assume that the individual outputs inf are independent given the latent functionu, leading to
the following expression for the likelihood

p(f|u,Z,X,θ) =
D∏

d=1

p(fd|u,Z,X,θ) =
D∏

d=1

N
(
f|K fd,uK−1

u,uu,K fd,fd −K fd,uK−1
u,uKu,fd

)
.

We rewrite this product of multivariate Gaussians as a single Gaussian with a block diagonal co-
variance matrix, including the uncertainty about the independent processes

p(y|u,Z,X,θ) =N
(
y|K f,uK−1

u,uu,D+Σ
)

(16)

whereD = blockdiag
[
K f,f −K f,uK−1

u,uK⊤
f,u

]
, and we have used the notationblockdiag [G] to indi-

cate that the block associated with each output of the matrixG should be retained, but all other
elements should be set to zero. We can also write this asD =

[
K f,f −K f,uK−1

u,uKu,f
]
⊙M where

⊙ is the Hadamard product andM = ID ⊗ 1N , 1N being theN ×N matrix of ones. We now
marginalize the values of the samples from the latent function by using its process prior, this means
p(u|Z) =N (u|0,Ku,u). This leads to the following marginal likelihood,

p(y|Z,X,θ) =

∫
p(y|u,Z,X,θ)p(u|Z)du =N

(
y|0,D+K f,uK−1

u,uKu,f +Σ
)
. (17)
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(a) Conditional prior forK = 5
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(b) Output one forK = 5
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(c) Output two forK = 5
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(d) Conditional prior forK = 10
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(e) Output one forK = 10
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(f) Output two forK = 10
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(g) Conditional prior forK = 30
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(h) Output one forK = 30
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(i) Output two forK = 30

Figure 3: Conditional prior and two outputs for different values ofK. The first column, Figures
3(a), 3(d) and 3(g), shows the mean and confidence intervals of the conditional prior
distribution using one input function and two output functions. The dashedline represents
one sample from the prior. Conditioning over a few points of this sample, shown as
black dots, the conditional mean and conditional covariance are computed.The solid
line represents the conditional mean and the shaded region correspondsto 2 standard
deviations away from the mean. The second column, 3(b), 3(e) and 3(h), shows the
solution to Equation (7) for output one using the sample from the prior (dashed line) and
the conditional mean (solid line), for different values ofK. The third column, 3(c), 3(f)
and 3(i), shows the solution to Equation (7) for output two, again for different values of
K.

Notice that, compared to (13), the full covariance matrixK f,f has been replaced by the low rank co-
varianceK f,uK−1

u,uKu,f in all entries except in the diagonal blocks corresponding toK fd,fd . Depend-
ing on our choice ofK, the inverse of the low rank approximation to the covariance is either dom-
inated by aO(DN3) term or aO(K2DN) term. Storage of the matrix isO(N2D)+O(NDK).
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Note that if we setK =N these reduce toO(N3D) andO(N2D) respectively. Rather neatly this
matches the computational complexity of modeling the data withD independent Gaussian processes
across the outputs.

The functional form of (17) is almost identical to that of the partially independent training
conditional (PITC) approximation (Quiñonero-Candela and Rasmussen, 2005) or the partially inde-
pendent conditional (PIC) approximation (Quiñonero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2007), with the samples we retain from the latent function providing the same role as
the inducing valuesin the PITC or PIC.8 This is perhaps not surprising given that the PI(T)C ap-
proximations are also derived by making conditional independence assumptions. A key difference
is that in PI(T)C it is not obvious which variables should be grouped together when making these
conditional independence assumptions; here it is clear from the structureof the model that each of
the outputs should be grouped separately.

5.1.2 FULL INDEPENDENCE

We can be inspired by the analogy of our approach to the PI(T)C approximation and consider a more
radical factorization of the likelihood term. In the fully independent training conditional (FITC) ap-
proximation or the fully independent conditional (FIC) approximation (Snelson and Ghahramani,
2006, 2007), a factorization across the data points is assumed. For us that would lead to the follow-
ing expression for the conditional distribution of the output functions given the inducing variables,

p(f|u,Z,X,θ) =
D∏

d=1

N∏

n=1

p(fn,d|u,Z,X,θ),

which can be expressed through (16) withD=diag
[
K f,f −K f,uK−1

u,uK⊤
f,u

]
=
[
K f,f −K f,uK−1

u,uK⊤
f,u

]
⊙

M , with M = ID⊗ IN or simplyM = IDN . The marginal likelihood, including the uncertainty about
the independent processes, is given by Equation (17) with the diagonalform for D. Training with
this approximated likelihood reduces computational complexity toO(K2DN) and the associated
storage toO(KDN).

5.1.3 DETERMINISTIC L IKELIHOOD

In Quiñonero-Candela and Rasmussen (2005), the relationship between the projected process ap-
proximation (Csat́o and Opper, 2001; Seeger et al., 2003) and the FI(T)C and PI(T)C approxima-
tions is elucidated. They show that if, given the set of valuesu, the outputs are assumed to be
deterministic, the likelihood term of Equation (15) can be simplified as

p(f|u,Z,X,θ) =N
(
f|K f,uK−1

u,uu,0
)
.

Marginalizing with respect to the latent function usingp(u|Z) = N (u|0,Ku,u) and including the
uncertainty about the independent processes, we obtain the marginal likelihood as

p(y|Z,X,θ) =

∫
p(y|u,Z,X,θ)p(u|Z)du =N

(
y|0,K f,uK−1

u,uK⊤
f,u +Σ

)
.

8. We refer to both PITC and PIC by PI(T)C.
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In other words, we can approximate the full covarianceK f,f using the low rank approximation
K f,uK−1

u,uK⊤
f,u. Using this new marginal likelihood to estimate the parametersθ reduces computa-

tional complexity toO(K2DN). The approximation obtained has similarities with the projected
latent variables (PLV) method also known as the projected process approximation (PPA) or the de-
terministic training conditional (DTC) approximation (Csató and Opper, 2001; Seeger et al., 2003;
Quiñonero-Candela and Rasmussen, 2005; Rasmussen and Williams, 2006).

5.1.4 ADDITIONAL INDEPENDENCEASSUMPTIONS

As mentioned before, we can consider different conditional independence assumptions for the like-
lihood term. One further assumption that is worth mentioning considers conditional independencies
across data points and dependence across outputs. This would lead to thefollowing likelihood term

p(f|u,Z,X,θ) =
N∏

n=1

p(fn|u,Z,X,θ),

wherefn= [f1(xn),f2(xn), . . . ,fD(xn)]⊤. We can use again Equation (16) to express the likelihood.
In this case, though, the matrixD is a partitioned matrix with blocksDd,d′ ∈ ℜN×N and each block
Dd,d′ would be given asDd,d′ = diag

[
K fd,fd′ −K fd,uK−1

u,uKu,fd′
]
. For cases in whichD > N , that

is, the number of outputs is greater than the number of data points, this approximation may be more
accurate than the one obtained with the partial independence assumption. For cases whereD <N
it may be less accurate, but faster to compute.9

5.2 Posterior and Predictive Distributions

Combining the likelihood term for each approximation withp(u|Z) using Bayes’ theorem, the pos-
terior distribution overu is obtained as

p(u|y,X,Z,θ) =N
(
u|Ku,uA−1Ku,f(D+Σ)−1y,Ku,uA−1Ku,u

)
, (18)

whereA = Ku,u +K⊤
f,u(D+Σ)−1K f,u andD follows a particular form according to the different

approximations: for partial independence it equalsD = blockdiag
[
K f,f −K f,uK−1

u,uKu,f
]
; for full

independence it isD = diag
[
K f,f −K f,uK−1

u,uKu,f
]

and for the deterministic likelihood,D = 0.
For computing the predictive distribution we have two options, either use the posterior foru and

the approximated likelihoods or the posterior foru and the likelihood of Equation (15), that cor-
responds to the likelihood of the model without any approximations. The difference between both
options is reflected in the covariance for the predictive distribution. Quiñonero-Candela and Ras-
mussen (2005) proposed a taxonomy of different approximations according to the type of likelihood
used for the predictive distribution, in the context of single output Gaussian processes.

In this paper, we opt for the posterior foru and the likelihood of the model without any approx-
imations. If we choose the exact likelihood term in Equation (15) (including thenoise term), the

9. Notice that if we work with the block diagonal matricesDd,d′ , we would need to invert the full matrixD. However,
since the blocksDd,d′ are diagonal matrices themselves, the inversion can be done efficiently using, for example, a
block Cholesky decomposition. Furthermore, we would be restricted to work with isotopic input spaces. Alterna-
tively, we could rearrange the elements of the matrixD so that the blocks of the main diagonal are the covariances
associated with the vectorsfn.
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predictive distribution is expressed through the integration of the likelihood term evaluated atX∗,
with (18), giving

p(y∗|y,X,X∗,Z,θ) =
∫

p(y∗|u,Z,X∗,θ)p(u|y,X,Z,θ)du =N (y∗|µy∗ ,K y∗,y∗) ,

where

µy∗ = K f∗,uA−1K⊤
f,u(D+Σ)−1y,

K y∗,y∗ = K f∗,f∗ −K f∗,uK−1
u,uK⊤

f∗,u +K f∗,uA−1K⊤
f∗,u +Σ∗.

For the single output case, the assumption of the deterministic likelihood is equivalent to the de-
terministic training conditional (DTC) approximation, the full independence approximation leads
to the fully independent training conditional (FITC) approximation (Quiñonero-Candela and Ras-
mussen, 2005) and the partial independence leads to the partially independent training conditional
(PITC) approximation (Quiñonero-Candela and Rasmussen, 2005). The similarities of our approx-
imations for multioutput GPs with respect to approximations presented in Quiñonero-Candela and
Rasmussen (2005) for single output GPs are such, that we find it convenient to follow the same
terminology and also refer to our approximations as DTC, FITC and PITC approximations for mul-
tioutput Gaussian processes.

5.3 Discussion: Model Selection in Approximated Models

The marginal likelihood approximation for the PITC, FITC and DTC variants isa function of both
the hyperparameters of the covariance function and the location of the inducing variables. For es-
timation purposes, there seems to be a consensus in the GP community that hyperparameters for
the covariance function can be obtained by maximization of the marginal likelihood. For selecting
the inducing variables, though, there are different alternatives that can in principle be used. Simpler
methods include fixing the inducing variables to be the same set of input data points or grouping
the input data using a clustering method likeK-means and then use theK resulting vectors as in-
ducing variables. More sophisticated alternatives consider that the set of inducing variables must
be restricted to be a subset of the input data (Csató and Opper, 2001; Williams and Seeger, 2001).
This set of methods require a criteria for choosing the optimal subset of thetraining points (Smola
and Bartlett, 2001; Seeger et al., 2003). Such approximations are truly sparse in the sense that only
few data points are needed at the end for making predictions. Recently, Snelson and Ghahramani
(2006) suggested using the marginal likelihood not only for the optimization ofthe hyperparameters
in the covariance function, but also for the optimization of the location of theseinducing variables.
Although, using such procedure to find the optimal location of the inducing inputs might look in
principle like an overwhelming optimization problem (inducing points usually appear non-linearly
in the covariance function), in practice it has been shown that performances close to the full GP
model can be obtained in a fraction of the time that it takes to train the full model. Inthat re-
spect, the inducing points that are finally found are optimal in the same optimality sense that the
hyperparameters of the covariance function.

Essentially, it would be possible to use any of the methods just mentioned abovetogether with
the multiple-output GP regression models presented in Sections 2.1, 2.1.2 and 3. In this paper,
though, we follow Snelson and Ghahramani (2006) and optimize the locationsof the inducing vari-
ables using the approximated marginal likelihoods and leave the comparison between the different
model selection methods for inducing variables for future work.
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In appendix A we include the derivatives of the marginal likelihood wrt the matricesK f,f ,Ku,f

andKu,u.

6. Experimental Evaluation

In this section we present results of applying the approximations in exam score prediction, pol-
lutant metal prediction and the prediction of gene expression behavior in a gene-network. When
possible, we first compare the convolved multiple output GP method against theintrinsic model
of coregionalization and the semiparametric latent factor model. Then, we compare the different
approximations in terms of accuracy and training times. First, though, we illustrate the performance
of the approximation methods in a toy example.10

6.1 A Toy Example

For the toy experiment, we employ the kernel constructed as an example in Section 3. The toy
problem consists ofD= 4 outputs, one latent function,Q= 1 andRq = 1 and one input dimension.
The training data was sampled from the full GP with the following parameters,S1,1 = S2,1 = 1,
S3,1 = S4,1 = 5, P1,1 = P2,1 = 50, P3,1 = 300,P4,1 = 200 for the outputs andΛ1 = 100 for the
latent function. For the independent processes,wd (x), we simply added white noise separately to
each output so we have variancesσ2

1 = σ2
2 = 0.0125, σ2

3 = 1.2 andσ2
4 = 1. We generateN = 500

observation points for each output and use200 observation points (per output) for training the full
and the approximated multiple output GP and the remaining300 observation points for testing. We
repeated the same experiment setup ten times and compute the standardized meansquare error and
the mean standardized log loss. For the approximations we useK = 30 inducing inputs. We sought
the kernel parameters and the positions of the inducing inputs through maximizing the marginal
likelihood using a scaled conjugate gradient algorithm. Initially the inducing inputs are equally
spaced between the interval[−1,1].

Figure 4 shows the training result of one of the ten repetitions. The predictions shown corre-
spond to the full GP in Figure 4(a), the DTC approximation in Figure 4(b), theFITC approximation
in Figure 4(c) and the PITC approximation in Figure 4(d).

Tables 3 and 4 show the average prediction results over the test set. Table3 shows that the SMSE
of the approximations is similar to the one obtained with the full GP. However, there are important
differences in the values of the MSLL shown in Table 4. DTC offers the worst performance. It gets
better for FITC and PITC since they offer a more precise approximation to the full covariance.

The training times for iteration of each model are1.97 secs for the full GP,0.20 secs for DTC,
0.41 for FITC and0.59 for the PITC, on average.

As we have mentioned before, one important feature of multiple output prediction is that we can
exploit correlations between outputs to predict missing observations. We used a simple example to
illustrate this point. We removed a portion of one output between[−0.8,0] from the training data in
the experiment before (as shown in Figure 5) and train the different models to predict the behavior of
y4(x) for the missing information. The predictions shown correspond to the full GPin Figure 5(a),
an independent GP in Figure 5(b), the DTC approximation in Figure 5(c), the FITC approximation in

10. Code to run all simulations in this section is available athttp://staffwww.dcs.shef.ac.uk/people/N.
Lawrence/multigp/.
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Figure 4: Predictive mean and variance using the full multi-output GP and theapproximations for
output 4. The solid line corresponds to the predictive mean, the shaded region corre-
sponds to2 standard deviations of the prediction. The dashed line corresponds to the
ground truth signal, that is, the sample from the full GP model without noise. In these
plots the predictive mean overlaps almost exactly with the ground truth. The dots are
the noisy training points. The crosses in Figures 4(b), 4(c) and 4(d) correspond to the
locations of the inducing inputs after convergence. Notice that the DTC approximation
in Figure 4(b) captures the predictive mean correctly, but fails in reproducing the correct
predictive variance.

Method SMSEy1(x) SMSEy2(x) SMSEy3(x) SMSEy4(x)

Full GP 1.06±0.08 0.99±0.06 1.10±0.09 1.05±0.09
DTC 1.06±0.08 0.99±0.06 1.12±0.09 1.05±0.09
FITC 1.06±0.08 0.99±0.06 1.10±0.08 1.05±0.08
PITC 1.06±0.08 0.99±0.06 1.10±0.09 1.05±0.09

Table 3: Standardized mean square error (SMSE) for the toy problem over the test set. All numbers
are to be multiplied by10−2. The experiment was repeated ten times. Table includes the
value of one standard deviation over the ten repetitions.

Figure 5(d) and the PITC approximation in Figure 5(e). The training of the approximation methods
is done in the same way than in the experiment before.
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Method MSLL y1(x) MSLL y2(x) MSLL y3(x) MSLL y4(x)

Full GP −2.27±0.04 −2.30±0.03 −2.25±0.04 −2.27±0.05
DTC −0.98±0.18 −0.98±0.18 −1.25±0.16 −1.25±0.16
FITC −2.26±0.04 −2.29±0.03 −2.16±0.04 −2.23±0.05
PITC −2.27±0.04 −2.30±0.03 −2.23±0.04 −2.26±0.05

Table 4: Mean standardized log loss (MSLL) for the toy problem over the test set. More negative
values of MSLL indicate better models. The experiment was repeated ten times.Table
includes the value of one standard deviation over the ten repetitions.

Due to the strong dependencies between the signals, our model is able to capture the correlations
and predicts accurately the missing information.

6.2 Exam Score Prediction

In the first experiment with real data that we consider, the goal is to predict the exam score obtained
by a particular student belonging to a particular school. The data comes from the Inner London
Education Authority (ILEA).11 It consists of examination records from 139 secondary schools in
years 1985, 1986 and 1987. It is a random50% sample with 15362 students. The input space
consists of four features related to each student (year in which each student took the exam, gender,
performance in a verbal reasoning (VR) test12 and ethnic group) and four features related to each
school (percentage of students eligible for free school meals, percentage of students in VR band
one, school gender and school denomination). From the multiple output point of view, each school
represents one output and the exam score of each student a particularinstantiation of that output or
D = 139.

We follow the same preprocessing steps employed in Bonilla et al. (2008). The only features
used are the student-dependent ones, which are categorial variables. Each of them is transformed
to a binary representation. For example, the possible values that the variable year of the exam can
take are 1985, 1986 or 1987 and are represented as100, 010 or 001. The transformation is also
applied to the variables gender (two binary variables), VR band (four binary variables) and ethnic
group (eleven binary variables), ending up with an input space with20 dimensions. The categorial
nature of the data restricts the input space toN = 202 unique input feature vectors. However, two
students represented by the same input vectorx, and belonging both to the same school,d, can obtain
different exam scores. To reduce this noise in the data, we take the mean of the observations that,
within a school, share the same input vector and use a simple heteroskedasticnoise model in which
the variance for each of these means is divided by the number of observations used to compute it.13

The performance measure employed is the percentage of explained variance defined as the total
variance of the data minus the sum-squared error on the test set as a percentage of the total data
variance. It can be seen as the percentage version of the coefficientof determination between the

11. This data is available athttp://www.cmm.bristol.ac.uk/learning-training/multilevel-m-support/
datasets.shtml.

12. Performance in the verbal reasoning test was divided in three bands. Band 1 corresponds to the highest25%, band 2
corresponds to the next50% and band 3 the bottom25% (Nuttall et al., 1989; Goldstein, 1991).

13. Different noise models can be used. However, we employed this one so that we can compare directly to the results
presented in Bonilla et al. (2008).
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Figure 5: Predictive mean and variance using the full multi-output GP, the approximations and
an independent GP for output 4 with a range of missing observations in the interval
[−0.8,0.0]. The solid line corresponds to the mean predictive, the shaded region cor-
responds to2 standard deviations away from the mean and the dash line is the actual
value of the signal without noise. The dots are the noisy training points. Thecrosses
in Figures 5(c), 5(d) and 5(e) correspond to the locations of the inducing inputs after
convergence.

test targets and the predictions. The performance measure is computed forten repetitions with75%
of the data in the training set and25% of the data in the testing set.

We first compare different methods without including the efficient approximations. These meth-
ods are independent GPs, multi-task GPs (Bonilla et al., 2008), the intrinsic coregionalization
model, the semiparametric latent factor model and convolved multiple output GPs.Results are
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Method Explained variance (%)
Independent GPs (Bonilla et al., 2008) 31.12±1.33
Multi-task GP (Nystr̈om,R1 = 2) (Bonilla et al., 2008) 36.16±0.99
Intrinsic coregionalization model (R1 = 1) 52.54±2.46
Intrinsic coregionalization model (R1 = 2) 51.94±1.84
Intrinsic coregionalization model (R1 = 5) 45.31±1.63
Semiparametric latent factor model (Q= 2) 51.82±1.93
Semiparametric latent factor model (Q= 5) 44.87±1.15
Convolved Multiple Outputs GPs (Q= 1, Rq = 1) 53.84±2.01

Table 5: Average percentage of explained variance and standard deviation for the exam score pre-
diction on the ILEA data set computed over 10 repetitions. The independentGP result
and the multi-task GP result were taken from Bonilla et al. (2008). The valueof R1 in the
multi-task GP and in the intrinsic coregionalization model indicates the rank of the matrix
B1 in Equation (6). The value ofQ in the semiparametric latent factor model indicates the
number of latent functions. The value ofRq in the convolved multiple output GP refers to
the number of latent functions that share the same number of parameters (see Equation 8).
Refer to the text for more details.

presented in Table 5. The results for the independent GPs and the multi-taskGPs were taken from
Bonilla et al. (2008). The multi-task GP result uses a matrixB1 with rankR1 = 2. For the intrinsic
model of coregionalization, we use an incomplete Cholesky decompositionB1 = L̃L̃⊤, and include
results for different values of the rankR1. The basic covariancekq(x,x′) in the ICM is assumed
to follow a Gaussian form. For the semiparametric latent factor model, all the latent functions use
covariance functions with Gaussian forms. For SLFM, we include results for different values of
the number of latent functions (Q = 2 andQ = 5). Note that SLFM withQ = 1 is equivalent to
ICM with R1 = 1. For the convolved multiple output covariance result, the kernel employed was
introduced in Section 3. For all the models we estimate the parameters maximizing the likelihood
through scaled conjugate gradient and run the optimization algorithm for a maximum of 1000 iter-
ations. Table 5 shows that all methods outperform the independent GPs. Even though multi-task
GPs withR1 = 2 and ICM withR1 = 2 are equivalent methods, the difference of results might be
explained because the multi-task GP method uses a Nyström approximation for the matrixK1 in
Equation (6). Results for ICM withR1 = 1, SLFM with Q = 2 and the convolved covariance are
similar within the standard deviations. The convolved GP was able to recover the best performance
using only one latent function (Q=1). This data set was also employed to evaluate the performance
of the multitask kernels in Evgeniou and Pontil (2004). The best result presented in this work was
34.37±0.3. However, due to the averaging of the observations that we employed here, it is not fair
to compare directly against those results.

We present next the results of using the efficient approximations for the exam school prediction
example. In Figure 6, we have included the results of Table 5 alongside the results of using DTC,
FITC and PITC for5, 20 and50 inducing points. The initial positions of the inducing points are
selected using thek-meansalgorithm with the training data points as inputs to the algorithm. The
positions of these points are optimized in a scaled conjugate gradient procedure together with the
parameters of the model. We notice that using the approximations we obtain similar performances

1449
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Figure 6: Mean and standard deviation of the percentage of explained variance for exam score pre-
diction results on the ILEA data set. The experiment was repeated ten times. Inthe
bottom of the figure, IND stands for independent GPs, MT stands for multi-task GPs,
ICR1 stands for intrinsic coregionalization model with rankR1, SQ stands for semipara-
metric latent factor model withQ latent functions, CM1 stands for convolved multiple
output covariance withQ = 1 andRq = 1 and DK, FK, PK stands for DTC, FITC and
PITC with K inducing points, respectively. The independent GPs and multi-task GPs
results were obtained from Bonilla et al. (2008).

to the full models with as few as5 inducing points. FITC and PITC slightly outperform the DTC
method, although results are within the standard deviation.

Table 6 shows the training times for the different methods.14 Clearly, the efficient approxima-
tions are faster than the full methods. This is particularly true when comparingthe training times
per iteration (second column). The approximations were run over1000 iterations, but the results for
100 iterations were pretty much the same. For the ICM and SLFM results, definitely more than100
iterations were needed. With1000 iterations DTC with5 inducing points offers a speed up factor
of 24 times over the ICM withR1 = 1 and a speed up factor of137 over the full convolved multiple
output method.15 On the other hand, with1000 iterations, PITC with50 inducing points offers a
speed up of9.8 over ICM withR1 = 1 and a speed up of55 over the full convolved GP method.

14. All experiments with real data were run in workstations with2.59 GHz, AMD Opteron’s and up to16 GHz of RAM.
Only one processor was used on each run.

15. The speed up factor is computed as the relation between the slower method and the faster method, using the training
times of the third column in Table 6.

1450



COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

Method Time per iter. (secs) Training time (secs)
ICM (R1 = 1) 83.60 16889
ICM (R1 = 2) 85.61 47650
ICM (R1 = 5) 88.02 64535
SLFM (Q= 2) 97.00 58564
SLFM (Q= 5) 130.23 130234
CMOGP (Q= 1, Rq = 1) 95.55 95510
DTC 5 (Q= 1, Rq = 1) 0.69 694
DTC 20 (Q= 1, Rq = 1) 0.80 804
DTC 50 (Q= 1, Rq = 1) 1.04 1046
FITC 5 (Q= 1, Rq = 1) 0.94 947
FITC 20 (Q= 1, Rq = 1) 1.02 1026
FITC 50 (Q= 1, Rq = 1) 1.27 1270
PITC 5 (Q= 1, Rq = 1) 1.13 1132
PITC 20 (Q= 1, Rq = 1) 1.24 1248
PITC 50 (Q= 1, Rq = 1) 1.71 1718

Table 6: Training times for the exam score prediction example. In the table, CMOGP stands for
convolved multiple outputs GP. The first column indicates the training time per iteration
of each method while the second column indicates the total training time. All the numbers
presented are average results over the ten repetitions.

As mentioned before, the approximations reach similar performances using100 iterations, in-
creasing the speed up factors by ten.

To summarize this example, we have shown that the convolved multiple output GP offers a sim-
ilar performance to the ICM and SLFM methods. We also showed that the efficient approximations
can offer similar performances to the full methods and by a fraction of their training times. More-
over, this example involved a relatively high-input high-output dimensionaldata set, for which the
convolved covariance has not been used before in the literature.

6.3 Heavy Metals in the Swiss Jura

The second example with real data that we consider is the prediction of the concentration of several
metal pollutants in a region of the Swiss Jura. This is a relatively low-input low-output dimensional
data set that we use to illustrate the ability of the PITC approximation to reach the performance of
the full GP if the enough amount of inducing points is used. The data consistof measurements of
concentrations of several heavy metals collected in the topsoil of a14.5 km2 region of the Swiss
Jura. The data is divided into a prediction set (259 locations) and a validation set (100 locations).16

In a typical situation, referred to as undersampled or heterotopic case, afew expensive measure-
ments of the attribute of interest are supplemented by more abundant data on correlated attributes
that are cheaper to sample. We follow the experiment described in Goovaerts (1997, p. 248, 249)
in which aprimary variable(cadmium) at prediction locations in conjunction with somesecondary
variables(nickel and zinc) at prediction and validation locations, are employed to predict the con-

16. This data is available athttp://www.ai-geostats.org/.
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Figure 7: Cadmium concentration for the Swiss Jura example. The blue circles refer to the pre-
diction set (training data for cadmium) and the red squares are the concentrations for the
validation set (testing data for cadmium).

centration of the primary variable at validation locations. Figure 7 shows the cadmium concentration
for the particular set of input locations of the prediction set (blue circles)and the particular set of
input locations of the validation set (red squares). As in the exam score prediction example, we
first compare the performances of the full GP methods and later we introduce the performances
of the approximations. We compare results of independent GPs, ordinarycokriging, the intrinsic
coregionalization model, the semiparametric latent factor model and the convolved multiple output
covariance. For independent GPs we use Gaussian covariances with different length-scales for each
input dimension. Before describing the particular setup for the other methodsappearing in Table 7,
we first say a few lines about the cokriging method. The interested readercan find details in several
geostatistics books (see Cressie, 1993; Goovaerts, 1997; Wackernagel, 2003).

Cokriging is the generalization of kriging to multiple outputs. It is an unbiased linear predictor
that minimizes the error variance between the data and the predicted values. Different cokriging
methods assume that each output can be decomposed as a sum of a residual component with zero
mean and non-zero covariance function and a trend component. The difference between the cokrig-
ing estimators is based on the assumed model for the trend component. While in simple cokriging
the mean is assumed to be constant and known, in ordinary cokriging it is assumed to be constant,
but unknown, leading to a different set of equations for the predictor.Whichever cokriging method
is used implies using the values of the covariance for the residual componentin the equations for
the prediction, making explicit the need for a positive semidefinite covariancefunction. In the geo-
statistics literature, the usual practice is to use the linear model of coregionalization to construct a
valid covariance function for the residual component and then use any of the cokriging estimators
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Method Average Mean absolute error
Independent GPs 0.5739±0.0003
Ordinary cokriging (p. 248, 249 Goovaerts, 1997) 0.51
Intrinsic coregionalization model (R1 = 2) 0.4608±0.0025
Semiparametric latent factor model (Q= 2) 0.4578±0.0025
Convolved Multiple Outputs GPs (Q= 2, Rq = 1 ) 0.4552±0.0013

Table 7: Average mean absolute error and standard deviation for predicting the concentration of
metal cadmium with the full dependent GP model and different forms for the covariance
function. The result for ordinary cokriging was obtained from Goovaerts (p. 248, 249
1997) and it is explained in the text. For the intrinsic coregionalization model and the
semiparametric latent factor model we use a Gaussian covariance with different length-
scales along each input dimension. For the convolved multiple output covariance, we use
the covariance described in Section 3. See the text for more details.

for making predictions. A common algorithm to fit the linear model of coregionalization minimizes
some error measure between a sample or experimental covariance matrix obtained from the data
and the particular matrix obtained from the form chosen for the linear model of coregionalization
(Goulard and Voltz, 1992).

Let us go back to the results shown in Table 7. The result that appears asordinary cokriging
was obtained with the ordinary cokriging predictor and a LMC withQ = 3 andRq = 3 (p. 119
Goovaerts, 1997). Two of the basic covarianceskq(x,x′) have a particular polynomial form, while
the other corresponds to a bias term.17 For the prediction stage, only the closest16 data locations
in the primary and secondary variables are employed. Also in Table 7, we present results using the
intrinsic coregionalization with a rank two (R1 = 2) for B1, the semiparametric latent factor model
with two latent functions (Q = 2) and the convolved multiple output covariance with two latent
functions (Q = 2 andRq = 1). The choice of eitherR1 = 2 or Q = 2 for the methods was due to
the cokriging setup for which two polynomial-type covariances were used.The basic covariances
for ICM and SLFM have a Gaussian form with different length scales in each input dimension.
For the CMOC, we employ the covariance from Section 3. Parameters for independent GPs, ICM,
SLFM and CMOC are learned maximizing the marginal likelihood in Equation (13),using a scaled
conjugate gradient procedure. We run the optimization algorithm for up to200 iterations. Since the
prediction and location sets are fixed, we repeat the experiment ten times changing the initial values
of the parameters.

Table 7 shows that all methods, including ordinary cokriging, outperform independent GPs.
ICM, SLFM and CMOC outperform cokriging. Results for SLFM and CMOCare similar, although
CMOC outperformed ICM in every trial of the ten repetitions. The better performance for the
SLFM and the CMOC over the ICM would indicate the need for a second latentfunction with
different parameters to the first one. Using a non-instantaneous approach may slightly increase the
performance. However, results overlap within one standard deviation.

17. In fact, the linear model of coregionalization employed is constructedusing variograms as basic tools that account for
the dependencies in the input space. Variograms and covariance functions are related tools used in the geostatistics
literature to describe dependencies between variables. A precise definition of the concept of variogram is out of the
scope of this paper.
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Figure 8: Average mean absolute error and standard deviation for prediction of the pollutant metal
cadmium. The experiment was repeated ten times. In the bottom of the figure DK, FK,
PK stands for DTC, FITC and PITC withK inducing values, CM2 stands for convolved
multiple output covariance withQ = 2 andRq = 1, S2 stands for semiparametric latent
factor model withQ=2 latent functions, IC2 stands for intrinsic coregionalization model
with rankR1 = 2, CO stands for the cokriging method explained in the text and IND
stands for independent GPs.

We next include the performances for the efficient approximations. For the results of the ap-
proximations, ak-meansprocedure is employed first to find the initial locations of the inducing
values and then these locations are optimized in the same optimization procedure used for the pa-
rameters. Each experiment is repeated ten times changing the initial value of theparameters. Figure
8 shows the results of prediction for cadmium for the different approximations with varying number
of inducing points (this is, different values ofK). We also include in the figure the results for the
convolved multiple output GP (CM2), semiparametric latent factor model (S2),intrinsic coregion-
alization model (IC2), ordinary cokriging (CO) and independent GPs (IND).

Notice that DTC and PITC outperform cokriging and independent GPs for any value ofK. Also
for K = 200 andK = 359, DTC and PITC reach the performance of the full GP methods, either
in average (forK = 200) or within one standard deviation (forK = 359). K = 200 might be a
considerable amount of inducing points when compared to the total amount ofinput training data
(359 for nickel and zinc and259 for cadmium). The need of that amount of inducing points could
be explained due to the high variability of the data: mean values for the concentration of pollutant
metals are1.30, 20.01 and75.88 for cadmium, nickel and zinc, while standard deviations are0.91,
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Method Time per iter. (secs) Training time (secs)
ICM 3.84 507
SLFM 4.14 792
CMOGP 4.47 784
DTC 50 0.28 20
DTC 100 0.80 64
DTC 200 1.95 185
DTC 359 4.24 551
FITC 50 0.81 69
FITC 100 1.14 159
FITC 200 2.12 244
FITC 359 5.76 691
PITC 50 1.78 268
PITC 100 2.46 320
PITC 200 4.06 385
PITC 359 7.94 1191

Table 8: Training times for the prediction of the cadmium pollutant metal. In the table, CMOGP
stands for convolved multiple outputs GP. The first column indicates the trainingtime per
iteration of each method and the second column indicates the total training time. All the
numbers presented are average results over the ten repetitions.

8.09 and30.81 giving coefficients of variation of70.00%, 40.42% and40.60%.18 Variability in
cadmium can be observed intuitively from Figure 7. Notice also that FITC outperforms cokriging
and independent GPs forK = 200 andK = 359. The figure also shows that DTC outperforms
FITC for all values ofK. However, the measure of performance employed, the mean absolute error,
does not take into account the predictive variance of the approximated GPs. Using as measures the
standardized mean absolute error and the mean standardized log-likelihood,that take into account
the predictive variance, FITC outperforms DTC: DTC in average has a MSLL of 0.4544 and a
SMSE of0.9594 while FITC in average has a MSLL of−0.0637 with a SMSE of0.9102. PITC in
average has a MSLL of−0.1226 and SMSE0.7740. Averages were taken over the different values
of K.

Finally, Table 8 shows the timing comparisons for the pollutant example. The training times for
DTC with 200 inducing points and PITC with200 inducing points, which are the first methods that
reach the performance of the full GP, are less than any of the times of the full GP methods. For
DTC with 200 inducing points, the speed up factor is about2.74 when compared to ICM and4.23
when compared to CMOGP. For PITC with200 inducing points, the speed up factor is1.31 when
compared to ICM and2.03 when compared to CMOGP. Notice also that all methods are less or
equally expensive than the different full GP variants, except for PITC with 359 inducing variables.
For this case, however, 4 out of the 10 repetitions reached the averageperformance in100 iterations,
given a total training time of approximately794.12 secs., a time much closer to CMOGP and SLFM.

18. The coefficient of variation is defined as the standard deviation overthe mean. It could be interpreted also as the
inverse of the signal-to-noise ratio.
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6.4 Regression Over Gene Expression Data

We now present a third example with real data. This time we only include the performances for
the approximations. The goal is to do multiple output regression over gene expression data. The
setup was described in Section 4. The difference with that example, is that instead of usingD = 50
outputs, here we useD = 1000 outputs. We do multiple output regression using DTC, FITC and
PITC fixing the number of inducing points toK = 8 equally spaced in the interval[−0.5,11.5].
Since it is a 1-dimensional input data set, we do not optimize the location of the inducing points,
but fix them to the equally spaced initial positions. As for the full GP model in example of Section
4, we makeQ= 1 andRq = 1. Again we use scaled conjugate gradient to find the parameters that
maximize the marginal likelihood in each approximation. The optimization procedureruns for 100
iterations.

Train set Test set Method Average SMSE Average MSLL Average TTPI

Replica 1 Replica 2
DTC 0.5421±0.0085 −0.2493±0.0183 2.04
FITC 0.5469±0.0125 −0.3124±0.0200 2.31
PITC 0.5537±0.0136 −0.3162±0.0206 2.59

Replica 2 Replica 1
DTC 0.5454±0.0173 0.6499±0.7961 2.10
FITC 0.5565±0.0425 −0.3024±0.0294 2.32
PITC 0.5713±0.0794 −0.3128±0.0138 2.58

Table 9: Standardized mean square error (SMSE), mean standardized log loss (MSLL) and training
time per iteration (TTPI) for the gene expression data for1000 outputs using the efficient
approximations for the convolved multiple output GP. The experiment was repeated ten
times with a different set of1000 genes each time. Table includes the value of one standard
deviation over the ten repetitions.

Table 9 shows the results of applying the approximations in terms of SMSE and MSLL (columns
4 and 5). DTC and FITC slightly outperforms PITC in terms of SMSE, but PITC outperforms both
DTC and FITC in terms of MSLL. This pattern repeats itself when the training data comes from
replica 1 or from replica 2.

In Figure 9 we show the performance of the approximations over the same twogenes of Figure
1, these are FBgn0038617 and FBgn0032216. The non-instantaneous mixing effect of the model
can still be observed. Performances for these particular genes are highlighted in Table 10. Notice
that the performances are between the actual performances for the LMCand the CMOC appearing
in Table 2. We include these figures only for illustrative purposes, since both experiments use a
different number of outputs. Figures 1 and 2 were obtained as part of multiple output regression
problem ofD = 50 outputs, while Figures 9 and 10 were obtained in a multiple output regression
problem withD = 1000 outputs.

In Figure 10, we replicate the same exercise for the genes FBgn0010531 and FBgn0004907, that
also appeared in Figure 2. Performances for DTC, FITC and PITC areshown in Table 10 (last six
rows), which compare favourably with the performances for the linear model of coregionalization
in Table 2 and close to the performances for the CMOC. In average, PITCoutperforms the other
methods for the specific set of genes in both figures above.
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(b) FITC, short length scale

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0038617 MSLL −0.86002 SMSE 0.1625

G
en

e
ex

pr
es

si
on

le
ve

l

Time

(c) PITC, short length scale

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2
FBgn0032216 MSLL −0.30786 SMSE 0.18454

G
en

e
ex

pr
es

si
on

le
ve

l

Time

(d) DTC, long length scale

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2
FBgn0032216 MSLL −0.50863 SMSE 0.36391

G
en

e
ex

pr
es

si
on

le
ve

l

Time

(e) FITC, long length scale

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2
FBgn0032216 MSLL −0.83681 SMSE 0.16135

G
en

e
ex

pr
es

si
on

le
ve

l

Time

(f) PITC, long length scale

Figure 9: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216 (sec-
ond row) using the different approximations. In the first column DTC in Figures 9(a)
and 9(d), second column FITC in Figures 9(b) and 9(e), and in the third column PITC in
Figures 9(c) and 9(f). The training data comes from replica 1 and the testing data from
replica 2. The solid line corresponds to the predictive mean, the shaded region corre-
sponds to 2 standard deviations of the prediction. Performances in terms ofSMSE and
MSLL are given in the title of each figure. The adjectives “short” and “long” given to
the length-scales in the captions of each figure, must be understood like relative to each
other. The crosses in the bottom of each figure indicate the positions of the inducing
points, which remain fixed during the training procedure.

With respect to the training times, the Table 9 in the column 6 shows the average training time
per iteration (average TTPI) for each approximation. To have an idea ofthe saving times, one
iteration of the full GP model for the same1000 genes would take around4595.3 seconds. This
gives a speed up factor of1780, approximately.

7. Conclusions

In this paper we first presented a review of different alternatives formultiple output regression
grouped under a similar framework known as the linear model of coregionalization. Then we
illustrated how the linear model of coregionalization can be interpreted as an instantaneous mix-
ing of latent functions, in contrast to a convolved multiple output framework,where the mixing
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(b) FITC, short length scale
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(c) PITC, short length scale
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(e) FITC, long length scale
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Figure 10: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907
(second row) using the different approximations. In the first column DTCin Figures
10(a) and 10(d), second column FITC in Figures 10(b) and 10(e), and in the third column
PITC in Figures 10(c) and 10(f). The training data comes now from replica 2 and the
testing data from replica 1. The solid line corresponds to the predictive mean, the shaded
region corresponds to 2 standard deviations of the prediction. Performances in terms of
SMSE and MSLL are given in the title of each figure. The crosses in the bottom of
each figure indicate the positions of the inducing points, which remain fixed during the
training procedure.

is not necessarily instantaneous. Experimental results showed that in systems with a presence of
some dynamics (for example, the gene expression data set), having this additional element of non-
instantaneous mixing can lead to simpler explanations of the data. While, in systemsfor which the
dynamics is not so obvious (for example, the exam score prediction data set), the benefit of using
the non-instantaneous mixing was less noticeable.

We have also presented different efficient approximations for multiple output GPs, in the con-
text of convolution processes. Using these approximations we can capture the correlated infor-
mation among outputs while reducing the amount of computational load for prediction and op-
timization purposes. The computational complexity for the DTC and the FITC approximations
is O(NDK2). The reduction in computational complexity for the PITC approximation is from
O(N3D3) toO(N3D). This matches the computational complexity for modeling with independent
GPs. However, as we have seen, the predictive power of independent GPs is lower. Also, since
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Test replica Test genes Method SMSE MSLL

Replica 2

FBgn0038617
DTC 0.2162 −0.7015
FITC 0.2240 −0.6886
PITC 0.1625 −0.8600

FBgn0032216
DTC 0.1845 −0.3078
FITC 0.3639 −0.5086
PITC 0.1613 −0.8368

Replica 1

FBgn0010531
DTC 0.0774 −1.0171
FITC 0.1707 −0.7423
PITC 0.0872 −0.9899

FBgn0004907
DTC 0.6057 −0.2192
FITC 0.1512 −0.8426
PITC 0.2468 −0.7176

Table 10: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for the
genes in Figures 9 and 10 for DTC, FITC and PITC withK = 8. Genes FBgn0038617
and FBgn0010531 have a shorter length-scale when compared to genesFBgn0032216
and FBgn0004907.

PITC makes a better approximation of the likelihood, the variance of the resultsis usually lower
and approaches closely to the performance of the full GP, when compared to DTC and FITC. As a
byproduct of seeing the linear model of coregionalization as a particular case of the convolved GPs,
we can extend all the approximations to work under the linear model of coregionalization regime.

With an appropriate selection of the kernel smoothing function we have an indirect way to
generate different forms for the covariance function in the multiple output setup. We showed an
example with Gaussian kernels, for which a suitable standardization of the kernels can be made,
leading to competitive results in high-dimensional input regression problems,as seen in the school
exam score prediction problem. The authors are not aware of other work in which this convolution
process framework has been applied in problems with high input dimensions.

As shown with the Swiss Jura experiment, we might need a considerable amount of inducing
points compared to the amount of training data, when doing regression oververy noisy outputs.
This agrees to some extent with our intuition in Section 5, where we conditioned the validity of
the approximations to the smoothness of the latent functions. However, evenfor this case, we
can obtain the same performances in a fraction of the time that takes to train a fullGP. Moreover,
the approximations allow multiple output regression over a large amount of outputs, in scenarios
where training a full GP become extremely expensive. We showed an example of this type with the
multiple output regression over the gene expression data.

Linear dynamical systems responses can be expressed as a convolutionbetween the impulse
response of the system with some input function. This convolution approach is an equivalent way of
representing the behavior of the system through a linear differential equation. For systems involving
high amounts of coupled differential equations (Álvarez et al., 2009;́Alvarez et al., 2011a; Honkela
et al., 2010), the approach presented here is a reasonable way of obtaining approximate solutions
and incorporating prior domain knowledge to the model.
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ÁLVAREZ AND LAWRENCE

Recently, Titsias (2009) highlighted how optimizing inducing variables can be problematic
as they introduce many hyperparameters in the likelihood term. Titsias (2009) proposed a varia-
tional method with an associated lower bound where inducing variables arevariational parameters.
Following the ideas presented here, we can combine easily the method of Titsias(2009) and propose
a lower bound for the multiple output case. We have followed a first attempt in that direction and
some results have been presented inÁlvarez et al. (2010).
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Appendix A. Derivatives for the Approximations

In this appendix, we present the derivatives needed to apply the gradient methods in the optimization
routines. We present the first order derivatives of the log-likelihood with respect toK f,f , Ku,f and
Ku,u. These derivatives can be combined with the derivatives ofK f,f , Ku,f andKu,u with respect to
θ and employ these expressions in a gradient-like optimization procedure.

We follow the notation of Brookes (2005) obtaining similar results to Lawrence(2007). This
notation allows us to apply the chain rule for matrix derivation in a straight-forward manner. Let’s
defineG: = vecG, wherevec is the vectorization operator over the matrixG. For a functionL the

equivalence between∂L∂G and ∂L
∂G: is given through∂L

∂G: =
((

∂L
∂G

)
:
)⊤

. The obtain the hyperparame-
ters, we maximize the following log-likelihood function,

L(Z,θ)∝−
1

2
log|D+K f,uK−1

u,uKu,f |−
1

2
trace

[(
D+K f,uK−1

u,uKu,f
)−1

yy⊤
]

(19)

where we have redefinedD as D =
[
K f,f −K f,uK−1

u,uKu,f
]
⊙M +Σ, to keep a simpler notation.

Using the matrix inversion lemma and its equivalent form for determinants, expression (19) can be
written as

L(Z,θ)∝
1

2
log|Ku,u|−

1

2
log|A|−

1

2
log|D|−

1

2
trace

[
D−1yy⊤

]

+
1

2
trace

[
D−1K f,uA−1Ku,fD−1yy⊤

]
.

We can find∂L∂θ and ∂L
∂Z applying the chain rule toL obtaining expressions for∂L∂K f,f

, ∂L
∂K f,u

and ∂L
∂Ku,u

and combining those with the derivatives of the covariances wrtθ andZ,

∂L

∂G:
=

∂LA

∂A:
∂A:
∂D:

∂D:
∂G:

+
∂LD

∂D:
∂D:
∂G:

+

[
∂LA

∂A:
∂A:
∂G:

+
∂LG

∂G:

]
δGK , (20)
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where the subindex inLE stands for those terms ofL which depend onE, G is eitherK f,f , Ku,f or
Ku,u andδGK is zero ifG is equal toK f,f and one in other case. Next we present expressions for
each partial derivative

∂LA

∂A:
=−

1

2
(C:)⊤ ,

∂A:
∂D:

=−
(
Ku,fD−1⊗Ku,fD−1

)
,

∂LD

∂D:
=−

1

2

((
D−1HD−1

)
:
)⊤

∂D:
∂K f,f:

= diag(M: ),
∂D:
∂Ku,f:

=−diag(M: )
[(

I ⊗K f,uK−1
u,u

)
+
(
K f,uK−1

u,u ⊗ I
)

TD
]
,

∂D:
∂Ku,u:

= diag(M: )
(
K f,uK−1

u,u ⊗K f,uK−1
u,u

)
,
∂A:
∂Ku,f:

=
(
Ku,fD−1⊗ I

)
+
(
I ⊗Ku,fD−1

)
TA

∂A:
∂Ku,u:

= I ,
∂LKu,f

∂Ku,f:
=
((

A−1Ku,fD−1yy⊤D−1
)

:
)⊤

,
∂LKu,u
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1

2

((
K−1

u,u

)
:
)⊤

,

whereC=A−1+A−1Ku,fD−1yy⊤D−1K f,uA−1, TD andTA arevectorized transpose matrices(see,

e.g., Brookes, 2005) andH = D−yy⊤+K f,uA−1Ku,fD−1yy⊤ +
(
K f,uA−1Ku,fD−1yy⊤

)⊤
. We can

replace the above expressions in (20) to find the corresponding derivatives, so
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Joaquin Quiñonero-Candela and Carl Edward Rasmussen. Analysis of some meth-

ods for reduced rank Gaussian process regression. In R. Murray-Smith and

R. Shorten, editors, Lecture Notes in Computer Science, volume 3355, pages

98–127. Springer, 2005a.
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