31 research outputs found

    Benefits of data augmentation for NMT-based text normalization of user-generated content

    Get PDF
    One of the most persistent characteristics of written user-generated content (UGC) is the use of non-standard words. This characteristic contributes to an increased difficulty to automatically process and analyze UGC. Text normalization is the task of transforming lexical variants to their canonical forms and is often used as a pre-processing step for conventional NLP tasks in order to overcome the performance drop that NLP systems experience when applied to UGC. In this work, we follow a Neural Machine Translation approach to text normalization. To train such an encoder-decoder model, large parallel training corpora of sentence pairs are required. However, obtaining large data sets with UGC and their normalized version is not trivial, especially for languages other than English. In this paper, we explore how to overcome this data bottleneck for Dutch, a low-resource language. We start off with a publicly available tiny parallel Dutch data set comprising three UGC genres and compare two different approaches. The first is to manually normalize and add training data, a money and time-consuming task. The second approach is a set of data augmentation techniques which increase data size by converting existing resources into synthesized non-standard forms. Our results reveal that a combination of both approaches leads to the best results

    MoNoise: Modeling Noise Using a Modular Normalization System

    Get PDF
    We propose MoNoise: a normalization model focused on generalizability and efficiency, it aims at being easily reusable and adaptable. Normalization is the task of translating texts from a non- canonical domain to a more canonical domain, in our case: from social media data to standard language. Our proposed model is based on a modular candidate generation in which each module is responsible for a different type of normalization action. The most important generation modules are a spelling correction system and a word embeddings module. Depending on the definition of the normalization task, a static lookup list can be crucial for performance. We train a random forest classifier to rank the candidates, which generalizes well to all different types of normaliza- tion actions. Most features for the ranking originate from the generation modules; besides these features, N-gram features prove to be an important source of information. We show that MoNoise beats the state-of-the-art on different normalization benchmarks for English and Dutch, which all define the task of normalization slightly different.Comment: Source code: https://bitbucket.org/robvanderg/monois

    An In-depth Analysis of the Effect of Lexical Normalization on the Dependency Parsing of Social Media

    Get PDF
    Existing natural language processing systems have often been designed with standard texts in mind. However, when these tools are used on the substantially different texts from social media, their performance drops dramatically. One solution is to translate social media data to standard language before processing, this is also called normalization. It is well-known that this improves performance for many natural language processing tasks on social media data. However, little is known about which types of normalization replacements have the most effect. Furthermore, it is unknown what the weaknesses of existing lexical normalization systems are in an extrinsic setting. In this paper, we analyze the effect of manual as well as automatic lexical normalization for dependency parsing. After our analysis, we conclude that for most categories, automatic normalization scores close to manually annotated normalization and that small annotation differences are important to take into consideration when exploiting normalization in a pipeline setup

    MultiLexNorm: A Shared Task on Multilingual Lexical Normalization

    Get PDF
    Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for social media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MULTILEXNORM shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 12 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system

    DAN+: Danish Nested Named Entities and Lexical Normalization

    Get PDF

    MultiLexNorm: A Shared Task on Multilingual Lexical Normalization

    Get PDF
    Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for social media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MultiLexNorm shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 13 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system

    On the performance of phonetic algorithms in microtext normalization

    Full text link
    User-generated content published on microblogging social networks constitutes a priceless source of information. However, microtexts usually deviate from the standard lexical and grammatical rules of the language, thus making its processing by traditional intelligent systems very difficult. As an answer, microtext normalization consists in transforming those non-standard microtexts into standard well-written texts as a preprocessing step, allowing traditional approaches to continue with their usual processing. Given the importance of phonetic phenomena in non-standard text formation, an essential element of the knowledge base of a normalizer would be the phonetic rules that encode these phenomena, which can be found in the so-called phonetic algorithms. In this work we experiment with a wide range of phonetic algorithms for the English language. The aim of this study is to determine the best phonetic algorithms within the context of candidate generation for microtext normalization. In other words, we intend to find those algorithms that taking as input non-standard terms to be normalized allow us to obtain as output the smallest possible sets of normalization candidates which still contain the corresponding target standard words. As it will be stated, the choice of the phonetic algorithm will depend heavily on the capabilities of the candidate selection mechanism which we usually find at the end of a microtext normalization pipeline. The faster it can make the right choices among big enough sets of candidates, the more we can sacrifice on the precision of the phonetic algorithms in favour of coverage in order to increase the overall performance of the normalization system. KEYWORDS: microtext normalization; phonetic algorithm; fuzzy matching; Twitter; textingComment: Accepted for publication in journal Expert Systems with Application
    corecore