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Abrlrocr - A novel autonomous agent response learning 
(AARL) algorithm is presented in  this paper. We proposed 
to decompose the award function into a set of local award 
functions. By optimizing this objective function set, the 
response function with maximum award c m  be determined. 
To tackle the optimization problem, a modified Particle 
Swarm Optimization (PSO) called “MultiSpecies PSO 
(MS-PSO)” is introduced by considering each objective 
function as a specie swarm. TWO sets of experiments are 
provided to illustrate the perfurmance.af MS-PSO. The 
results show that it returns B more accurate response set 
within shorter duration by comparing with other PSO 
methods. 

1. INTROOUCTION 

In robot applications such as  factory automation and 
autonomous vehicles, the learning algorithms [ I ,  21 of 
autonomous agents gain more attentions in the recent 
years. An autonomous agent is able to self-improve its 
response behavior so as to adopt to the environment. 
The response behavior R can be represented as an 
vector function of observation from the environment: p 
= H(o) where p is the response vector and o is the 
observation vector. Most literatures [3-71 express the 
response function as a state diagram that each 
observation is defined as a state. The weights among 
the states are trained by some statistical learning 
methods such as Reinforcement Learning [3-61 and 
Hidden Markov Model 171. This representation suffers 
from the problem that the observation states are 
insufficient to describe the continuous environment of 
the real-world applications. To tackle this problem, 
continuous representations of  response function were 
suggested [E, 91, and neural network is a common 
approach [IO]. By considering an observations nand its 
desired response r as training sample B = [o I 11, the 
continuous response function can be established 
through’training the neural network on sample set (Bl). 
In the view of autonomous agent, the desired response 
of an observation can be self-extracted from the target 

award function A(o, r) in which all extracted responses 
satisfy the following constraint: 

ResponseConstriant : A(6,R(6)) 2 A(6 , r )  Eq. (1) 

In this paper, we model the response extraction 
process as a multiobjective optimization problem. By 
using the correlation property among the objective 
functions, a modified PSO called “Multi-Specie PSO 
(MS-PSO)” is proposed to speed up the searching 
process. AAerward, the response function is constructed 
by training the observation-response samples with 
Support Vector Regression [ I  I]. 

The remaining of this paper is organized as follows: 
The architecture of the proposed AARL algorithm is 
presented at section 2. In section 3, a population-based 
optimization method “Particle S w a m  Optimization 
(PSO)” and its variants are reviewed. A modified PSO 
called “Multi-Species PSO (MS-PSO)” is proposed for 
solving the multiobjective optimization problem in 
section 4. Two environments are provided for response 
learning in order to illustrate the performance of the 
proposed algorithm at section 5.  And a conciusion is 
drawn in section 6 .  

11. THE PROPOSED RESPONSE LEARNING ALGOMTHM 

To deal with the continuous environment robot 
applications, a continuous response representation is 
necessary. In this paper, the response function is 
expressed as a Gaussian Mixture Model (GMM) U(o): 

where Mj, q, )r, are the weight, variance and mean of 
the th Gaussian function. Based on the, response 
constraint described at Eq. ( I ) ,  the response learning 
process can be formulated as an optimization problem: 
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Since Eq. (2) is extremely complicated, we suggest 
an alternative approach to construct the response 
network by a set of observation-response (0-R) samples 
{Bi) = [ol 1 ri] in which o1 and rl satisfy the response 
constraint Eq. ( I ) .  In order to provide a good sample set 
for constructing the response network, the samples 
should be uniformly distributed on the observation 
domain. By fixing the’observation as 0,  the award 
function can be rewritten as an Local Award Function 
(LAF) A,(r) = A(o, r). Hence, the award function is 
decomposed to the LAF set based on the observations 
of 0-R samples. By optimizing the LAF set, the 
response of 0 - R  samples can be determined. In addition, 
since the award function is assumed to be smooth and 
continuous, ri is close to rl if the distance between o1 
and 0, is small. Therefore, the response learning 
algorithm can be formulated as an multi-objective 
optimization problem in which the optima are 
correlated. After extracting the response of the 0-R 
samples, response network is determined by training the 
samples. The procedure of the proposed AARL 
algorithm is summarized as follows: 

Step I :  Define the size of 0-R sample set (NJ. 
Step 2: Define the observation vector o1 and hence the 

local award function A,(r) of Bi. 
Step 3: Search the optimal {rl) of the LAF set by the 

proposed MS-PSO. 
Step 4 :  Construct the response network by training the 

0-R samples. 

111. REVIEWS OF PARTICLE SWARM OPTJMIZATTONS 

A. Conventional Particle Swarm optimization 

Particle Swarm Optimization 1121 (PSO) algorithm 
is based on the metaphor of individuals refining their 
knowledge by interacting with one another. A particle is 
a moving point in an n-dimensional solution space. 
Besides its position x, and velocity vl, each particle 
stores the best position in the search space it has found 
thus far in a velocity v,. The velocity of the particle is 
adjusted stochastically toward its previous best position 
and the best position found by any member of its 
neighborhood: 

vi e- VI + UdP,  - Xi) + a&, - XI) Eq: (3) 
where ul and uz sensitivities to the local best position 
and global best position respectively. The index g is the 
index of the particle in the neighborhood with the best 
performance so far. Hence ps is the best vector found 
by the swarm. Once vj has been calculated, the 
particle’s position xi is adjusted as: 

xi c XI + VI Eq. (4) 
The algorithm is often compared to the family of 

evolutionary computations, as a stochastic populatio* 

based search of a problem space. The PSO differs from 
evolutionary methods in an important way, however: it 
does not implement selection of the finest. Instead, 
individuals persist over time, and adapt by changing. To  
handle the multiobjective optimization at AARL, the 
objective function is formulated as the linear 
combination of the LAF set: 

F(x)=Al(rl)+A~(r2)+ ... +A&.) 

where the particle is represented as x = [rl r2 ... 1.1. 
The disadvantage of this approach is that it is sensitive 
to the domination of some LAFs. 

B. MultiObjective PSO 

Due to the drawback of the conventional PSO on 
optimizing a multiobjective function, some researchers 
113, 141 proposed the modified PSOs to handle this 
problem. Carlos 1141 proposed the “Multi-Objective 
Particle Swarm Optimization (MO-PSO)” by introduce- 
ing the Pareto ranking scheme 1151. In this algorithm, 
the historical record of best solutions found by a 
particle could be used to store non-dominated solutions 
generated in the past. The use of global attraction 
mechanisms combined with the historical archive of 
previously found non-dominated vectors would 
motivate convergence towards globally non-dominated 
solutions. Based on the idea of having a global 
repository, every particle will deposit its flight 
experiences after each flight cycle. In addition, the 
updates to the repository are performed considering a 
geographically based system defined in terms of 
objective function values of each particle. 

IV. MULTI-SPECIES PARTICLE SWARM OPTIMIZATION 

In this section, we describe the details of Multi- 
Species Particle Swarm optimization (MSPSO). It 
takes the advantage of MO-PSO that a non-dominated 
solution is retumed. In addition, by using the 
correlation among the objective functions, a shorter 
computational time is needed. Different from the 
conventional PSO that all particles aim,at optimizing an 
objective function, the particles of MSPSO optimize 
multiple functions concurrently. In the MSPSO model, 
each objective function forms a specie, which is a s u b  
population that optimizes an specific objective function. 
Therefore, the number of swarm specie equals to the 
size of objective function set. In addition, a 
communication channel is established between the 
neighbor swarms for transmitting the information of 
best particles, in order to provide guidance for 
improving their objective values. MSPSO involves 3 
types of attraction from: 

i. Irs historical local best position. 
ii. Global best particle of its current specie. 
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iii. Global bestparricle'of its neighbor species V. EXPERIMENTAL RESULTS 

In this section, we apply the proposed AARL 
algorithm to extract the desired responses of two 
environments. The performance of the proposed 
algorithm is concluded by 2 measurements. The first 
measurement is the performance of MSPSO on finding 
the responses of the OR samptes, which is defined as: 

where the third attraction is newly introduced in PSO. 
The velocity ofj" particle in the swarm S, is adjusted as 
follows: 

VIJ + VIJ + a,(piJ - XIJ) + ~Z(PI, ~ XIJ) + a3n1 Eq. ( 5 )  

where nl is the Neighbor Swarm Reference Velocity 
(NSRV) of swarm Si: 

H, is the neighbor size of Si, is the best particle ofkth 
neighbor swarm of Si and a, is the Neighbor Influence 
constant. Figure 1 shows an example of a MSPSO 
model. This model consists of 4 different species SI, S2. 
S3 and S,, which aim at searching the optimum of the 
objective functions A,, AI A3 and A, respectively. 
Moreover, there are 4 communication channels among 
the swarms SI - SI, SI - S,, SI - S4 and S2 - S4. 

U -  
\* 

Figure I An Example of MSPSO 

The procedure of finding the response in AARL with N, 
0-R samples by the MS-PSO is summarized as follows: 

Step I :  Construct a MS-PSO model with N, species. 
Step2 Define the neighbor@) of the swarms. The 

swarm Si is regarded as the neighbor swarm of 
S, if their observation distance is smaller than 
the Observation Influence constant q 

i.e. /ai ~ ql < q 

Step 3:  Randomly initialize Np particles with uniform 
distribution in each swarm. 

Step 4: The particles keep interacting with others inside 
the same swarm and adjusting its positions until 
the change of improvement approximately 
Guals  to zero. 

where N, is the 0-R sample size. The second 
measurement is called Response Network Performance 
(RNP). By given any observation 0, the response 
network U(o) should retum a response with maximum 
amount of award. Therefore, the RNP can be evaluated 
from its sum of awardPG 

= IA(c7,U(5))& Eq. (7) 

To speed up the process on measuring the RNP, the Eq. 
(7) is approximated as: 

&,(ihl- R ( i b ) ) l  1Dc-e Eq. (8) '=lEE;. U ( i b , j b ) - R ( i h , j h ) ) *  2Dcase 

,d ,d 

where Nd is the number measurement division and An is 
the measurement division width. In order to evaluate 
the noise sensitivity of the proposed algorithm, the 
experiments will be repeated by introducing a zerm 
mean Gaussian noise with magnitude 0.1 and variance 
0.1 into the environments. For further, we repeat the 
experiments by applying the conventional PSO and 
MO-PSO, in order to illustrate the contributions of M S  
PSO. To provide a fair comparison, the population size 
of conventional PSO and MOPSO are set as the total 
population of MSPSO. The parameters [a ,  a2 a,] are 
set as 0.1. In the performance measurement, Nd and An 
are assigned as 41 and 0.025 respectively. All 
simulations are process at the PC platform with I .7GHz 
CPU with 256MB memory. 

A .  /-Observation and /-Response Award Funcrion 

In this experiment, a I-Observation, I-Response 
award function was learnt by the proposed algorithm: 

A,(o,r )  = O.Scos(d)ex -- Eq. (9). .( 4 
where d = OS(sin(2m) + I )  - r a n d  0,  r E [ O ,  I]. The 
corresponding desired response function is: 

R,(o) = O.S(sin(2w)+l) 

Figure 2 shows the surface plot of the target award 
function in' which the point with higher intensity 
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indicates its relative larger award value. It is observed 
that the local award functions formed by Eq. (9) consist 
of multiple optima. The observation sample sets of size 
5 ,  10, 15 and 20 are generated uniformly on the 
observation domain, and hence the MSPSO with 5 ,  IO,  
15,20 species are cousFcted. Moreover, we assigned 5 
particles in each specie swarm for searching its optima. 
Fig. 3 illuseates an example of observation sample 
distribution with 20 species and 5 particles in each 
swarm. AAer searching the responses of the @R 
samples, the corresponding response networks are 
construct by training the sample sets with Support 
Vector Regression. Figure 4a shows the resultant 
response network outputs. As the size of observation 
sample set increases, a more accurate response network 
can he zchieved. Table 1 and 3 listed the comparisons 
on the speed and accuracy among the PSOs. The results. 
show that the proposed MSPSO is the fastest approach 
among them, In additional, it can return the optima with 
lower objective value than the others. 

B. 2-Observation and I-Response Award Function 

In this experiment, the performance of the proposed 
algorithm on leaming a 2-Observation and I-Response 
award function was studied. 

where d = n (sin(2ml) + l)(cos(Znoz) + 1) - 4nr and 01, 

02, r E [0, I]. The corresponding desired Response 
functions are: 

R,(o,,o,) = 0.25(sin(2m,)+ I)(cos(2m,)+ 1) 

Fig. 5 shows the award values lie on the 4 planes: vi = 

0.5, o2 = 0.2, o2 = 0.8 and r = 0.8. 4 sets of observation 
sample with sizes 49, 100, 196 and 289 are provided for 
extracting the corresponding responses. Table 2 and 4 
listed the comparisons on the accuracy and the speed 
among the PSOs. It is found that the computational time 
of MS-PSOs is much less than that of others methods 
while the accuracy is as good as MC-PSO. Figure 7 
shows the resultant response network output of the 
observation sample sizes equal to 100 and 289. Similar 
to the pervious section, the experiment sets are repeated 
by adding the noise described in previous experiment 
fig. 8 shows the outputs o f  resultant response network. 

VI. CONCLUSION 

We presented a novel response learning algorithm 
on the parameterized environment in this article. The 
proposed algorithm is mainly divided into 3 steps: ( I )  
Award Function Decomposition (2) Desired Response 
Extraction and (3) Response Network construction. In 
the decomposition stage, the given award function is 

decomposed by a set of predefined observation vectors. 
In order to form the training set for constructing the 
response function, the responses of the training set are 
determined by a newly proposed PSO call “Multi- 
Specie PSO (MS-PSO)”. Afterward, the response 
function is constructed based on the samples extracted 
from the pervious 2 steps. In order to  verify the 
proposed algorithm, two environments are evolved. The 
results show that the proposed MS-PSO returns a more 
accurate optlma by using less computation time than 
that of the conventional PSO and MSPSO.  
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TABLE 1 
AVERAGE PERFORMANCECOMPARISON AMONG THE Psos  OF SECTION 5~ 

Conventional PSO MO-PSO MS-PSO Number of Observation 
Noise-Frce Noisy Noise-Free Noisy Noise-Free Noisy 

5 0.0388 0.1902 l o . o l x l o ~  0.0053 5.69xIOA 0.0049 

IO 0.1396 0.2840 11.01x10~ 0.0072 8 . 9 2 ~ 1 0 ~  awn5 
I 5  0.1756 0.3905 25.01x104 0.0196 20.0x104 0.0142 

20 0.2236 0.7824 29.01x10~ 0.0284 2 3 ~ 4 ~  in‘ 0.0210 

 TABLE^ 
AVERAGE PERFORMANCECOMPANSON AMONG THE PSOS OF SECTION 5B 

Conventional PSO MO-PSO Ms-PSO NumberofObrervstion 
Noise-Free Noisy Noise-Free Noisy Noise-Free Noisy 

49 3.805 4.408 0.0062 0.0143 0.0056 0.0178 

100 5.98 7.854 0.0071 0.0372 0.0070 0.0325 

196 8.45 21.044 0.01 93 0.0873 o.oin5 0.0774 

289 12.66 24.793 0.0235 0.1536. 0.0248 0.1263 

TABLE 3 
AVERAGE COMPUTAATIONALTIME COMPARISON AMONG THE Psos  OF SECTION 5~ 

Conventional PSO MO-PSO MS-PSO Number of Observation 
Noise-Frcc Noisy Noise-Free Noisy Noise-Free Noisy 

5 3.51 8.78 4.44 8.47 1.45 3.08 

10 8.58 26.29 23.71 33.57 2.43 5.68 

15 18.39 50.55 42.47 78.36 6.58 10.02 

20 28.26 87.07 71.28 145.86 6.88 11.12 

 TABLE^ 
AVERAGE COMPUTATIONAL TIME (SEC.) COMPARISON AMONG THEPSOS OF SECTION 58 

Conveotional PSO MO-PSO MS-PSO 
Number of Observation 

Noise-Free Noisv Noise-Free Naisv Noise-Free Noisv 

49 271.1 1489 198.9 1465 30.48 78.35 

100 678.8 5003 623.3 5023 67.34 144.04 

196 1616 15711 1669.4 15747 89.48 292.50 

289 2663.3 30399 2660.2 30506 117.92 429.15 



 TABLE^ 
AVERAGE RESPONSE NETWORKPERFORMANCEOFSECTION 5A 

5 0.2005 1.781 0.2 

15 0.1502 1.572 0.08 
20 0.1432 1.472 0.05 

Number ofobservation NoiseFree Noisy VarianceofSVR 

10 0.2221 1.687 0.15 

TABLE6 
AVERAGE RESPONSE MTWORKPERFORMANCEOFATSECTION5B 

Number ofObservatian Noise-Free Noisy VarianceofSVR 
49 0.1915 0.7332 0.1 
100 0.1572 0.5364 0.075 
196 0.1169 0.6406 0.05 
289 n 1430 0~5941 0~04 

- 
Figure 2 The award surfaces of section 5A Figure 3 The initial panicle dishbution of swarms at section 5A 
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(8 )  (b) 
Figure 4 Rcsultant Response Networks' Outputs (a) Noisefree observation samples @) Noisy observation samples at section SA 
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Figure 5 The slices of award volume at section SB 
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Figure 6 Desired Rcsponsc Function ofsectian5B 
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(4 @) 
Figure 7 Outputs of Resultant Response Networks consttucted by (a) 100 naisofree abscrvation samples 

(b) 289 noise-free observation samples at Scction SB 

1 

(4 (b) 
Figure 8 Outputs of Rcsultant RespanscNeovarks constmcted by(*) 100 noisy observation samples 

@) 289 noisy observation samples at Section 58 

785 


