2 research outputs found

    Embedding-based Method for the Supervised Link Prediction in Social Networks

    Get PDF
    In recent years, social network analysis has received a lot of interest. Link prediction is an important area of research in this field that uses information from current networks to predict the likely links that will emerge in the future. It has attracted considerable attention from interdisciplinary research communities due to its ubiquitous applications in biological networks, computer science, transportation networks, bioinformatics, telecommunication networks, and so on. Currently, supervised machine learning is one of the critical techniques in the link prediction task. Several algorithms have been developed by many authors to predict the future link in the network, but there is still scope to improve the previous approaches. In the supervised link prediction process, feature selection is a crucial step. Most existing algorithms use one type of similarity-based feature to represent data, which is not well described due to the large scale and heterogeneity of social networks. One of the newest techniques for link prediction is embedding methods, which are used to preparing the feature vector for each the nonexisting links in the network. In this paper, we introduce a novel approach to supervised link prediction based on feature embedding methods in order to achieve better performance. Our contribution considers a set of embedding methods as the feature vector for training the machine learning classifiers. The main focus of this work is to investigate the relevance of different feature embedding methods to improve the performance of the supervised link prediction models. The experimental results on some real-world temporal networks revealed satisfactory results, which encourage us for further analysis. Moreover, the use of feature embedding methods will provide better performance in this regard

    Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis

    Get PDF
    Advances in next-generation sequencing and high-throughput techniques have enabled the generation of vast amounts of diverse omics data. These big data provide an unprecedented opportunity in biology, but impose great challenges in data integration, data mining, and knowledge discovery due to the complexity, heterogeneity, dynamics, uncertainty, and high-dimensionality inherited in the omics data. Network has been widely used to represent relations between entities in biological system, such as protein-protein interaction, gene regulation, and brain connectivity (i.e. network construction) as well as to infer novel relations given a reconstructed network (aka link prediction). Particularly, heterogeneous multi-layered network (HMLN) has proven successful in integrating diverse biological data for the representation of the hierarchy of biological system. The HMLN provides unparalleled opportunities but imposes new computational challenges on establishing causal genotype-phenotype associations and understanding environmental impact on organisms. In this review, we focus on the recent advances in developing novel computational methods for the inference of novel biological relations from the HMLN. We first discuss the properties of biological HMLN. Then we survey four categories of state-of-the-art methods (matrix factorization, random walk, knowledge graph, and deep learning). Thirdly, we demonstrate their applications to omics data integration and analysis. Finally, we outline strategies for future directions in the development of new HMLN models
    corecore