1,919 research outputs found

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Autonomous agent response learning by a multi-species particle swarm optimization

    Get PDF
    A novel autonomous agent response learning (AARL) algorithm is presented in this paper. We proposed to decompose the award function into a set of local award functions. By optimizing this objective function set, the response function with maximum award can be determined. To tackle the optimization problem, a modified Particle Swarm Optimization (PSO) called "Multi-Species PSO (MS-PSO)" is introduced by considering each objective function as a specie swarm. Two sets of experiments are provided to illustrate the performance of MS-PSO. The results show that it returns a more accurate response set within shorter duration by comparing with other PSO methods.published_or_final_versio

    Fuzzy clustering of univariate and multivariate time series by genetic multiobjective optimization

    Get PDF
    Given a set of time series, it is of interest to discover subsets that share similar properties. For instance, this may be useful for identifying and estimating a single model that may fit conveniently several time series, instead of performing the usual identification and estimation steps for each one. On the other hand time series in the same cluster are related with respect to the measures assumed for cluster analysis and are suitable for building multivariate time series models. Though many approaches to clustering time series exist, in this view the most effective method seems to have to rely on choosing some features relevant for the problem at hand and seeking for clusters according to their measurements, for instance the autoregressive coe±cients, spectral measures or the eigenvectors of the covariance matrix. Some new indexes based on goodnessof-fit criteria will be proposed in this paper for fuzzy clustering of multivariate time series. A general purpose fuzzy clustering algorithm may be used to estimate the proper cluster structure according to some internal criteria of cluster validity. Such indexes are known to measure actually definite often conflicting cluster properties, compactness or connectedness, for instance, or distribution, orientation, size and shape. It is argued that the multiobjective optimization supported by genetic algorithms is a most effective choice in such a di±cult context. In this paper we use the Xie-Beni index and the C-means functional as objective functions to evaluate the cluster validity in a multiobjective optimization framework. The concept of Pareto optimality in multiobjective genetic algorithms is used to evolve a set of potential solutions towards a set of optimal non-dominated solutions. Genetic algorithms are well suited for implementing di±cult optimization problems where objective functions do not usually have good mathematical properties such as continuity, differentiability or convexity. In addition the genetic algorithms, as population based methods, may yield a complete Pareto front at each step of the iterative evolutionary procedure. The method is illustrated by means of a set of real data and an artificial multivariate time series data set.Fuzzy clustering, Internal criteria of cluster validity, Genetic algorithms, Multiobjective optimization, Time series, Pareto optimality

    Firefly Algorithm: Recent Advances and Applications

    Full text link
    Nature-inspired metaheuristic algorithms, especially those based on swarm intelligence, have attracted much attention in the last ten years. Firefly algorithm appeared in about five years ago, its literature has expanded dramatically with diverse applications. In this paper, we will briefly review the fundamentals of firefly algorithm together with a selection of recent publications. Then, we discuss the optimality associated with balancing exploration and exploitation, which is essential for all metaheuristic algorithms. By comparing with intermittent search strategy, we conclude that metaheuristics such as firefly algorithm are better than the optimal intermittent search strategy. We also analyse algorithms and their implications for higher-dimensional optimization problems.Comment: 15 page

    Efficiency Analysis of Swarm Intelligence and Randomization Techniques

    Full text link
    Swarm intelligence has becoming a powerful technique in solving design and scheduling tasks. Metaheuristic algorithms are an integrated part of this paradigm, and particle swarm optimization is often viewed as an important landmark. The outstanding performance and efficiency of swarm-based algorithms inspired many new developments, though mathematical understanding of metaheuristics remains partly a mystery. In contrast to the classic deterministic algorithms, metaheuristics such as PSO always use some form of randomness, and such randomization now employs various techniques. This paper intends to review and analyze some of the convergence and efficiency associated with metaheuristics such as firefly algorithm, random walks, and L\'evy flights. We will discuss how these techniques are used and their implications for further research.Comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:1212.0220, arXiv:1208.0527, arXiv:1003.146

    Procedural Optimization Models for Multiobjective Flexible JSSP

    Get PDF
    The most challenging issues related to manufacturing efficiency occur if the jobs to be sched-uled are structurally different, if these jobs allow flexible routings on the equipments and mul-tiple objectives are required. This framework, called Multi-objective Flexible Job Shop Scheduling Problems (MOFJSSP), applicable to many real processes, has been less reported in the literature than the JSSP framework, which has been extensively formalized, modeled and analyzed from many perspectives. The MOFJSSP lie, as many other NP-hard problems, in a tedious place where the vast optimization theory meets the real world context. The paper brings to discussion the most optimization models suited to MOFJSSP and analyzes in detail the genetic algorithms and agent-based models as the most appropriate procedural models
    corecore