58 research outputs found

    Fault Diagnosis for Power Electronics Converters based on Deep Feedforward Network and Wavelet Compression

    Full text link
    A fault diagnosis method for power electronics converters based on deep feedforward network and wavelet compression is proposed in this paper. The transient historical data after wavelet compression are used to realize the training of fault diagnosis classifier. Firstly, the correlation analysis of the voltage or current data running in various fault states is performed to remove the redundant features and the sampling point. Secondly, the wavelet transform is used to remove the redundant data of the features, and then the training sample data is greatly compressed. The deep feedforward network is trained by the low frequency component of the features, while the training speed is greatly accelerated. The average accuracy of fault diagnosis classifier can reach over 97%. Finally, the fault diagnosis classifier is tested, and final diagnosis result is determined by multiple-groups transient data, by which the reliability of diagnosis results is improved. The experimental result proves that the classifier has strong generalization ability and can accurately locate the open-circuit faults in IGBTs.Comment: Electric Power Systems Researc

    Federated Learning and Meta Learning:Approaches, Applications, and Directions

    Get PDF
    Over the past few years, significant advancements have been made in the field of machine learning (ML) to address resource management, interference management, autonomy, and decision-making in wireless networks. Traditional ML approaches rely on centralized methods, where data is collected at a central server for training. However, this approach poses a challenge in terms of preserving the data privacy of devices. To address this issue, federated learning (FL) has emerged as an effective solution that allows edge devices to collaboratively train ML models without compromising data privacy. In FL, local datasets are not shared, and the focus is on learning a global model for a specific task involving all devices. However, FL has limitations when it comes to adapting the model to devices with different data distributions. In such cases, meta learning is considered, as it enables the adaptation of learning models to different data distributions using only a few data samples. In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta). Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks. We also analyze the relationships among these learning algorithms and examine their advantages and disadvantages in real-world applications.</p

    AI meets CRNs : a prospective review on the application of deep architectures in spectrum management

    Get PDF
    The spectrum low utilization and high demand conundrum created a bottleneck towards ful lling the requirements of next-generation networks. The cognitive radio (CR) technology was advocated as a de facto technology to alleviate the scarcity and under-utilization of spectrum resources by exploiting temporarily vacant spectrum holes of the licensed spectrum bands. As a result, the CR technology became the rst step towards the intelligentization of mobile and wireless networks, and in order to strengthen its intelligent operation, the cognitive engine needs to be enhanced through the exploitation of arti cial intelligence (AI) strategies. Since comprehensive literature reviews covering the integration and application of deep architectures in cognitive radio networks (CRNs) are still lacking, this article aims at lling the gap by presenting a detailed review that addresses the integration of deep architectures into the intricacies of spectrum management. This is a prospective review whose primary objective is to provide an in-depth exploration of the recent trends in AI strategies employed in mobile and wireless communication networks. The existing reviews in this area have not considered the relevance of incorporating the mathematical fundamentals of each AI strategy and how to tailor them to speci c mobile and wireless networking problems. Therefore, this reviewaddresses that problem by detailing howdeep architectures can be integrated into spectrum management problems. Beyond reviewing different ways in which deep architectures can be integrated into spectrum management, model selection strategies and how different deep architectures can be tailored into the CR space to achieve better performance in complex environments are then reported in the context of future research directions.The Sentech Chair in Broadband Wireless Multimedia Communications (BWMC) at the University of Pretoria.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639am2022Electrical, Electronic and Computer Engineerin

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    • …
    corecore