2 research outputs found

    Bypassing the Natural Visual-Motor Pathway to Execute Complex Movement Related Tasks Using Interval Type-2 Fuzzy Sets

    Get PDF
    In visual-motor coordination, the human brain processes visual stimuli representative of complex motion-related tasks at the occipital lobe to generate the necessary neuronal signals for the parietal and pre-frontal lobes, which in turn generates movement related plans to excite the motor cortex to execute the actual tasks. The paper introduces a novel approach to provide rehabilitative support to patients suffering from neurological damage in their pre-frontal, parietal and/or motor cortex regions. An attempt to bypass the natural visual-motor pathway is undertaken using interval type-2 fuzzy sets to generate the approximate EEG response of the damaged pre-frontal/parietal/motor cortex from the occipital EEG signals. The approximate EEG response is used to trigger a pre-trained joint coordinate generator to obtain desired joint coordinates of the link end-points of a robot imitating the human subject. The robot arm is here employed as a rehabilitative aid in order to move each link end-points to the desired locations in the reference coordinate system by appropriately activating its links using the well-known inverse kinematics approach. The mean-square positional errors obtained for each link end-points is found within acceptable limits for all experimental subjects including subjects with partial parietal damage, indicating a possible impact of the proposed approach in rehabilitative robotics. Subjective variation in EEG features over different sessions of experimental trials is modelled here using interval type-2 fuzzy sets for its inherent power to handle uncertainty. Experiments undertaken confirm that interval type-2 fuzzy realization outperforms its classical type-1 counterpart and back-propagation neural approaches in all experimental cases, considering link positional error as a metric. The proposed research offers a new opening for the development of possible rehabilitative aids for people with partial impairment in visual-motor coordination

    Multiobjective Optimization and Comparison of Nonsingleton Type-1 and Singleton Interval Type-2 Fuzzy Logic Systems

    No full text
    Singleton interval type-2 fuzzy logic systems (FLSs) have been widely applied in several real-world applications, where it was shown that the singleton interval type-2 FLSs outperform their singleton type-1 counterparts in applications with high uncertainty levels. However, one of the main criticisms of singleton interval type-2 FLSs is the fact that they outperform singleton type-1 FLSs solely based on their use of extra degrees of freedom (extra parameters) and that type-1 FLSs with a sufficiently large number of parameters may provide the same performance as interval type-2 FLSs. In addition, most works on type-2 FLSs only compare their results with singleton type-1 FLSs but fail to consider nonsingleton type-1 systems. In this paper, we aim to directly address and investigate this criticism. In order to do so, we will perform a comparative study between optimized singleton type-1, nonsingleton type-1, and singleton interval type-2 FLSs under the presence of noise. We will also present a multiobjective evolutionary algorithm (MOEA) for the optimization of singleton type-1, nonsingleton type-1, and singleton interval type-2 fuzzy systems for function approximation problems. The MOEA will aim to satisfy two objectives to maximize the accuracy of the FLS and minimize the number of rules in the FLS, thus improving its interpretability. Furthermore, we will present a methodology to obtain ``optimal'' consequents for the FLSs. Hence, this paper has two main contributions: First, it provides a common methodology to learn the three types of FLSs (i.e., singleton type-1, nonsingleton type-1, and singleton interval type-2 FLSs) from data samples. The second contribution is the creation of a common framework for the comparison of type-1 and type-2 FLSs that allows us to address the aforementioned criticism. We provide details of a series of experiments and include statistical analysis showing that the type-2 FLS is able to handle higher levels of noise than its nonsingleton and singleton type-1 counterparts
    corecore