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ABSTRACT The spectrum low utilization and high demand conundrum created a bottleneck towards
fulfilling the requirements of next-generation networks. The cognitive radio (CR) technology was advocated
as a de facto technology to alleviate the scarcity and under-utilization of spectrum resources by exploiting
temporarily vacant spectrum holes of the licensed spectrum bands. As a result, the CR technology became
the first step towards the intelligentization of mobile and wireless networks, and in order to strengthen
its intelligent operation, the cognitive engine needs to be enhanced through the exploitation of artificial
intelligence (AI) strategies. Since comprehensive literature reviews covering the integration and application
of deep architectures in cognitive radio networks (CRNs) are still lacking, this article aims at filling the
gap by presenting a detailed review that addresses the integration of deep architectures into the intricacies
of spectrum management. This is a prospective review whose primary objective is to provide an in-depth
exploration of the recent trends in AI strategies employed in mobile and wireless communication networks.
The existing reviews in this area have not considered the relevance of incorporating the mathematical
fundamentals of each AI strategy and how to tailor them to specific mobile and wireless networking
problems. Therefore, this review addresses that problem by detailing how deep architectures can be integrated
into spectrum management problems. Beyond reviewing different ways in which deep architectures can be
integrated into spectrum management, model selection strategies and how different deep architectures can
be tailored into the CR space to achieve better performance in complex environments are then reported in
the context of future research directions.

INDEX TERMS Beyond 5G, cognitive radio networks, deep architectures, deep learning, deep Q-learning
networks, deep reinforcement learning, energy efficiency, intelligent spectrum management, the Internet of
things, machine learning, reinforcement learning.

I. INTRODUCTION AND BACKGROUND
With the migration to beyond 5G networks gaining momen-
tum, paralleled with the phenomenal growth of mobile and
wireless devices, the demand for more effective and efficient
wireless communications has put enormous pressure on the
limited spectrum resources [1]. The impact caused by the
demand for more spectrum bands to support the emerging
technologies with disparate technological use cases has led
to the advocation of the cognitive radio (CR) technology [2].
The CR technologywas advocated as the most viable solution
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for the spectrum shortage and under-utilization quagmire,
and through spectrum sharing the licensed spectrum will be
reused to support next generation network demands. As a
result, the spectrum shortage and spectrum under-utilization
duality can be solved through either temporal or spatial
reuse of the already licensed spectrum bands. In order to
address the spectrum shortage and under-utilization duality,
dynamic spectrum access (DSA), driven by the CR tech-
nology in spectrum sharing was advocated as the de facto
technique for spectrum management. Thus, CR-driven DSA
consequently became topical among researchers in enabling
efficient migration into 5G networks and beyond [3]. How-
ever, the vexing dual problem of spectrum scarcity and
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spectrum under-utilization was not the only existing bot-
tleneck in the advancement of wireless technology towards
beyond 5G (B5G) networks. The spectrum shortage and
under-utilization, coupled with the growing diversity of ser-
vices of future mobile and wireless networks require that all
CR devices be equipped with a technology that will enable
more autonomous operation. Also, due to the distributed
nature with increased heterogeneity of services in future
mobile and wireless networks, the integration of artificial
intelligence (AI) strategies into CRs is a requisite. This intu-
ition necessitated that distributed and intelligent spectrum
management mechanisms, which will improve the ability to
utilize spectrum resources to meet the unprecedented user
demands be devised [4].

The CR technology can be defined as a radio system that
is capable of obtaining knowledge of its surrounding envi-
ronment through the spectrum sensing technique, establishes
operational policies that forces its internal state to dynam-
ically and autonomously adjust its operational parameters
such as the transmission power in accordance with the knowl-
edge obtained in order to achieve the DSA objectives [5].
In behavioral psychology terms, a CR is an intelligent radio
device that obtains awareness of its operational environment,
learns from it, then adapts its parameters to the statistical
variations of the network in real-time [6]. There have been
different architectures that have been brought forward for
optimal operation of the cognitive radio network (CRN), such
as centralized, decentralized, and distributed deployment sce-
narios. But, due to their fear of being disrupted, as well as
interference constraints, centralized control where a central
entity manages their operation, has a strong advantage that
matches their expected operation. However, because of the
distributed nature of future mobile and wireless networks,
the distributed architecture holds strong advantages over its
counterparts. The failure of one network device (node) does
not affect the operation of other nodes because the network
has no weak points. In this case, each network node handles
its own backup and control operations. Handling its oper-
ations locally allows it to act selfishly and independently
endure various network failures [7]. However, the distributed
approach for network management requires that some addi-
tional hardware resources be implemented at node level,
which can be very costly.

Apart from the different CRN architectures, CRs envi-
ronments can be defined depending on the way in which
the opportunistic spectrum access (OSA) process is carried
out. The first strategy for secondary spectrum usage is the
interweave approach, which is based on the original idea of
utilizing the spectrum vacancies left by primary users (PUs)
in order to establish a data exchange route between secondary
users (SUs). The underlay strategy is the next opportunistic
spectrum usage approach whereby SUs should always keep
their transmission powers below the interference temperature
so as to protect the integrity of PU operations. The over-
lay strategy is the third spectrum reuse approach in which
SUs cooperate with PU transmissions while simultaneously

performing their own transmissions. However, an interchange
between the spectrum usage strategies can be realized through
the concept referred to as spectrum handover. For example,
if the PU resurfaces on its licensed frequency band to recom-
mence transmission, the CR can move to another frequency
band and continue it transmission in overlay mode. Alterna-
tively, it can continue to transmit in the same frequency and
operate in underlay mode, but reduce its transmission power
level or modulation scheme to avoid interference with the
PU [8].

A. MOBILE AND WIRELESS NETWORK EVOLUTION
As the CR technology continues to mature, it has become
feasible to consider its application in commercial systems
such as cognitive wireless backbones and cognitive machine-
to-machine systems. In this way, next-generation CR systems
could enable commercial broadband services to co-exist with
government services and by doing so, regulators would be
able to shoehorn more services into each band in order to
alleviate spectrum shortage [9]. The emphasis on current
CR research is more on the challenges faced by mobile
users, which is to find the temporary spectrum holes in the
licensed spectrum that they can opportunistically exploit.
Also, the idea that base station (BS) infrastructure could
greatly benefit from CR techniques in order to save network
operational energy has not been considered yet. It is imper-
ative that when the future of CR systems is being discussed,
the issue of BSs as well as other infrastructure such as the
mobile edge computing (MEC) server should not be treated
as an afterthought. However, a cost-benefit analysis into the
operation of several infrastructures does indicate that there
are many immediate benefits that outweigh the costs which
can drive the increased use of software defined radio (SDR)
techniques. Due to their high computational power, which is
paralleled with high energy consumption, the BSs present
a totally different set of challenges for the CR technology
because prior to communication and computation, there is
already high energy consumption during spectrum sensing.
BSs are supposed to have superior performance to mobile
devices since they need to be sensitive to weak signals. How-
ever, due to the fact that they have limited power and compu-
tational resources, the performance requirements of mobile
devices must now match the BSs in spectral bandwidth [10].
Matching the requirements is a very costly process due to
equipment being sourced from different vendors and the mar-
ket time. For example, the idea of improvedmarket time in the
midst of the ever-evolving telecommunication standards for
a single platform for multiple standards is far-fetched. This is
because all vendors and entities are seeking new and effective
ways of differentiation in order to maximize their share of
customer spend.

Mobile devices and other client-server devices with min-
imal implementation costs using BSs that are SDR com-
pliant can be able to support multiple devices within a
single wireless access network. This would allow service
providers to offer a wide range of diversified services, which
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would further drive the deployment of CR technologies into
the network infrastructure. This means that, using the SDR
approach, cognitive users can reasonably afford more pro-
cessing power at less operational costs. However, the per-
vasive issues related to linearity and sensitivity still remain,
i.e., a decrease in either linearity or sensitivity would result
in unacceptable impacts on the overall network performance,
more especially the power consumption. From the perspec-
tive of a wireless network, moving towards cell densification
in order to offer increased broadband services to existing
mobile clients requires that small cells have outstanding capa-
bilities. Detection, configuring and reconfiguring as well as
self-managing their operations in an independent and dis-
tributed fashion requires self-organizing capabilities. This
aspect was noted by Huawei technologies when highlight-
ing the importance of self-organizing networks (SONs) to
streamlined radio deployments as well as spectral alloca-
tion [11]. This means that new breakthroughs are required
in integrated access nodes and back-haul design in order to
cope with the dense networking associated with B5G and the
IoT. Due to the plug-and-play, which will become an essential
strategy of deployment, integrated access nodes will need
to self-organize for the available spectrum blocks for both
access and back-hauling tasks. This will be a key capability
for enabling high frequency spectrum access, which make
SONs the essential key to the imminent connected future [12].
Automating wireless infrastructure configuration, the opti-
mization and the network healing processes actually frees
up some of the operational resources which could then be
deployed elsewhere.With the positive explosion of connected
‘‘things’’, managing, and keeping up with their operations
requires an automated approach. However, as a consequence
of this, a new set of network assurance challenges that oper-
ators will have to deal with emerged [13]. Simultaneously
dealing with so many challenges seem to be very daunting
such that this challenge can be classified under model and
algorithmic deficit problems.

B. THE CR TECHNOLOGY AND SPECTRUM MANAGEMENT
The process of CR operation in terms of optimizing spectrum
resource usage began with the reconfigurable radio, which
was developed in the early years of television (TV) white
space research. Here, the spectrum sensing technique was
used to ascertain the availability and/or absence of incumbent
activities in order to protect the integrity of their transmis-
sions. However, due to the uncertainties as restrictions of
spectrum sensing, telecommunications regulators then real-
ized that the use of the spectrum sensing technique could
not provide sufficient protection to incumbent TV users as
a stand-alone method [14]. As a result, spectrum databases
became the favorable option in spectrum management for
many coexistence scenarios in TV bands, and are currently
the most dominant dynamic spectrum sharing strategy. The
information contained in spectrum databases include the rele-
vant regulations and policies, device locations, their spectrum
usage and activities, coverage, and interference levels, as well

as services. Spectrum databases are a way of controlling
dynamic DSA whereby predictable quality of service (QoS)
are provided to mobile devices in order to help to avoid
unstable situations such as unnecessary frequent channel
switching. This makes the implementation of practical DSA
systems much easier [15]. However, as it currently stands,
there are some challenges that need to be addressed before
spectrum databases can be incorporated into the operation of
CR systems. This is because the characteristics of the primary
systems as well as their signals tend to differ significantly,
i.e., the received signal power levels as well as the coverage
areas. A traditional CRN and the decision-making of the CR
system is illustrated in FIGURE 1 below.

FIGURE 1. Illustration of a CRN and decision-making of the CR system.

As shown in FIGURE 1 above, the operation of the CR
system can be summarized into two steps, i.e., observation
and reconfiguration.

1) PERCEPTION-LEARNING AND MODELING
Learning and modeling in CR systems entails the learning
and reasoning concept that fosters optimal resource usage
through the estimation of the relationship between environ-
mental state and the performance of the network. The optimal
resource usage and management seek to enable a plethora of
secondary spectrum access applications [16]. This concept
is actually not new to CRs as it stems from the field of AI
after being mastered in game theory, dynamic games and
stochastic games in particular. Game theoretic approaches
offer the basic mathematical optimization tools to model the
way in which the interactions take place among autonomous
players. In the CR case, a situation in which CRs seek to
maximize some specific objective function could be modeled
using stochastic games. Modeling CRNs using dynamic and
stochastic games aids in studying how the actions taken by
CRs are affected by their past experiences and also how they
affect their future rewards. In this way, modeling how CRs
learn from their past as well as from their neighbors becomes
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manageable. For example, dynamic games have been used in
modeling the interactions among SUs for spectrum access,
as well as in problems modeling the interactions between
primary users (PUs) and SUs. These models actually range
from repeated games to stochastic games up to evolutionary
games, and an important aspect of such learning mechanisms
is how the learning is performed. Whether the learning has to
take the form of a supervised, unsupervised or a reinforced
approach is the biggest challenge of the process.

A better choice of the learning approach avoids making
the wrong choices in decision making, especially when CR
autonomous learning process is considered. Another chal-
lenge can be defined in terms of algorithmic design and
implementation for CR functionalities. These CR function-
alities are related to how mobile devices could be enabled to
learn from their past decisions, and reinforce those actions
and decisions that led to higher rewards in order to improve
their future performance. The design of such learning algo-
rithmic tasks is too complex, and has already presented itself
as a huge challenge. This is because the measurements that
need to be conducted by learning from the environment
also introduce other new challenges related to which mea-
surements should be taken and how the learning should be
performed.

2) OPTIMIZATION-SELECTION OF THE BEST ACTION
The optimization process of CR systems entails finding the
best action through inference and optimization of the perfor-
mance to facilitate decision-making. This is done using the
information obtained through learning and modeling of the
environment. This is the best aspect of CR systems that is
related to their intelligence. The primary task of inference
in CR systems is to enable the choice of actions leading
to efficient decision-making. Inference can be viewed as a
process that utilizes both historical and the current knowledge
of the environmental context to make better decisions [16].
This means that the learning and reasoning processes dis-
cussed above must be enriched with good knowledge to fos-
ter increased efficiency of subsequent decision-making [17].
Thus, in the cognitive sense, a tight coupling exists between
reasoning and inference. In cognitive reasoning, the power of
cognition, which is the complex interaction between previous
and present information, is required. This leads to improved
reasoning results and culminates in more meaningful and
intelligent solutions. As a result, the reasoning-inference
duality is the characteristic of the CR that drives it through the
process of decision-making. The traditional decision-making
in CR systems is the decision on spectrum availability, which
involves spectrum sensing, channel selection strategy, and the
optimization of radio performance [18]. The decision-making
on spectrum availability depends on the CR architecture; it
can either be implemented in a centralized, decentralized or
distributed fashion. Depending on the architecture employed,
decisions are more likely to be influenced by collaborations
between CR systems.

3) THE RESIDENT AI OF THE CR TECHNOLOGY
Due to its capability to simultaneously handle spectrum sens-
ing, spectrum access, interference management, and initi-
ating spectrum hand-off, the CR technology presents itself
as an effective multi-armed bandit (MAB) problem. Thus,
in its own right, the CR technology can effectively address
the exploration-exploitation technique without the use of
AI strategies. Even without the application of AI strate-
gies, the CR technology is able to effectively address the
exploration-exploitation MAB technique within the tradi-
tional wireless network space. The MAB technique is firmly
rooted in the field of behavioral psychology and is extensively
utilized in reinforcement learning (RL). Since the RL strategy
is a reward maximization method within the AI space, MAB
intuitively describes the maximization of average rewards
after pulling its arms several times. As a result, the MAB
technique has been very instrumental in coming up with
effective cross-layer strategies to enhance the operation of
CR systems. For example, solving energy-efficient resource
allocation (RA) problems has to be done in parallel with
transmission delay, which requires a cross-layer treatment,
which, if not an elusive task, is quite a computationally com-
plex challenge. This challenge is exacerbated by the lack of
low-complexity joint-layer strategies and coherent research
contributions in this aspect are scattered across all layers of
the IPv6 protocol stack.

C. NOVELTY AND CONTRIBUTIONS
The novelty and contributions of this prospective review are
summarized as follows:

1) The first part discusses the challenges that are faced by
CRNs in the IoT and the era beyond 5G networks. Here,
the issue ofmassive IoT deployments and the enormous
amount of measurements that need to be taken are
discussed. A discussion on the effects that come with
addressing requirements with conflicting objectives on
the energy consumption closes this section.

2) After the curse of model and algorithmic deficit in cur-
rent solution approaches has been identified, an intro-
duction to machine learning (ML) and reinforcement
learning (RL) is given to enable a smooth understand-
ing of deep architectures. The procedure of building
an ML model is discussed before the introduction to
RL strategies such as model-free, model-based RL as
well as the cost criteria follows. The application of
RL strategies in mobile and wireless networks and the
problem with RL strategies in spectrum management
are discussed in detail.

3) The concrete and rigorous review of deep learning (DL)
techniques and their training procedure is followed by
their application in mobile and wireless networking
problems. In order to enhance understanding, the appli-
cation of DL techniques is separated into the differ-
ent DL structures, and the many advantages of DL
techniques in spectrum management are discussed in
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a prospective perspective with the general idea that it
might be helpful to other researchers.

4) In order to effectively handle the dynamics of deep
architectures, the symbiotic relationship between DL
and RL is explored to usher in the in-depth review
of deep architectures. Here, the DRL strategy is dis-
cussed as the first deep architecture and its applica-
tions in spectrum management are equally explored.
Also, the variants of DRL such as deep Q-learning
networks (DQNs) are discussed together with their
advantages as well as the few applications they have
had in spectrum management.

5) In the pursuit of future research endeavors, the last
section pinpoints a few open and promising research
directions that are worth investigating in future. In that
discussion is the issue of enabling predictive analytics
through Big Data exploration and exploitation, then
the issue of improving data privacy through the use of
federated intelligence are pinpointed with the primary
objective of providing detailed insights on how deep
architectures can be applied to influence future wireless
networks specifically to CRN spectrum management.

The remainder of this review is organized as follows:
Section II discusses the challenges faced by CRNs in the
IoT and the era B5G networks. Section III reviews the
current intelligent solutions to the current challenges facing
CRNs. Section IV gives a gentle introduction to machine
learning and RL, as well as the application of RL in wire-
less networking problems. In Section V, deep architectures
are introduced with a rigorous discussion of DL strategies,
as well as the outstanding advantages of DL techniques and
ways in which they can be instrumental in solving problems
in future mobile and wireless networking. In Section VI,
the symbiotic combination of DL and RL is analyzed in order
to usher in DRL, which is then discussed in detail together
with its various deep architectures. Finally, in Section VII,
concluding remarks are given, followed by a discussion of
open research problems that require further investigation.

II. CHALLENGES FACED BY CRs IN THE
IoT/BEYOND 5G ERA
The ultimate design objective for future mobile and wireless
network centers around meeting the diverse QoS require-
ments of all end-users. Thus, if every future technological
invention is equipped with the cognitive technology, and the
AI vision gets broadened towards the optimization of the
usage radio spectrum, accessing the vacant spectrum bands
with less licensed channel interference can be possible. How-
ever, this requires that all the network entities of the network
layer, the control layer, the management and orchestration
layer such as the wireless devices, base stations (BSs), as well
as the software defined networking (SDN) controllers to
be CR capable. The state-of-the-art OSA algorithms have
shown tremendous success in solving spectrum manage-
ment problems since the proposal of CRs using optimization

theory [19]. Algorithms for channel selection and optimum
spectrum allocation and spectrum utilization have shown
great improvement using noteworthy signal processing algo-
rithms and search heuristics. However, as the wireless tech-
nology enters the era of all ‘‘things’’ connected to the internet,
spectrum management may no longer be the only problem.
Ultra-low latency, superior energy efficiency, exceptional
device computational capabilities, privacy, and connectivity
all become of paramount importance [20]. With the projected
increase in IoT-connected devices globally, huge amounts of
communication data will be generated by these connected
devices.

The IoT, as a concept, has been viewed as a future internet
whereby things possess unique identities, physical inter-
faces and virtual personalities and linked to exchange envi-
ronmental observations among themselves as well as with
humans [21]. This refers to everyday objects with advanced
electronic abilities or high level of technological progress that
can be put online and become networked. However, due to
the low computational capabilities of mobile and wireless
devices, this requirement creates a heavy burden of authen-
tication computing [167]. Thus, the entry of the IoT defines
the point where AI strategies have to step in to lend their
learning capabilities to the connectivity of future mobile and
wireless networks. The IoT, both as a concept as well as a
paradigm has rapidly spread over the community of academia
and industry and received close attention as among the most
pertinent research topics. As a result, it is widely expected
that it will be implemented in all kinds of industries in the
not-so-distant future.

A. MASSIVE INTERNET OF THINGS DEPLOYMENTS
Because of the distributed nature of the next generation
of mobile and wireless networks, the AI strategies need to
be implemented in a distributed fashion. Usually, massive
IoT deployments are constrained in terms of computation,
storage and energy saving capabilities, which consequently
pose some serious challenges that require urgent improve-
ment. The increased requirement for even bigger data stor-
age facilities as well as better computational algorithms that
will process and make sense out of the data, which marks
the entry point of AI strategies into the IoTs. In this case,
the IoT era does not only suggest and motivate for the
implementation of AI strategies, but also how they should be
implemented. This implies that the design efforts for integrat-
ing AI into the IoTs should be directed towards enhancing
storage and computation, as well as towards the optimiza-
tion of energy consumption. This will actually not only
solve the problems related to performance optimization, but
also the huge operational costs. As the IoT continues to steer
the operations of the 21st century, new spectrum use cases
with staggering resource requirements such as device-to-
device, human-to-human, machine-to-machine, vehicle-to-
vehicle, and vehicle-to-infrastructure communications, etc.,
the above requirements need to be achieved with highest pre-
cision. Thus, new algorithms need to drive these requirements
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themselves with the required computational complexity in
a distributed manner. However, the current form of the IoT
still utilizes the centralized server-client model in order to
provide connectivity to various servers and systems [23] and
based on current reports, this is quite efficient for now, given
that it is still in its infancy. The unfortunate thing about the
centralized approach is that it will not be compatible with
future distributed mobile and wireless network environments.

B. ENORMOUS AMOUNT OF MEASUREMENTS
As the wireless network becomes more distributed, enormous
amounts of measurements will need to be conducted by the
learning module of the CR device, and the decisions that need
to be made have already presented themselves as major chal-
lenges [24]. Subsequently, the decisionmodule of CR devices
will be faced with the vexing problem of creating sufficient
capacity and energy-efficient operations, combined with low
latency for heterogeneous spectrum use cases. On top of these
challenges, comes the issues of network reliability and sus-
tainability, which are still very pervasive problems in CRNs.
Spectrummanagement schemes have been carefully designed
to succeed in complex environments where future mobile and
wireless devices will be operating. As it currently stands, they
have shown signs of great success in dealing with the inherent
heterogeneity of future generations of mobile and wireless
communications. However, be it as it may, there is still more
effort that is required in order to break the bottleneck of spec-
trum sensing errors and huge energy consumption by wireless
devices [25]. There has been a lot of research work conducted
in order to reduce spectrum sensing errors and also reduce the
feedback overhead of spectrum information. This was done
by utilizing the spatial and temporal correlations of channel
state information (CSI) using compressive sensing (CS) tech-
niques [26]. However, there are still challenges faced by CS
algorithms that need to be addressed. CS algorithms require
the signals or the signal data to be sparse. But, this is not
always the casewith real-world signals and data. The problem
here is that real-world data has never been sparse and the
convergence speed of the existing signal recovery algorithms
is relatively slow. In terms of RA techniques, the objective of
intelligent resource management is to allocate the available
resources in a way that one or more performance metrics
can be maximized. This means that the transmission powers,
the frequency blocks, the computing power, as well as the
memory space can be scheduled among the network terminals
based on traffic demands, propagation channel conditions and
terminal requirements.

C. CRN REQUIREMENTS WITH CONFLICTING OBJECTIVES
The issue of conflicting objectives requires that a trade-off
be quantified between them using balanced optimization.
In this way, the optimization of the network throughput,
the transmission latency, as well as the energy consumption
can be simultaneously guaranteed to ensure better QoS and
user experience. The issue of energy consumption is the most
important here since it appears as the common denominator in

all the parameters to be optimized. Here, the packet dropping
rate and flow throughput are the main considerations since
we desire to deliver as many packets as possible within their
deadlines at the lowest energy possible, which is still elusive.
At the moment the problems faced by traditional optimiza-
tion techniques in efficiently solving the energy consump-
tion problem can be categorized under model or algorithmic
deficit. This means that the versatility of current solution
algorithms needs to be improved since, in their current state,
they have a few limitations going into the 5G era and beyond.
Such limitations include, but not limited to: (i) depending
on the level of complexity in the scenario. If the scenario is
too complex, then accurate mathematical models might not
be available to describe the problem. Even if mathematical
models can be available, every model is inherently an approx-
imation of the scenario. As a result, a trade-off has to be
made between the accuracy of the model and its complexity.
Accurate mathematical models may be too complex to han-
dle, whereas simplifiedmodelsmay be not accurate enough to
describe the scenario; (ii) another limitation is with the use of
static infrastructure. The deployment of static infrastructure
might not be flexible enough to adapt to heterogeneous ser-
vice requirements and randomly evolving environments with
unpredictable on-demand connectivity requests.

III. CURRENT INTELLIGENT SOLUTIONS TO CHALLENGES
Solutions to these challenges lie in how well the stagger-
ing resource requirements of future use cases and energy
efficiencies are handled in the realm of spectrum short-
age issues. Since in spectrum management cognitive users
take autonomous actions for opportunistic spectrum access,
the most convenient model for such network dynamics takes
the form of a stochastic/strategic game. Game theoretic tech-
niques have proven to be very efficient optimization tools in
the field of mathematical programming. However, with game
theoretic algorithms requiring to make computations every
time a new problem emerges, even if it is a recurring prob-
lem. Another consequence of game theoretic approaches is
greedy prioritization, whereby the same experience is reused
in every problem. The immediate consequence of this is the
wastage of both time and computational resources, resulting
in high energy consumption. Therefore, the need to find ways
to reuse previous solution experiences as this will ease the
energy drain from the computing devices. One way of doing
this is to store the actions that previously led to better system
performance and just reinforce them when the need arises.
It is obvious that this cannot be achieved using greedy pri-
oritization approaches because it will always lead to reusing
the same experiences. When it comes to this realization,
the natural questions to ask are: (i) how to integrate the
required intelligence into the architecture of mobile and wire-
less networks for improved spectrum resource management?
(ii) Where should the experiences required by the algorithms
be stored for future reuse? and (iii) Where should the required
computations be executed? An ideal response to the above
questions would have been to use cloud-based approaches.
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In cloud-based approaches, an artificial brain is placed at
a single point of the network that oversees all resource
management-related tasks across the whole network. How-
ever, a workable solution to these problems is to view the
spectrum management problems from a network intelligence
perspective and hence motivates for the need to integrate
deep architectures into the intricacies of the CR technology.
Therefore, the challenge of intermittent connections needs to
be addressed with accelerated urgency, and the immediate
integration of deep architectures is necessary.

A. CONCERNS WITH CURRENT SOLUTION APPROACHES
Current solutions involve modeling network nodes as random
variables with a given spatial distribution in the context of
stochastic geometry [27]. The primary concern with employ-
ing this tool is that it focuses on the analysis of traditional
and non-energy-efficient performance measures. The lack
of scientific ways to incorporate the trade-off between the
impact of densification in energy efficiency and gain satura-
tion as the density of infrastructure nodes increases puts the
problem of energy efficiency under model deficit. ML-based
communications systems require no rigidly definedmodels in
order to represent and transform information. This is because
they could easily be optimized in an end-to-end manner
for a real system with harsh realistic effects. For example,
at first glance, the Poisson Kriging at first glance [28] rep-
resent attractive alternatives to that of the increasingly pop-
ular Bayesian spatial models. Here are the reasons: (i) they
are easy to implement with little computational complexity,
and (ii) they can account for the shape and size of geograph-
ical nodes, thus avoiding the limitations of the conditional
auto-regressive models that are commonly used in Bayesian
algorithms while allowing for the creation of isopleth risk
maps. On the other hand, the recent technological advance-
ments in computer processing units such as the CPUs and
graphics card and the distributed data storage make the use
of DL more practical than ever in achieving low-complexity
joint-layer strategies. However, research in this area is still in
its infancy and there are many open problems that must be
addressed on methods to integrate DL into the current way
wireless communication networks can be operated. There-
fore, to address these problems, the applicability of ML
techniques has been explored in the wireless communications
domain. ML techniques owe their popularity to providing a
general framework for solving the complex problems where
the models of the phenomenon being learned are too complex
to derive and also too dynamic to be summarized in simple
mathematical terms [29].

B. THE CURSE OF MODEL AND ALGORITHMIC DEFICIT
Algorithmic deficit problems are very common in mobile
and wireless communications. For example, the application
of optimal decoders over several well-established channel
models tend to be computationally complex. The complex-
ity exponents describing the minimum known complexity
that can provably achieve a gap to maximum likelihood

performance actually vanishes when high signal-to-noise
ratio (SNR) limits are set [30]. In this case, the compu-
tational requirements of traditional optimization techniques
may prove unbearable for the properties and demands of
future wireless network devices. This is the usual case in
channels with strong non-linearities such as in optical com-
munications and also for modulation schemes such as con-
tinuous phase modulation, as well as in multi-user networks.
Given these, the current network-centric philosophy may not
be acceptable in simple data gathering and querying applica-
tions [31]. This design methodology is not feasible for future
large-scale mobile and wireless networks. This is primarily
because the large number of protocols executing concur-
rently make it very difficult to optimize the design, while
simultaneously ensuring correct operation. However, on the
brighter side, it is well known that neural networks (NNs)
are known to be universal function approximators and have
shown remarkable capacity for algorithmic learning with
recurrent NNs (RNNs) - a construct which has been shown
to be Turing-complete [32]. NNs can be executed in a highly
parallelized manner by using data and computationally dis-
tributed concurrent architectures, and has been demonstrated
to work well with small data types conducive to efficient wide
single-instruction multiple data operations. Therefore, there
is some hope that learned algorithms can be executed signif-
icantly faster while simultaneously resulting in lower energy
costs than their manually programmed counterparts. Due to
the ever-increasing demand for mobile devices and network
infrastructure to perform intelligent and low latency tasks,
intensive computation and large storage size requirements
have continued to be a challenge. As the non-availability
of intensive computation and large storage size continue to
impede the application of intelligent computational tech-
niques, deep architectures offer promising solutions to these
requirements through the integration of computational power
and storage of edge-processing nodes. In mobile and wireless
networking, the combination of traditional optimization with
deep architectures can actually solve these problems which
have previously been categorized either as model deficit or
as algorithmic deficit.

Model deficit problems usually occur when devices are
operating over channels whereby well-established mathemat-
ical models do not exist [33]. One example of such cases
is molecular communications where inadequate systems are
unable to give accurate models for controlled propagation
of the carrier molecules. These might include the encoding
and decoding of real-world information onto information
molecules and vice versa, and also on the transmission and
reception systems for carrier or informationmolecules, which
are not readily available in practical scenarios [34]. What
exacerbates the issue of mathematically convenient models is
the fact that the current generation of communication systems
exhibit two main features: (i) high energy cost relative to
computation, and (ii) packet collision between concurrent
communication due to signal interference [35]. These two
features make the design of energy-aware algorithms with
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carefully managed communication strategy very crucial. This
is the most challenging component of future communication
systems since most contemporary approaches in design and
optimization of wireless network applications are centered
on manual customization of the network protocol stack [36].
The application programming interfaces are consistent with
manual customization across nearly all platforms that provide
an IPv6 stack. Manual customization of the network protocol
stack, despite having so many remarkable and applaudable
benefits, this comes with rigidly defined models, which can-
not deal with the biggest challenges of the IoT that need to
be taken very seriously. Surprisingly enough, the concerns
about model deficit problems have emerged from within the
telecommunications space, but have not yet been addressed.
For example, one critical challenge in model deficit emerges
when dealing with dense heterogeneous networks, where
modeling the positions of nodes in the network is typically
difficult to predict deterministically.

In order to solve both model and algorithm deficit prob-
lems, ML techniques have been widely recognized for solv-
ing the classification and regression problems for which there
is no well-defined mathematical model that exists. However,
with recent advances in computing power and the ability
to collect and store massive amounts of data, ML tech-
niques have found their way into the wireless networking
domain in an attempt to put both aforementioned to good use.
In addition, the problems that are frequently encountered in
CRNs are formulated as classification, detection, estimation,
and optimization problems. ML techniques can provide very
elegant and practical solutions to these problems. For this
reason, the application of ML techniques to CRNs seems
almost natural and presents a clear motivation. Therefore, our
intention is to elicit more research on the integration of DL
techniques into CRNs to solve some of the key challenges
associated with the modern IoT systems.

IV. A GENTLE INTRODUCTION TO MACHINE LEARNING
AND REINFORCEMENT LEARNING
The use of machine learning (ML) techniques actually
depend on the type of available data to be analyzed. As a
result, ML techniques can be categorized into three subcat-
egories, i.e., supervised learning, unsupervised learning, and
RL.

A. MACHINE LEARNING
Machine learning (ML) is the most prevalent and commonly
used of all the AI techniques that are used in the process-
ing Big Data. ML techniques use self-adaptive algorithms
that yield increasingly better analysis of patterns, either with
experience or with completely new data [37]. They have
progressed outstandingly since the proposition of the Turing
Machine by Alan Turing, and to date, they are the most
common AI techniques that use self-adaptive algorithms.
In literature, the ML field is actually split into two subcat-
egories, i.e., supervised and unsupervised. However, some
real-life problems are better solved using approaches such

as RL and DL, which are also under the universal set of AI
strategies. On the one hand, RL strategies, in their funda-
mental form, can be viewed as a third and separate subcat-
egory of ML since it is a borrowed technique that is firmly
rooted in behavioral psychology. In its actual form, it is a
combination of behavioral psychology and game theory [38].
On the other hand, DL is an ML method whose techniques
are not necessarily viewed as a separate subcategory of ML.
However, they are viewed as a means to achieve the ends
associated with each one of the three ML sub-categories [39].
This difference is expertly elaborated later in Section V-A.
While ML algorithms build their analysis with data in a linear
way, DL takes the non-linear approach using a hierarchy of
functions. As a result, DL techniques have become more
influential owing to its use of a hierarchical level of artificial
neural networks (ANNs) in carrying out its processes, (see
FIGURE. 6) in Section V-A. The hierarchical functions of DL
systems enable algorithms to process input data comprised
of features with a non-linear approach to deliver a result in
the form of predictions. Thus, depending on the dictates of
the DL problem, a DL technique can take either a supervised
learning, unsupervised learning, or RL, i.e., DRL perspective.

1) SUPERVISED LEARNING
The supervised learning technique is actually the most funda-
mental type of ML methods. As an example of the operation
of this technique, one can consider a student and a supervisor
situation. The student learns from the supervisor through
questioning and answering. Then, bringing this analogy to
the ML context, the student corresponds to a computer while
the supervisor corresponds to the person using the computer.
In this way, as it is the case with student and supervisor,
the computer learns to map questions to answers by referring
from paired samples of questions and answers. The objective
of supervised learning is to obtain a generalization. Gen-
eralization is defined as the capability that an appropriate
answer can be guessed for questions that have not been
learned before. Supervised learning techniques have been
successfully applied to a variety of real-world problems that
require solutions such as regression. These are, image pro-
cessing, speech synthesis and recognition, image processing
and recognition, natural language processing, hand-written
character recognition, information retrieval, spam filtering,
online advertisement, recommendation systems, stock price
prediction, weather forecasting, brain signal analysis, gene
analysis, etc. In each of these different cases, if the expected
answer is a real value, the supervised learning problem is
formulated using regression; if the expected result is a cat-
egorical value, the problem is formulated as a classification
one; and if an ordinal value is expected, then it is a ranking
problem.

2) UNSUPERVISED LEARNING
Using the same student-supervisor analogy, unsupervised
learning techniques consider a situation whereby the student
learns by themselves without a supervisor. Unsupervised
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learning is actually an automatic form of supervised learning
in that the student does not learn from the supervisor, but
learns on their own. However, it is sometimes utilized as a
pre-processing step in supervised learning tasks. In this case,
the computer autonomously collects data through the input
and tries to extract useful knowledge without any guidance
from the user. Contrary to supervised learning, the learning
objective is not necessarily specified. Unsupervised learning
techniques have been successfully applied and achieved great
success in real-world tasks such as outlier detection, event
detection, system diagnosis, data clustering, security, and
social network analysis.

B. BUILDING A MACHINE LEARNING MODEL
InML, model assumptions are very essential prior to building
a model to be used to solve problems such as classification,
clustering, as well as prediction. Each model has different
assumptions that must be met, so checking assumptions is
very paramount in both choosing amodel to use and in verify-
ing if it is the appropriate one to use.With acceptable assump-
tions, the ML model is guaranteed to accurately reflect the
data and will most likely give accurate results. Secondary
to choosing the appropriate model to use, is the issue of
gradient flow, and one must have a good understanding of
activation and loss functions. One common problem faced
in most learning techniques is the issue of gradient flow
within a network. This is because some gradients tend to
be sharp in certain directions, slow in others, or even zero
in other directions, which creates a problem for an optimal
selection technique of learning parameters. In order to rem-
edy this issue, the understanding of activation functions are
paramount.

1) ACTIVATION FUNCTIONS
Activation functions are one of the parameters used in NN
computation, alongside other generalization hyperparameters
such as the learning rate and regularization. These are vari-
ables that are set prior to the optimization of the network
and make ML algorithms powerful in learning complex and
complicated tasks. These functions are used in NNs for the
computation of weighted sums of inputs as well as biases, all
of which are used to decide whether a neuron node can be
fired or not. It does so by manipulating the presented data
through some gradient processing such as gradient descent to
produce an output. Thus, an activation function of a neural
node is the one defining the output of that particular neuron
node given an input or a set of inputs [40]. A list of stan-
dard activation functions used by ML methods is given in
TABLE 1 below [41].

Depending on the representative function, the activation
functions listed in TABLE 1 can either be linear or non-linear.
Whether the activation function used to control the output of
the NN is linear or not is dictated by the application domain.
For linear models, the mapping of inputs to outputs using
activation functions is performed in the hidden layers before
the outputs stage, where the transformation of the vector x is

TABLE 1. Activation functions used in machine learning.

given as follows:

f (x) = wT x + b, (1)

where x represents the input vector, w denotes the weight
matrix, superscript T is the matrix transpose, and b is the bias
value of the neuron node [42]. Non-linear activation functions
are transfer functions required to convert linear inputs to
non-linear outputs and are applied to the outputs of the linear
models to produce a transformed non-linear output that is
ready for further processing. Here, the neural node or neuron,
which takes the sum of the weighted inputs is represented
by the non-linear activation function φ(·). The activation
function of a single computational unit is the dot product of
the edge weight vectorw and the input vector x plus the scalar
bias b, as shown in (2). Thus, the corresponding output of
each neural node can bemathematically expressed as follows:

f (x) = y(x) = φ

(
n∑
i=1

wixi + b

)
= w · x + b, (2)

where the term xi represents the input of the ith edge, wi
represents the weight of the ith edge. A detailed analysis and
derivations of the different activation functions can be found
in [41].

2) LOSS OR COST FUNCTIONS
A loss or cost function, also known as an error function,
is used to evaluate the performance of an ML model in terms
of its ability to estimate the relationship between the input
x and the output y. This evaluation is performed using the
difference between a predicted value and the actual value,
which is estimated by iteratively running the ML model.
In each iteration, the estimated prediction (i.e., unknown
value of y) is compared with the ground truth (i.e., the known
value of y), with the objective of finding parameters and
structures or weights that minimize the cost function. In this
case, the model is said to be learning to minimize a cost
function using gradient-based methods, such as gradient
descent, stochastic gradient descent (SGD) that are efficient
optimization algorithms that attempt to find either a local or
global minima of a given function. Several examples of such
functions are listed in TABLE 2 below.

Therefore, a loss function is a way of evaluating how well
a specific algorithm models or fits the given data in terms
of actual and prediction results [43]. Thus, if the prediction
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TABLE 2. Loss functions used in machine learning.

results deviate too much from actual results, the loss function
would give a large number (i.e., large error) and vice versa.
But with the assistance of optimization functions such as
gradient methods, the loss function learns better, and the error
is reduced. In this section, selected publications of ML appli-
cations in mobile and wireless networks are reviewed. When
applyingML techniques into mobile and wireless networking
problems, the most important thing to consider is the category
of the problem being addressed. Traditionally, ML problems
are basically categorized as regression problems, i.e., classi-
fication, and clustering problems [45]. Here, the task of the
ML technique is the prediction of continuous values for the
current inputs so as to identify the class to which the problem
belongs to. For example, in content caching problems, one
might need to obtain content request probabilities of each
user. As such, content caching is thus seen as a regression
problem that takes the user profile as input and the con-
tent request probabilities as output. However, BS grouping
problems can naturally be handled using K-means clustering
algorithms, hence belonging to clustering.

C. APPLICATION OF MACHINE LEARNING
IN SPECTRUM MANAGEMENT
1) COGNITIVE RADIO NETWORKS
Most applications for tackling algorithm deficit problems
on the transmitter side are related to the complexity of the
non-convex programs that typically underlie power control
optimization algorithms. Mobile and wireless networking
tasks that can potentially benefit from ML strategies at the
receiver include modulation classification. Such classifica-
tion problems are justified by the complexity of optimal solu-
tions using traditional optimization techniques, as reported
in [46]. Here, a modulation classification based on indepen-
dent component analysis in conjunction with multiple input
multiple output orthogonal frequency-division multiplex-
ing (MIMO-OFDM) signals over frequency-selective, time-
varying channels was proposed. Due to the intractability of
the problem, the whole processing was divided into two sub-
problems, i.e., separation and modulation classification. The
classification part was implemented using a maximum like-
lihood and support vector machine (SVM)-based method to
achieve performance improvement over time-varying chan-
nels, as the invariance was exploited across both the band-
width and time coherence. A learning-based approach for
resource management was proposed in [47], where the

authors used a supervised DNN to approximate the unknown
non-linear input-output mapping. A class of learn-able algo-
rithms was first characterized and a DNN appropriate for
wireless communications was designed. Then, a training set
was obtained by running a non-convex solver to produce an
optimized output vector for given input channels. Extensive
simulations were conducted, and the superiority of DNNs
in approximating two considerably complex algorithms was
demonstrated.

In another contribution in [48], the authors proposed a
self-interference cancellation technique in order to overcome
the lack of well-established transceiver chain model of non-
linearities. For this purpose, a supervised NN was used, and
full-duplex test bed measurements demonstrated exceptional
results from a simple feed-forward NN canceler over the
polynomial non-linear canceler with significantly lower com-
putational complexity. The authors in [49] also proposed a
mechanism for predicting the outcome of a channel decod-
ing process ahead of the end of the transmission process.
For this task, different input features and classification algo-
rithms were discussed and evaluated on their compliance
with ultra-reliable low-latency communications (URLLC)
requirements. This is because the success of such a predic-
tion scheme would mean that the predictor could be used to
request early re-transmissions to reduce transmission latency
using automatic re-transmission request (ARQ). In order to
demonstrate the feasibility of the proposed scheme, realis-
tic performance estimates incorporating scheduling effects
were conducted, and the enhanced hybrid automatic repeat
request proved to be feasible over a wide range of scenarios.
It is believed that popular content caching reduces network
latency and congestion at the core of the network. As a result,
the authors in [50] investigated a proactive caching method
in the context of cloud radio access networks. In their study,
the baseband units were used to predict content request dis-
tribution and the mobility pattern of users. The optimization
problem was then formulated using joint backhaul-fronthaul
loads and content caching and an ML-based echo state net-
work with sub-linear algorithm was proposed as a solution.
Using the echo state network, the baseband units demon-
strated the ability to predict the content request distribution
and mobility pattern for each user. The sub-linear algorithm
was then used in determining the appropriate content to cache
using limited content request distribution samples. In the
performance evaluation step, the results indicated that the
proposed algorithm yields significant gains in terms of sum
effective capacity compared to other two baseline algorithms.

Since the operation of CR systems involves two processes,
i.e., spectrum sensing and spectrum access, energy efficiency
is paramount. Thus, for energy efficient operations, a low-
cost low-power consumption implementation of spectrum
sensing, based on realistic signals was proposed in [51]. The
signals were generated using smart embedded devices with
different modulation scheme types and the reception interface
was an RTL-SDR dongle connected to a MATLAB software.
Four signal detection techniques or classifiers, i.e., ANN,
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SVM, decision tree, and k-nearest neighbors, were used.
A comparative analysis of performance of the classifiers was
conducted in order to identify the best method using the
probability of detection and probability of false alarm. With
the results showing no susceptibility to signal to noise ratio
values, the ANN and SVM proved to be more accurate than
the other two detectors. After spectrum sensing, the reconfig-
urability of the CR system is a very essential feature for ML
techniques in order to dynamically and efficiently allocate
the limited resources [44]. Since this part requires a high
level of decision-making, this is beyond the traditional ML
techniques, as such will be discussed extensively in the RL
and DRL sections below.

2) RADIO NETWORK SLICING
Network slicing is meant to support a variety of emerg-
ing applications along with a massive number of mobile
phones producing large amounts of data, bringing tremen-
dous challenges for network slicing performance. From
another perspective, this huge amount of data also offers
a new opportunity for the management of network slicing
resources. In light of this, the authors in [52] proposed a
framework for the optimum performance of device applica-
tions with optimized network slice resources. Here, a ML-
based network sub-slicing framework in a sustainable 5G
environment was proposed in order to optimize network
load balancing problems. Each logical slice was divided into
virtualized sub-slices of resources and provides the applica-
tion system with different prioritized resources as necessary.
In this way, each sub-slice would focus on spectral effi-
ciency, while the other focus on reduced latency withminimal
power consumption. An SVM algorithm was then used to
identify different connected device application requirements
through feature selection. Then, a K-means algorithm was
used to create clusters of sub-slices for similar grouping of
types of application services such as application-based, and
infrastructure-based services. The four key considerations
for the proposed framework include: latency, load balancing,
heterogeneity, and power efficiency. A comparative analysis
between the proposed framework and existing contributions
based on experimental evaluation proves its proficiency for
network slicing problems.

The authors in [53] designed an efficient network slicing
scheme using a hybrid learning algorithm involving three
phases, i.e., data collection, optimal weight feature extrac-
tion, and slice classification. Firstly, 5G network slicing data
set consisting of attributes associated with various network
devices was collected. Then, optimal weight feature extrac-
tion was performed whereby a weight is assigned and multi-
plied to each attribute value for scale variation. The weight
function was then optimized by the hybridization of two
meta-heuristic algorithms - glowworm swarm and deer hunt-
ing optimization algorithms. Using the mentioned attributes,
exact network slices were classified into enhanced mobile
broadband (eMBB), massive machine-type communications
(mMTC), and URLLC for each device by a hybrid classifier

incorporating deep belief networks (DBNs) and NNs. The
experimental results indicated that the proposed hybridization
greatly influences the provision of accurate network slic-
ing. A framework for resource orchestration to implement
four QoS pillars in a network slicing implementation was
proposed in [54]. Traffic classification is used to mark the
resource requests in order to serve them better using dedicated
logical network slices. A dynamic slicing approach is then
implemented using the regression trees algorithm in order to
optimally serve multiple network slices. To avoid instability
as the resource demands increase, the admission control and
slice scheduler are then reformulated as knapsack problems.
The performance of the proposed technique was evaluated
based on realistic data sets on an experimental prototype
- the OpenAirInterface. The simulation results show that it
outperforms other baseline algorithms in terms of classifica-
tion, prediction accuracy, and throughput. A brief summary of
ML-based algorithms in spectrummanagement is tabulated in
TABLE 3 below.

D. REINFORCEMENT LEARNING
Reinforcement learning (RL), as opposed to the other ML
techniques, takes an opposite task, that of beginning with
a complete, interactive, goal-seeking agent. All RL agents
have explicit goals, and can sense different aspects of their
environments, and can choose actions to influence their envi-
ronments [55]. As previously stated, the RL strategy is firmly
rooted in behavioral psychology and its mathematical fun-
damentals from game theory, with different variations and
add-ons such as Markov decision processes (MDPs) and
Q-learning being introduced. Thus, RL is a special kind of
supervised learning with some kind of supervision existing in
the form of ‘‘supervision in reinforcement’’ [56]. However,
unlike in supervised learning, supervision in reinforcement
refers to a type of supervision that comes in the form of feed-
back. In this way, the objective of the RL strategy is to acquire
the generalization ability in a similar fashion as in supervised
learning. The only difference is that the supervisor does not
directly give answers to the student’s questions, but instead
evaluates the student’s behavior and gives feedback about
it. Therefore, the RL strategy is a sequential decision-maker
because of the state-action pairs that occur one after another
and judges actions based on the results they produce. The
RL algorithm, which is also known as the agent, receives
its feedback from the environment. This feedback is only
available after an output to a given input or observation has
been selected. This kind of feedback is the one that indicates
the degree to which the output, known as action, which serves
to fulfill the goals of the RL agent. The task is then to train the
agent which interacts with the environment and encounters
different scenarios, i.e., the states.

The RL strategy operates in this way: in performing certain
actions by following a certain policy or strategy in those
states, a reward that eventually leads into a new state is
received. In this case, the objective of the agent is maximizing
the total average reward, while also reinforcing those actions
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TABLE 3. Application of machine learning techniques in spectrum management.

that previously led to better rewards. As a result, the number
of times the agent performs a certain action increases in
subsequent actions. In summary, the RL algorithm works
by applying sequential decision-making whereby through the
agents’ interaction with the environment, takes actions based
on its environmental observations, and subsequently receives
a reward that takes the system state to the next level, while
also receiving feedback on each selected action [57]. For
example, assuming that while the agent is in state st at time t ,
it uses a policy/strategy π to select an action (i.e., behavior)
at from a set of possible behaviors, i.e., at ∈ A, where
A denotes the set of possible behaviors; upon selecting and
executing a certain behavior, it obtains a reward rt , which
leads it to reaching a new state st+1. This is such that this can
be expressed as the tuple (st , at , rt , st+1). Therefore, the best
way to understand the RL strategy is by first defining its
basic concepts such as environments, agents, states, actions,
rewards, discount factor, policy, and value functions as
follows [60]:
• Environment: The environment can be defined as the
space through which the agent makes its moves by tak-
ing an action at as input in the current state st , returns the
reward rt as the output which takes the agent to its next
state st+1. In this case, the environment can be thought
of as a transfer function that transforms an action that
is taken in the current state st into the next state st+1
after receiving a reward rt . However, the function of the
environment is not always known, and it is just a black
box where only the inputs and outputs can be seen.

• Agent: The agent can be defined as a function that
transforms the new state st+1 and reward rt into the next
action at+1. In short, an agent takes actions. However,
as opposed to the environment, the function of the agent
can be known.

• State and Action: The state and action can be jointly
defined as the concrete and immediate situations that the

agent can be in at any given time. The start-state s0 is
defined in (6) below.

• Reward: The reward is the feedback that evaluates
either the success or the failure of the agents’ actions.
The rewards that effectively evaluates the agent’s actions
can either be immediate or be delayed.

• Discount factor: The discount factor was designed
to control future rewards and make them have less
weight that immediate ones by enforcing some kind of
short-term satisfaction in the agent. Usually denoted by
γ t ∈ [0, 1], the discount factor is multiplied by the
future rewards as discovered by the agent in order to
dampen the effect of immediate rewards on the actions
chosen by the agent.

• Policy: The policy or strategy, denoted asπ , is employed
by the agent in determining the next action at+1 based
on the current environmental state st . It operates by
mapping states to the actions that promise to lead to the
highest reward.

• Value function: The value, denoted by V , is the
expected long-term return with discount γ , such that
V π (s) is the expected long-term return of the current
state while following the policy π .

• The Q-value: The Q-value, also referred to as the
action-value function maps the state-action pairs to the
rewards, such that Qπ (st , at ) refers to the long-term
return of the current state st , after taking action at under
policy π . Lastly,

• Trajectory: The trajectory is defined as the sequence of
states and actions that influence future states and actions.

RL strategies can be divided into three sub-categories:
(i) model-free and the (ii) model-based methods [58], with
the (iii) cost criteria existing as a sub-category that is firmly
embedded within model-based RL methods as one of its
randomization techniques. These sub-categories are defined
based on the way in which each one of them obtains
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its rewards depending on the policy and system dynamics
(i.e., the model).

E. RL ALGORITHMIC ASPECTS AND LEARNING POLICIES
In the application of RL strategies, setting up the
decision-making procedure is the initial step, where the avail-
able information is specified to the decision maker. In the
case of deterministic RL models, the transition probabilities
can either be zero or one. Thus, if the initial state is known,
i.e., the start-state s0, the controller is able to fully predict
the system state evolution as a result of applying a sequence
of actions. This kind of control model constitutes open loop
policies, which are defined as policies that require no a priori
information regarding the initial state [62]. However, there
exist some situations whereby the state evolution cannot be
fully predicted. In these situations, it is advisable to use
policies that require more information on the system, because
when the transition probabilities are not only zero or one,
it will turn out to be constrained MDPs (CMDPs). Then,
the performance of the system under study can be improved
by choosing actions in a random way, using randomization
mechanisms. However, it is paramount to define the way
in which an RL agents deals with the perception of the
environment. In this case, it is fitting to define MDPs for a
given environment. This involves the definitions of Bellman
optimality equations and how the value functions and policy
functions are obtained for any given state. For instance,
the Bellman optimality equation and the Bellman expectation
equation are similar, which means that they are not the same.
The difference is the way in which action is taken.

In the Bellman optimality equation, the value of a state can
be decomposed into the immediate reward and the discounted
value of the successor state as follows [59]:

V (s) = E
[
Rt+1 + γ tV (st+1)|st = s

]
, (3)

where Rt+1 and st+1 respectively represent the immediate
reward and the successor state. The same analysis applies
also when defining the fundamental property of the optimal
action-value function as follows:

Q(s, a) = E
[
Rt+1 + γ t max

a′∈A
Q(s′, a′)

]
. (4)

Equations (3) and (4) can still stand for the Bellman
expectation equation, by, instead of taking the average of the
actions, the agent takes the action with the maximum value.
This distinction is very important when the dictates of the
problem to be solved requires such clarity in terms of being of
function approximation, i.e., Q-learning, or of policy-based
search, i.e., policy gradient, methods.

1) MODEL-FREE REINFORCEMENT LEARNING
The Q-learning algorithm is a model-free RL algorithm to
learn the value of an action in a particular state without
requiring any model of the environment. In model-free RL,
the value function is estimated first, then the policy can
be determined based on the estimated value function [61].

As a result, it is able to handle problems with stochastic
transitions and rewards without requiring any adaptations,
and has shown tremendous success in many real-world prob-
lems where problems with discrete states and actions are
considered. It uses incremental trial-by-trial or trial-and-
error learning of a cached habit strength, such that habit-
ual responding persists unchanged after revaluation as an
automatic movement procedure. The computation of the
Q-learning algorithm predominantly uses temporal differ-
ences (TD) prediction error mechanism to estimate the value
ofQ(s, a). The TD thus becomes the agent that learns from the
environment through computation episodes without any prior
knowledge. For instance, if in the problem being addressed
the agent has to start computation from a starting point, say s0,
follow a computation trajectory towards reaching the target,
Q∗(s, a) is the expected value. This is known as the cumula-
tive discounted reward of taking an action, a, in state, s, then
following the optimal policy. The Q-learning algorithm uses
the TD to estimate the value ofQ∗(s, a). It maintains a Q-table
Q(S,A), where S and A respectively represent the sets of
states and actions. Thus,Q(s, a) becomes the current estimate
of Q∗(s, a). Then, depending on the dictates of the problem,
the Q-function can use either of the Bellman equations and
take the two inputs, s and a. This process is repeated, updating
the Q-table and maximizing the Q-value, until the learn-
ing is stopped by reaching the termination condition. Then,
the Q(s, a) returns the expected future reward, as follows:

Q(s, a) = Q(s, a)

+αt
[
R(s, a)+ γ t maxQ(s′, a′)− Q(s, a)

]
, (5)

where αt represents the learning rate, maxQ(s′, a′) is the
estimate of the future value, Q(s, a) represents the old value,
then maxQ(s′, a′)− Q(s, a) is the TD prediction error.
In typical problems usually encountered in decision theory,

the policy iteration considers a function J (π ) as the perfor-
mance measure such that the objective function is given as
follows:

J (π ) = E

{
∞∑
t=0

γ tr(st , at )|s0, π

}
, (6)

where the discounted reward r is being summed from the
start-state, s0 over t time steps. Since the time duration of
observing the system is infinite, i.e., t = {0, 1, 2, · · · ,∞},
the system observation is said to be performed over an infi-
nite horizon. However, the finite horizon, t = {0, 1, 2, · · · ,
T −1} is actually an intuitive and fundamental formalism for
decision-theoretic planning when considering discrete-time
problems, typical of wireless networking problems. Equa-
tion (6) can alternatively be defined as follows:

Qπ (s, a) = E{
∞∑
k=1

γ k−1rt+k |st = s, at = a, π}, (7)

where the term k represents the number of steps taken after
the start state s0. In both definitions, a discounted weighting
of states is defined as dπ (s), where the discount dπ (s) is
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encountered when starting at s0 while following the policy
π [60]:

π : dπ (s) =
∞∑
t=0

γ tPr{st = s|s0, π}, (8)

which is the average reward of a policy that the agent receives
on every time step it acts on the environment. So, using (6)
above, the reward computation considers the environmental
dynamics being characterized by the following state transi-
tion probabilities, Pa

s,s′ = Pr{st+1 = s′|st = s, at = a} [60].

2) MODEL-BASED RL AND POLICY-BASED SEARCH
ALGORITHMS
In model-based RL, an action is chosen based on declarative
memory of previous hedonic values embedded in modeled
world relationships. Contrary to model-free RL, here an
action is adjusted after the devaluation of the outcome or
when the contingency degradation needs to be restated in
order to upgrade the goal value or to reduce uncertainty.
Model-based RL has its roots in control theory, as a result
in most literature the system state is denoted as x instead of s
and action as u instead of a. The term normally used for action
is control such that the controller is the one that influences
both the incurred costs as well as the evolution of the system
by choosing actions at each time step. The algorithms used
here are actually policy-based search algorithms that use tree
search mechanisms in their computation. The striking differ-
ence it has from model-free RL is that the rewards obtained
depend on the policy and the system dynamics, that is the
model. Here, the definition of a cost function enables for
the computation of optimal actions directly from the model.
The learning policy is a value that is adopted by the learning
agent to guide it in learning the best solution. An ε-greedy
exploration policy is used to learn the best action among the
actions available in the action space [63]. The three most
dominant policies used in RL strategies are discussed, the on-
policy is illustrated in FIGURE 2 below:

FIGURE 2. On-policy RL algorithm.

FIGURE 2 above, shows the on-policy RL algorithm,
where experiences are collected using the latest learned pol-
icy. Then, the policy is improved using the collected experi-
ence, and the policy πk is updated using the data collected
by πk itself. This is a sort of an online interaction, where
the learning agent interacts with the environment to collect
samples. This is done in an attempt to improve the decision-
making policy. The current policy, πk , is then optimized
and used to determine what spaces and actions need to
be explored. An off-policy RL algorithm is illustrated in
FIGURE 3 below.

FIGURE 3. Off-policy RL algorithm.

FIGURE 3 above, shows an off-policy RL algorithm,
where the learning agent interacts with the environment to
collect the samples. This is the classic off-policy setting,
where the agent’s experiences are appended to the data buffer,
i.e., the replay buffer D. Here, each new policy πk collects
additional data such that D is composed of samples π0, π1,
π2, · · · , πK . All this data is used to train an updated new
policy,πk+1. In contrast to the on-policy algorithm, off-policy
algorithms seek to improve a policy different from that used
to generate the data. An off-line RL algorithm is illustrated in
FIGURE 4 below.
An off-line RL algorithm such as the one shown in

FIGURE 4 uses previously collected data, without any addi-
tional online data collection. The learning agent no longer
has the ability to interact with the environment and collect
additional transitions using the behavior policy. As a result,
the learning algorithm is provided with a static data set of
fixed interactions, D, and must learn the best policy it can
using this data set. This kind of offline behavioral policy is
most used in deep Q-learning networks (DQNs) for in a pro-
cess known as experience replay, discussed in SectionVI-B1.
Here at each time step, the agent’s decision-making procedure
is characterized by a policy, θ , as follows:

π (s, a; θ) = Pr{st = s|at = a, θ}, ∀s ∈ S, a ∈ A, (9)
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FIGURE 4. Off-line RL algorithm.

where the term θ ∈ R is the parameter vector with π assumed
to be differentiable with respect to θ , the differential ∂π (s,a)

∂θ
exists [60]. The expression Pr{·|·, θ} is the transition proba-
bility defining the evolution of the system from the current
state to the next. The system evolves sequentially between
the different states in a randomway, with the current state and
control action fully determining the probability of proceeding
from one state to the next. The problems usually studied
using model-based RL are special in such a way that the
problem has more than one objective such that the controller
has to minimize one objective subject to constraints on the
others. These are discussed in the cost criteria section IV-F5
below. The fundamental difference between model-free and
model-based RL algorithms comes with the randomization
process employed. Thus, knowing the outcome of the ran-
domization process becomes useful to the controller, but there
are some cases whereby some system parameters such as
the transition probabilities are completely unknown. In such
cases, the controller can only estimate these parameters and
improve system control by accumulating more information
on the evolution of the system.

F. RANDOMIZATION AND FEEDBACK CLASSES
The efficient extensions of the foundational algorithms differ
mainly in the way in which feedback from the environ-
ment is utilized to speed up the learning process. Mostly,
the way in which they concentrate on relevant parts of the
problem, and for both model-based and model-free settings
these efficient extensions have shown useful in scaling up to
larger problems. Depending on the dictates of the problem,
the decision-making procedure can follow any of the random-
ization processes, i.e., the variants of MDPs.

1) MARKOV DECISION PROCESSES
Markov decision processes (MDPs) are controlled Markov
chains constituting the basic framework that dynamically
controls systems that evolve stochastically. MDPs can be
successfully used in modeling RL problems such as stochas-
tic planning problems, game playing, as well as robotic
control. Hence, MDPs are the de facto standard formal-
ism in the learning of sequential decision-making [64].
The formal framework of MDPs can be defined synony-
mous with the definitions of the value functions V and the

policy π . Thus, MDPs can be defined as a generalization of
non-controlled Markov chains since many useful properties
ofMarkov chains carry over to controlledMarkov chains. The
key property of MDPs is that: conditioned on the state and
action at any given time t , the previous states and the next
one are independent of each other. Therefore, there are two
ways of formulating the agent’s objectives using MDPs, i.e.,
(i) the average reward function in which policies are ranked
is according to their long-term expected reward per time step,
and (ii) the start-state formulation where the objective is on
the long-term reward obtained from the designated state.

2) PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES
These are a combination of MDPs and hidden Markov mod-
els. Partially observable MDPs (POMDPs) are used in the
modeling of system dynamics connecting unobservable sys-
tem states to observations. In this case, an agent can perform
actions that affect the system and cause its state to change,
with the objective of maximizing the reward that depends on
the sequence of system states and the agent’s actions. In this
case, the reward is usually a discounted reward as shown in (6)
above. However, an agent is not able to observe the system
state directly, but at any discrete time point it can only make
observations depending on the state in order to form a belief
state. A belief state can be defined as the situation that the
system believes it is currently in. The belief state can thus
be expressed as the probability distribution over the system
states and the solution of the POMDP is a policy prescribing
which action is optimal for each belief state.

3) MULTI-AGENT MARKOV DECISION PROCESSES
Multi-agent MDPs (MMDPs) are used in multi-agent plan-
ning, where it is typically assumed that there are heteroge-
neous agents, each with its own set of actions for a given task
to be solved.While, generally, each agent in the systemmight
have its own goals, it is assumed that the problem is fully
cooperative [65]. Thus, the system utility for each particular
state is assumed to be the same for all agents. However,
in uncertain and general utility models such a problem can
be modeled as an MMDP in which a chosen action at any
state consists of individual action components performed
by all the agents. After the MMDP has been fully defined,
a useful framework is proposed in which the coordination
mechanism can be studied. In this case, MMDPs can be con-
sidered to be a general case of stochastic games. Stochastic
games are generally defined as repeated interactions between
several participants in which the underlying environmental
state changes stochastically, and depends on the decisions of
each participant [66].

4) DECENTRALIZED PARTIALLY OBSERVABLE MARKOV
DECISION PROCESSES
Decentralized partially observable MDPs (Dec-POMDPs)
are an extension of the POMDP framework and a spe-
cific case of partially observable stochastic games. Here,
the agents are usually built for complex models, such as
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those considering system uncertainty. Dec-POMDPs have
strong advantages over system’s uncertainties which are com-
mon in different domains such as in autonomous navigation,
inventory management, wireless sensor networks (WSNs),
as well as in e-commerce [69]. Problems are modeled using
Dec-POMDPs when the choices have to be made in a decen-
tralized way as dictated by the decision makers. While the
Dec-POMDP model offers rich frameworks for cooperative
sequential decision-making under uncertainty, the real chal-
lenge then becomes the computational complexity of the
model.

5) THE COST CRITERIA AND THE CONSTRAINED PROBLEM
The cost criteria, also known as constrainedMDPs (CMDPs),
is a class of MDPs that usually arise in situations whereby the
controller contains more than a single objective [70]. The cost
criteria approach uses value functions and discounts in order
to evaluate the desirability of choosing different transmission
parameters. This enables efficient allocation of spectrum and
transmission powers that maximize the long-term reward in
a cost-effective manner. A more precise concept of the cost
criteria is defined using the tuple

{S,A,P, c, d}, where c : K→ R (10)

is the immediate cost related to the cost function that has to
be minimized, and d : K→ RK represents a K -dimensional
vector of immediate costs related to a set of K constraints.
This kind ofMDP is frequently used in applications of control
in Markov decision chains with finite state spaces. In their
application, the MDP is used to formulate stochastic opti-
mization problems that need to be solved online using a RL
algorithm. Here, the general idea is that: for any strategy
π and initial distributions ð, the finite horizon cost can be
defined as follows:

CT (ð, π) =
T∑
t=1

Eπðc(st , at ), (11)

where T represents the finite horizon, and the term E is the
mathematical expectation. An alternative cost that gives less
importance to the long-term rewards is called the discounted
cost, such that for a fixed discount factor γ t , it is defined as
follows:

CT
γ (ð, π) = (1− γ t )

T∑
t=1

αt−1Eπðc(st , at ), (12)

then

Cγ (ð, π) = ¯limT→∞CT
γ (ð, π). (13)

However, due to the existence of finitely many states
and actions, the limit, i.e., ¯lim, indeed exists such that (13)
becomes

Cγ (ð, π) = (1− γ t )
T∑
t=1

γ t−1Eπðc(st , at ), (14)

and the expected average cost can be defined as follows:

CT
ea(ð, π) =

T∑
t=1

Eπðc(st , at ) = ¯limT→∞CT
ea(ð, π), (15)

where the left hand-side represents the finite horizon and the
right hand-side represents the infinite horizon. Then, letting
C(ð, π) to stand for any of the above average costs, and
C(π ) : X → R will represent a vector whose state, st , entry
isC(s, π). Then, the cost function that is related to immediate
cost d is defined in a similar way. For example, the finite
horizon cost that is related to dk , k = 1, 2, · · · ,K , is defined
as follows:

DT ,k (ð, π) =
T∑
t=1

Eπðdk (st , at ). (16)

Then, for aK -dimensional vector of real numbers, the con-
strained problem can be defined as one of finding a policy
that minimizes C(ð, π), subject to constraint D(ð, π) ≤ V .
It should be noted that C(ð, π) and D(ð, π) stand for one of
the expected costs defined above [67].

G. APPLICATION OF REINFORCEMENT LEARNING IN
SPECTRUM MANAGEMENT
The application of RL strategies in spectrum management is
problem specific, and this section will categorically review
outstanding RL contributions in traditional wireless net-
works, CRNs, and network slicing. In spectrum management
problems, more especially CRNs, the most important thing
is the accurate estimation of the channel state information
(CSI). This is because the accuracy of the CSI has a direct
impact on the performance of channel training and estimation
algorithms. Channel training in AI-based CR systems helps
avoid the estimation of large dimension channel matrices
by flexibly exploiting advanced signal processing techniques
such as signal subspace estimation [68]. A typical application
of the RL strategy in mobile and wireless networks that
uses channel estimation to perform RA using Q-learning and
MDPs is illustrated in FIGURE 5 below.

FIGURE 5. An exemplary application of RL and Q-learning concepts in
spectrum management.

FIGURE 5 above shows a generic application of the RL
strategy in power management where mobile devices are
transmitting over a dedicated wireless channel [71]. Here,
the system consists of a source queue of finite length B,
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i.e., each mobile device has a queue associated with it, and
a destination queue of finite length B∗, i.e., at the BS. At the
source, mobile devices can select parameters contemplated
for maximizing transmission throughput without upsetting
the power consumption. Assuming a non-saturated source
of users [72], user behavior is represented using the buffer
state, b, channel state, ht , and the allocated transmission
power, pt , as well as the transmission rate, rt . Then, the power
management decision parameters at the BS include the chan-
nel output, yt , the arrival process defined in terms of the
arrival rate, λt , the effective capacity, Ct , defined by the
buffer state, b∗. In this application, the environment can
be defined as the laws of physics that govern the commu-
nication through electromagnetic waves, and the protocols
of the wireless environment that process the actions and
determines their consequences, i.e., rewards or penalties [73].
The instantaneous configurations that the mobile devices can
find themselves in are predominantly the channel conditions
which then significantly affect their throughput, i.e., their
rewards. Thus, it is assumed that a Q-learning algorithm is
the agent operating on both the source and destination and
gives feedback and updates about the environment. Since
some of the environmental parameters may not be observable,
the channel estimation relies on a basis expansion model of
the channel which reduces the number of parameters to be
estimated. Then depending on the buffer state, b∗, at the BS,
the agent has to allocate resources to the different mobile
users, an action, at , which will be a single move out of
a set of possible actions, A, that the agent can take at a
given instant, t . Such an action would include, among others,
transmission admission/rejection/termination, cell handover,
or even channel handoff in terms of CRNs [74]. Therefore,
a transmission action executed in the current channel con-
ditions warrants some reward, rt , in the form of achievable
throughput, which takes the environmental observation to the
next state, st+1.

There are several research works that considered the
application of RL strategies in solving problems in wireless
networking. One of the applications of MDPs was in wire-
less sensor networks (WSNs), where the objective was to
obtain energy-efficient sensor alternatives for data exchange
and gathering in cooperative multi-hop WSNs using data
aggregation. Here, the transmission delay, expected network
congestion, and energy consumption were the performance
metrics used in decision-making. In WSNs, a data query is
used to disseminate commands, i.e., queries, from the BS to
the intended sensor nodes for them to retrieve their readings.
In [75], a probabilistic scheme that selects a set of wireless
sensor nodes that should answer to user queries was proposed.
Here, the authors formulated the problem as a parametric par-
tially observable MDP where the optimization metric was the
average long-term rewards. The system state was formulated
using a vector consisting of the data attributes for each sensor
node. The sensor nodes would then choose actions between
either answering or refraining from answering queries. A ran-
dom access problem in a single cell was considered from a

stochastic game perspective in [76]. The transmission and
reception were formulated using multiple uplink transmitters
sharing a single slotted and synchronous classical collision
channel and a single receiver. The state space of the system
was defined as the number of packets that are waiting at
each transmit buffer, or the holding time, that is the length
of time that each packet has been in the transmission buffer.
The reward/cost was derived based on the buffer holding cost,
which is the number of time slots that the transmitted packet
spent in the buffer, and the throughput, which is the number
of packets that were successfully transmitted. In their work,
both selfish and cooperative users were allowed to select re-
transmission strategy-based performance requirements such
as throughput, delay and transmission costs. The system tran-
sition had a stochastic component that captured the arrival
process, which is the number of packets arriving within a
certain time slot. In [77], stochastic games were approached
from the queuing theory perspective where mobile users
requiring service had to choose on whether they want to be
served by a private, but slow service provider or by a public
but powerful one. The state space of the system consisted of
the current system load for both service providers, and the
cost is the time required to service each mobile user. This
application of stochastic games provides useful insights into
achieving wireless Big Data solutions that can be useful in
analyzing specific situations and suggesting proper behavior
to the participants.

The application of the cost-constrained problem inwireless
communications is usually when there are costs that need to
be evaluated. For example, a contribution in [78] considered
a problem where two types of costs can be incurred; the
buffer overflow cost as well as the packet holding cost. Here,
the primary objective of the cost-constrained problem was
on minimizing the expected average operating costs, subject
to the expected average holding cost. Another generaliza-
tion of this application includes the expected average and
the discounted costs studied in [79], where the existence
of an optimal constrained randomized stationary policy for
which the two stationary policies differ on at most one state.
The approach used in [79] has many advantages in wire-
less communications, because: (i) there is no requirement
of any a priori knowledge on channel statistics and traffic
arrival distribution in order to determine the jointly optimal
power-control, adaptive modulation and coding, as well as
the policies regarding power management policies; (ii) as
opposed to conventional RL strategies, it exploits partial
system information, so, there is less information that require
to be learned; and (iii) it also obviates the action exploration
requirement, which severely limits the adaptation speed and
run-time performance of conventional RL algorithms.

Also, a call control algorithm in which communication
links have variable capacity that supports multiple service
classes was proposed in [80]. In the study, the authors mod-
eled the problem as a CMDP and used an RL algorithm with
the use of Lagrangian and state aggregation approaches to
solve it. The novelty of this approach is that it could control
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class-level QoS in terms of both call blocking and dropping
probabilities. Similar problems that were solved using this
kind of treatment include packet communication systems
with reject options and single-server queue with service rate
control such as in [78], a stochastic optimization problem for
joint data admission control-power allocation to maximize
the throughput such as in [81]. A fully autonomous and
distributed RL scheme was applied to solve a user association
problem in a congested integrated access backhaul (IAB)
network in [82]. An instantaneous load-based bandwidth
partitioning was proposed where a cognitive engine would
judiciously determine network congestion before initiating
a bandwidth split. Here, the effect of network congestion
rate was learned using Q-tables, which was determined in
terms of the learning rate and discount factor. Then, a reactive
load balancing technique that uses an exponentially weighted
moving average was applied to track the SBS load.

1) COGNITIVE RADIO NETWORKS
A channel sensing order problem for a cognitive multi-
channel network was investigated [85]. Since the brute-force
algorithm used to find the optimal sensing order requires
great computational effort, the authors proposed an RL strat-
egy to dynamically search for the optimal sensing order.
One key feature of the proposed algorithm relates to its
adaptability to changes in channel characteristics by learn-
ing from past actions. This feature makes the mechanism
immune to possible changes in channel availabilities due
to changes in PU activity patterns and channel qualities.
The performance of the proposed algorithm was evaluated
through simulations and compared with other schemes. The
results obtained are close to the optimal value provided by
the brute-force algorithm, and showed superiority to the other
schemes. A priority-based multi-agent system for spectrum
allocation using a reserved allocation method was proposed
for spectrum allocation in [86]. Here, the proposed scheme
gathers environmental information to be used in spectrum
sharing decision making. In order to achieve this, multiple
swarm agents were deployed in every node with the objective
of acquiring and storing radio data. The primary task of each
swarm agent was to use the gathered information for judging
proper channel allocation. The results reported in this contri-
bution show that the repository system enables the system to
achieve maximized spectrum utilization. A Q-learning-based
dynamic optimal band and channel selection scheme was
proposed in [87]. The authors considered the environmental
state and the system demands as the state and then select
suitable channels for the required data rate. The simulation
results confirm that the system can dynamically select bands
and channels that maximize the available transmission time
and capacity according to the desired performance. In another
contribution, the authors in [88] proposed an efficient routing
protocol that addresses two design challenges, i.e., (i) trans-
mitting packets via a stable route, and (ii) ensuring that min-
imal interference is imposed to PUs. A generalized version
of the Q-learning algorithm that exploits PU behavior was

proposed. The infinite time horizon was divided into periods,
then into sub-cycles corresponding to stages. This was based
on the assumption that the statistical model parameters of
PU activities will not change during each sub-cycle. From
the simulation results, it transpired that imposing excessive
interference to PUs results from lack of attention to the
multi-stage periodic PU behavior. The performance results
also confirmed that the proposed routing approach outper-
forms existing baselines in terms of throughput and minimal
interference.

2) RADIO NETWORK SLICING
Addressing the issue of fixed RA mechanisms, which result
in low resource utilization and violation of user QoS due
to the fluctuation in network demands is a MDP problem.
As a result, the authors in [89] proposed a resource manage-
ment system for network slicing where a dynamic resource
adjustment algorithm based on RL from each tenant’s point
of view was proposed. The resource management was mod-
eled as an MDP, then a Q-learning-based dynamic resource
adjustment algorithm was proposed. The proposed algorithm
was aimed at maximizing the profit of tenants while ensuring
the QoS requirements of end-users. The simulation results
obtained demonstrated that the dynamic resource adjustment
algorithm significantly increased the profit of tenants com-
pared to existing fixed RA methods while satisfying the QoS
requirements of end-users. In another contribution in [90],
the authors proposed an admission control algorithm for
infrastructure providers to consider the service level agree-
ments (SLA) of the different tenants, as well as their traffic
usage and user distribution. This was done to address the
problem of isolation between network slices and the alloca-
tion of resources across them. In order to enhance the overall
process by means of learning using an RL technique that
considers heterogeneous mobility and traffic models among
diverse slices, the authors designed the following building
blocks: (i) traffic and user mobility analysis, (ii) a learning
and forecasting scheme per slice, iii) optimal admission con-
trol decisions based on spatial and traffic information, and iv)
a reinforcement process to drive the system towards optimal
states. The results obtained through simulations indicate that
the proposed approach provides substantial potential gains in
terms of system utilization while not violating the tenants’
SLA by relying on appropriately tuned schemes.

The authors in [91] proposed a constrained RL-based
approach in order to address the lack of accurate resource
orchestration models and hidden problem structures. The RA
problem was focused on resource virtualization and the prob-
lem was formulated as a CMDP, subject to both cumulative
and instantaneous constraints. Then, an adaptive constrained
RL algorithm based on interior-point policy optimization was
employed to deal with cumulative constraints. The instanta-
neous constraints were handled by projecting the RA deci-
sion generated by the RL algorithm to its nearest feasible
decision. The performance evaluation of the proposed frame-
work proved its effectiveness in RA and outperforms other
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TABLE 4. Application of reinforcement learning techniques in spectrum management.

baselines in terms of service demand guarantees. Another
contribution in [92] proposed a slice admission strategy based
on the RL strategy in the presence of services with differ-
ent priorities. Considered here were slices from different
mobile service providers, virtualized over the sameRAN. The
authors proposed a RL-based admission policy that learns the
services with the potential of bringing high revenue returns
and low SLA violation penalties. The policy was able to
adapt to different conditions in terms of SLA penalties and
priority services. In the performance evaluation, the proposed
policywas comparedwith two deterministic policies, which it
outperformed by a 55%margin. A summary of RL algorithms
used in spectrummanagement is tabulated in TABLE4 below.

H. THE PROBLEM WITH REINFORCEMENT LEARNING
Wireless networks are controlled through feedback signals
in order to avoid instability and malfunctioning, which
can be a challenge in distributed spectrum management.
The main challenge with distributed spectrummanagement is
the simultaneous handling of wireless parameters such as the
operating frequency band, the employed symbol modulation,

and the coding rate to ensure an optimal wireless network
operating point that is both energy-efficient and does not
cause harm to PUs [93]. In a distributed CR environment,
different network entities are required to make local and
autonomous decisions such as spectrum access, channel allo-
cation, and power control in order to achieve different objec-
tives. Such objectives include, but not limited to, throughput
maximization, latency, and energy consumption minimiza-
tion. This kind of decision-making problems for CR systems
could best be modeled using either the MAB or the MDP
techniques. Using these techniques, the problems could be
solved using either RL or DRL strategies.

However, even though RL strategies offer lightweight solu-
tions to these problems, they usually exhibit poor conver-
gence by taking longer to reach the optimal policy. Due to the
fact that future generations of wireless networks will be larger
and more complex, operating in more distributed and diverse
environments, exploring and gaining knowledge of the entire
system using RL strategies could be time-consuming. Due to
this complexity, the time factor is the one that will increase
the network latency. Also, the increase in dimensionality
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and computational complexity, problems involving network
control will become very difficult to handle and result in high
energy consumption. As a result, the dynamic and uncertainty
of the network status, the coexistence and coupling among
different wireless devices with disparate requirements makes
the manageable range of RL to suffer from the curse of
dimensionality. Thus, deep architectures such as DL open a
new era for the extension and development of RL into DRL
in order to address the curse of dimensionality [94].

V. INTRODUCTION TO DEEP ARCHITECTURES
The past decade has seen escalating interest in deep rep-
resentations of DL and DRL. This increased interest has
resulted in the emergence of new applications incorporating
hierarchies of convolutional neural networks (CNNs), long
short-term memory (LSTM), as well as auto-encoders [95].
In terms of DRL, dueling network representations manifested
by exploiting the successes in RL and DL architectures in the
form of deep Q-learning networks (DQNs) and double DQNs
(DDQNs) [155]. Deep architectures can be defined as hierar-
chical structures that combine DL and RL into a hierarchy of
functions with the objective of attaining the knowledge to be
used in learning a hierarchical decomposition of spatial envi-
ronments. In the context of deep architectures, DRL, DQNs
and DDQNs are a step ahead of all AI strategies in terms
of achieving better decision-making. Due to their capability
of storing useful information for future replay makes them
suitable for long-term planning, see Section VI-B1. Thus,
integrating deep architectures into distributed environments
like CRNs will not only impact the CR transmission tech-
nologies in terms of protecting PUs from excessive interfer-
ence, but will also pose a significant impact on the way in
which wireless networks are controlled. Deep architectures
will enhance the coordination of CR devices and also improve
the accuracy of spectrummanagement in vertically integrated
networks. Due to the dependence of deep architectures on
DL, a discussion of DL is required in order to build a solid
foundation.

A. THE DEEP LEARNING TECHNIQUE
The DL technique is the most prevalent AI strategy consist-
ing of networks that are capable of learning, unsupervised,
from data that is either unstructured or unlabeled through a
hierarchy of NNs. A block diagram comparison of the DL
concept and its relationship with traditional ML is illustrated
in FIGURE 6 below.

As illustrated in FIGURE 6, contrary to traditional ML
techniques, DL consists of a DNN block as the only com-
putational block between the input and the output. ML has an
additional learning rule that performs feature selection prior
to the DNN computational block. In the case of supervised
ML, DL can be applied to eliminate the feature engineering
step. Here, the DL technique translates the input data into
compact intermediate representations akin to principal com-
ponents, and derive layered structures that remove represen-
tation redundancy.

FIGURE 6. Comparison of the DL and ML concepts, supervised ML at the
top and DL at the bottom.

Contrary to MLmethods, the hierarchical function of a DL
system allows AI systems to process data using a non-linear
approach by allowing each computation progress through the
computational process of a hierarchy of its layers. In a DL
technique, the hierarchy of NNs or multi-layer NNs form
a DNN, hence the deep qualifier. Thus, a NN consisting of
two or more hidden layers is considered a DNN [96]. Since
the computational DNN for a ML technique usually consists
of a single hidden layer, it is considered to be shallow [97].
Another class of artificial neural networks (ANNs) used in
DL techniques is the recurrent neural network (RNN), which
uses its internal states to process sequences of inputs. The
RNN has memory that is able to capture the hidden layer
outputs from the previous time step; as a result, the outputs
of each layer are determined by both its current inputs and
the hidden states of the previous time step. Thus, the RNN
is dependent on time for over longer time periods, which
makes it suitable for signal compression and reconstruction
as well as time-series problems. Such a DL architecture
has achieved great performance in the areas of super-
vised, unsupervised and reinforcement learning, but there
are still some largely untapped potential in solving mobile
and wireless networking problems. The technical details of
DL models that are discussed in the sequel are provided
for enthusiastic readers who seek deeper understanding of
DL architectures.

B. TRAINING A DEEP LEARNING MODEL
DL models are trained to use NNs of a hierarchy of NNs to
accurately learn the mapping function of inputs and outputs.
The accuracy of DL techniques is achieved by updating the
weights of the NN in response to the errors that the model
makes during the training process. Updates are then made
by adjusting the weights in order to continually reduce the
errors until an acceptable model is achieved. This process is
the most challenging part of using DL algorithms and is the
most challenging and time consuming. This process of a DL
model is shown using a convolutional NN (CNN) structure in
FIGURE 7 below.

As shown in FIGURE 7, the principle of inference which
is the feed-forward/forward passing, and learning which is
the backward propagation (BP) processes on an NN are
illustrated. Here, a two-dimensional (2D) CNN has been
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FIGURE 7. Feedforward/forward passing (i.e., inference) and backward
propagation (i.e., learning) processing in a CNN.

described in mathematical terms, where the weights are
learned by minimizing a loss function L(w) using a gradient
descent (GD) method through chain rule and BP. The prob-
lem of synthesizing NNs that can serve as the state and the
output feedback laws to achieve control objectives that can
be specified as reachability of a target set. The reachability
is defined as the region of stability for the target set around
an equilibrium point. Temporal logic is used in writing the
logical formulas that are applied in training the weights of the
feedforward-feedback network shown in FIGURE 7 above
from training samples. The loss function being computed is
learned using stochastic gradient descent (SGD) algorithm,
which is discussed below.

1) STOCHASTIC GRADIENT DESCENT
The stochastic gradient descent (SGD) algorithm is the most
prevalent and efficient technique used in the training of DL
models such as DNNs and other non-convex models. As a
result, the theoretical properties of SGD are well understood
for the optimization of both convex and non-convex objective
functions. However, in the latter, it can be related to other
assumptions on objective functions such as the error-bound
conditions and the Polyak-Lojasiewicz conditions [98]. How-
ever, there exists a huge gap between the theoretical under-
standing of SGD algorithms and their promising practical
behavior in the non-convex learning settings, which is exem-
plified in the setting of training highly non-convex DNNs.
Despite that, due to its low computational complexity per
iteration, it is also used in solving optimization problems
in a variety of ways, including traditional ML problems as
well as those applied in signal processing. In each SGD
iteration, a gradient is first computed based on a randomly
selected sample, then model parameters are updated along
the negative gradient direction of the current iterate - a pro-
cess called BP. The training of a DL model can be viewed
as a feed-forward and feedback control process known as
backward propagation, as discussed in Sections V-B2 and
V-B3 below.

2) FEEDFORWARD PROPAGATION
During the feedforward or forward propagation process,
the input data are fed in the forward direction of the NN,
and in the progression each hidden layer accepts that data
and processes it as per the activation function and passes it
to the next layer. This process is carried out until the output
is obtained at the output layer [99]. With reference from
FIGURE 7, the input layer accepts the inputs x =
{x1, x2, · · · , xn}, processes it through the operation h1 =
φ(w1 ∗x), where φ(·) represents a non-linear transformation -
an activation function, the term w1 denotes the weight index
of the weights of the first hidden layer, and h1 represents the
output of the first hidden layer [100]. The output h1 is passed
over to the next hidden layer in the hierarchy, which also
applies the same non-linear transformation to learn and create
the next statistical model as output h2. The iterations continue
to the third layer to learn and create h3, as the output of the
third hidden layer, until the output has reached an acceptable
level of accuracy, where the output y = {y1, y2, · · · , yn} is
produced at the output layer. In a CNN with more hidden
layers, this is subsequently fed as input to the next hidden
layer, proceeding layer by layer, until the output y is achieved
at the end. The feedforward propagation process shown in
FIGURE 7 is as follows:

h1 = φ(w1 ∗ x); h2 = φ(w2 ∗ h1);

h3 = φ(w3 ∗ h2); y = φ(w4 ∗ h3), (17)

where the expression (· ∗ ·) denotes a convolution operation,
and y is the output.

3) BACKWARD PROPAGATION
With reference to the top of FIGURE 7 above once again,
the bottom of the figure presents the opposite of what is
discussed above - the backward propagation (BP) process.
The BP algorithm is a supervised learning technique that is
based on the GD method whose objective is to minimize
the error of the DNN by moving the computation down the
gradient of the error curve [101]. This algorithm is a special
case of the chain rule of derivation, where α denotes the
learning rate, the asterisk ∗ represents a convolution operation
- all used to obtain the gradients ∂L/∂w in each hidden layer.
Therefore, in order to train the CNN approximately, the loss
function L(w) is used as a measure of the distance that the
output y is from the actual ground truth y∗. This operation
concludes the objective of training, which is to obtain the best
weights w that will minimize the loss function as follows:

L(w) = w1 − α
∂L(w)
∂w1

w2 − α
∂L(w)
∂w2

w3

−α
∂L(w)
∂w3

w4 − α
∂L(w)
∂w4

. (18)

Therefore, the training objective is based on obtaining the
best weights w that minimizes the loss function L(w) and the
parameters of the DLmodel are learned using SGDwith mini
batches. The loss function is learned using and during the BP
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algorithm over the weights of the last hidden layer, and also
updates the weight through the following computation:

w4 = w4 − α
∂L(w)
∂w4

. (19)

The same computational operation is performed for each
weight in the direction indicated by the gradient following
the chain rule until the gradient descent eventually leads to a
set w that minimizes the loss function L(w) [99].

C. APPLICATION OF DEEP LEARNING MODELS IN
SPECTRUM MANAGEMENT
Recent breakthroughs in DL over the past few years have
been met with high enthusiasm by the telecommunications
research community. As the most important enabling strat-
egy for AI, the DL technique has had successful applica-
tions in areas such as medical diagnosis, speech recognition,
natural language processing, computer vision, communica-
tion network domains, as well as search engines, to name
just the prominent ones. Because of their computational
prowess, DL techniques have gained popularity across dif-
ferent industries where they are used to perform a plethora
of complex tasks. Examples of these complex tasks where
DL has attained remarkable achievements include computer
vision, where it is difficult to characterize real world images
and also in wireless channels with rigid mathematical mod-
els [102]. However, all these are data-driven approaches.
The application of DL strategies in wireless communications
require features with specific characteristics in order for
them to function properly. In as much as DL strategies are
predominantly data-driven, in wireless networking problems
the data-driven approaches cannot work in isolation, without
complimenting traditional design techniques. Thus, the need
for signal processing techniques, such as mathematical pro-
gramming and nature-inspired techniques, whose objective
is to prepare proper input dataset, compatible with the ML
algorithm requirements, will always be there.

In mobile and wireless networking, DL techniques equips
mobile devices with the capability of gathering the informa-
tion required in the configuration of their parameters for rapid
adaptation in different environments. Since applications in
spectrum access require the imposition of non-trivial bound-
edness assumptions on the gradients at all the iterates encoun-
tered during the learning process, which however depend on
the realization of the process being optimized. Answering the
design questions in telecommunications, wireless communi-
cations in particular, requires careful analysis and implemen-
tation that attends to the details of real-world scenarios such
as interference levels, spectrum access, and spectrum/channel
handoffs. In terms of spectrum access, it is a goal-directed
phenomenon that requires DL techniques to better perform
service classification to enable for accurate prediction.

1) THE MULTI-LAYER PERCEPTRON
The multi-layer perceptron (MLP) is the simplest of all
DL structures that has found applications in communication

systems. A simple MLP consists of at least three layers,
with computational units densely connected in each layer,
hence requiring the configuration of a substantial number
of weights [101]. It should however be noted that it is only
MLPs with more than a single hidden layer that qualify to be
regarded as DL structures. As discussed in the above section,
the BP algorithm has become the most popular and effective
learning model for multi-layered networks such as MLPs.
Given an input vector x, a standard MLP can perform the
operation given in (2) with the objective of improving the
non-linearity of the DL model. The versatility of the MLP
allows it to be employed for all ML purposes, even though
it has high implementation complexity and low convergence
efficiency. In order to train a MLP, the set of parameters that
need to be learned are in the set w = {W , b}, where the BP
algorithm is used to perform parallel training for improving
themodel efficiency.MLPs are widely in DL problems, either
as a baseline or are integrated into more complex architec-
tures. MLPs built to be integrated into complex structures can
be employed in assisting in feature extraction models built for
specific objectives in mobile and wireless networks such as
classification or clustering. One example of this integration
is in the final layer of a CNN that is used for classification
purposes, and such an architecture can potentially be explored
for analyzing continuously changing mobile environments.

A series of effective schemes have been developed using
MLP structures to solve different problems and overarch-
ing have been reported. A key generation and certifica-
tion technique using MLP in wireless communication of
data/information was proposed in [103]. In their proposed
technique, both the sender and receiver used identical MLPs,
and both perceptrons began the synchronization process by
exchanging control frames. During the synchronization stage,
messages for integrity testing on synchronization were car-
ried out to obtain synchronized identical weight vectors.
After this initial procedure, the identical and synchronized
weight vectors then form the key for encryption/decryption.
In [104], a complex MLP model for multi-user detection
in space division multiple access-orthogonal frequency divi-
sion multiplexing (SDMA-OFDM) systems was proposed
to perform channel approximation and multi-user detection
simultaneously. Here, the authors proposed a technique for
minimizing the high computational complexity of classical
techniques such as maximum likelihood. Such classical tech-
niques are known to suffer from high computational com-
plexity, while the loss function, usually in the form of an
MMSE yields poor performance results as the number of
users begin exceeding the number of receiving antennas. The
authors in [105] applied the Levenberg Marquardt training
algorithm on MLPs to be used for mobile positioning, which
was supposed to be compliant with the Global System for
Mobile (GSM) network operations in urban environments.
Here, the received signal strength was used to evaluate the
accuracy, the cost, the reliability and coverage, which were
the key performance metrics. Real data obtained from field
measurements was used in evaluating the performance of
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this technique, and the results obtained met the practical
positioning defined by the Federal Communication Commis-
sion (FCC) accuracy requirements.

A non-intrusionalmedical quality of experience (QoE) pre-
diction model was proposed in [106]. This was a QoS-aware,
content-aware, and device-aware model that uses MLPs to
act as a platform for maintaining and optimizing diagnos-
tic quality through a device-aware adaptive video-streaming
mechanism. This application was designed for small cell net-
work deployments and its training involved the use of unseen
data sets consisting of input variables such as QoS, content
features and display device characteristics. To validate the
efficiency of this model, subjective tests were carried out by
medical experts in the form of amedical QoEwhich wasmea-
sured using the mean opinion score (MOS). The prediction
accuracy of this model was statistically evaluated via correla-
tion coefficient and the root mean squared error (RMSE) and
the results showed to be successful inmeasuringmedical QoE
closer to the visual perceptions of medical experts. In [107],
a secondary user-experience-oriented RA for real-time CRN
purposes was proposed. A deep neuroevolution (DNE) tech-
nique was proposed to advance DL capabilities by addressing
its built-in limitations in dynamic resource allocation. Since
the maximization of transmission rates and the minimization
of latency are conflicting objectives that require balanced
optimization, the phenotypic plasticity of transmission rates
and delay constraints inside the MLP were used to achieve a
stable learning framework. Using this technique, the stability
of dynamic RA and SU satisfaction was achieved when the
number of SUs was increased.

2) THE RESTRICTED BOLTZMANN MACHINE AND DEEP
BELIEF NETWORKS
The restricted Boltzmann machine (RBM) is typically an
energy-based undirected graphical model whose architectural
structure consists of one visible layer and one hidden layer.
The RBM was originally intended for unsupervised learn-
ing purposes and its application in DL problems marks the
point where DL meets the physics field of thermodynam-
ics. According to the RBM architecture, which is discussed
in [108], each computational unit can only assume binary
values, and the probability that a binary state of a visible
neuron i is set to 1 can be given as follows:

P(hi = 1|x) =
1

1+ e−W ·x + bi
, (20)

where W represents the weight, h, and x respectively rep-
resent the hidden and visible units of the RBM which are
assumed to be conditionally independent of each other. When
RBMs are stacked together, the resulting architecture is
referred to as a deep belief network (DBN), which achieves
superior performance in time-series forecasting. DBNs usu-
ally consist of probabilistic generative NNs composed of
multiple layers of RBMs [109].

The application of this energy-based and the probabilis-
tic model in spectrum management can be found in [110],

where the authors studied spectrum occupancy reconstruc-
tion by sampling from a Markov random field. With the
goal of predicting the latent binary values of spectrum
occupancy, the RBMs were effectively trained using the
Metropolis-Hastings algorithm through successive episodes
of Gibbs sampling. An application of DBNs that consisted
of a three-layer stack of RBMs was proposed in [109] for
application in time-series prediction. In their contribution,
the authors used the deep network of RBMs for capturing
the features of the input space of the time-series data. The
stack of RBMs was pre-trained using energy functions and
in order to fine tune the connection weights between the
visible and hidden layers, it was trained using aGD algorithm.
A DBN architecture consisting of multiple layers of RBM
auto-encoders (AEs) was used for predicting traffic volume
in the internet of vehicles (IoVs) in [111]. Here, the time-
series data was obtained from roadside units and was used
by the three-layer DBN for extracting and learning key input
features used for constructing a model for predicting traffic
flow. In their contribution, the authors used the deep network
of RBMs to broadcast time-critical traffic information in
vehicular communications. The proposed architecture was
trained using a firefly algorithm in order to optimize the DBN
topology and the learning rate parameters.

3) THE LONG SHORT-TERM MEMORY AND ITS VARIANTS
The long short-term memory (LSTM) network is a type of
RNN that was designed in order to address the vanishing
gradient problems that are associated with conventional RNN
architectures such as the auto-regressive integrated moving
average (ARIMA) [112]. The ARIMA is another architecture
used for time-series purposes, which uses a naive predictor in
its predictions. After successfully addressing the vanishing
gradient problems of the ARIMA, the LSTM became a spe-
cific kind of scheme in DL that effectively overcomes this
problem by using three regulators of the flow of informa-
tion inside the LSTM unit. These three regulators are gates
referred to as the input gate, output gate, and forget gate,
which help in the learning of long-range dependencies in
time-series data. Thus, the learning of long-range dependen-
cies embedded in time-series data, which are an obstacle
for most prediction algorithms, are solved using the LSTM
network. A single memory cell of the LSTM architecture is
illustrated in FIGURE 8 below.

The LSTM cell shown in FIGURE 8 operates in the follow-
ing way: The input gate, labeled as it , takes new input points
from the outside and processes them as newly available data.
The forget gate, labeled as f t , is the one that decides when to
forget the output results of the previous cell and thus selects
the optimal time lag for the incoming input sequence. Then,
the output gate, labeledwith ot , takes all the computed results,
and generates an output for the LSTM cell. The input gate of
the memory cell (not shown in the figure) takes input from
the output of the LSTM cell in the last iteration. Because of
its need for memory, the forget units gives the memory cells
the ability to determine the time when certain information
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FIGURE 8. A single memory cell of an LSTM architecture.

has to be forgotten, hence determines the optimal time lags.
Thus, the LSTM is more effective in the utilization of model
parameters in the training of predictive models for large-scale
traffic matrix predictions and converges quickly to give state-
of-the-art prediction performance.

In modeling the LSTM for time-series applications,
the output layer of the LSTM cell is modeled using a
linear regression layer. Therefore, if the input time-series,
the hidden layer state of the memory cell, and the output
time-series are represented as X = (x1, x2, · · · , xn), H =
(hi, h2, · · · , hn), and Y = (y1, y2, · · · , yn), respectively.
Thus, the computation procedure of an LSTM cell, with the
mean squared error (MSE) loss function is given as fol-
lows [113]:

MSE =
n∑
t=1

(yt − pt )2, (21)

where yt represents the actual output and the term pt rep-
resents the projected traffic flow prediction. In order to
minimize the training error while simultaneously avoiding
local minimal points, Adam optimization [114], which is
a modification of SGD optimization with adaptive learning
rates, is applied for backpropagation through time (BPTT).
Therefore, the LSTM structure resolves the decaying error
back-flow issue common in many time-series problems
where accurate predictions are required and traditional archi-
tectures such as MLP fail. Another version of the LSTM is
the random connectivity LSTM (RCLSTM) which is based
on stochastic connectivity between neurons. Compared to
the traditional LSTM, the RCLSTM can achieve signifi-
cant breakthroughs in the architecture formation of NNs,
since it exhibits a certain level of sparsity. This LSTM vari-
ant can satisfyingly reduce the computational complexity,
hence suitable for latency-stringent applications. However,
this improvement demonstrates that its prediction accuracy
is comparable to that of the conventional LSTM, no matter
how much the number of training samples and the length of
input sequences can be changed.

Apart from time-series forecasting, the LSTM network
has had extremely successful applications in time-dependent
signal processing problems such as speech recognition, joint
source-channel coding design, as well as machine transla-
tion [115]. As a result, in 2015 it found its first application

in vehicular traffic flow prediction, and subsequently in
mobile and wireless communication networks for the pre-
diction of data traffic. It was then postulated that even user
mobility traces could benefit directly from the capabilities
of LSTM network. In [116], it was proposed for use in
proactive caching for mobile edge computing (MEC), where
the authors applied it to improve the prediction accuracy
of content popularity. The motivation of their contribution
was due to the fact that the prediction accuracy and content
popularity of cached content are typically unknown and tend
to vary over time. In [115], an LSTM scheme was used
together with a module generator in spectrum prediction for a
latency-optimized field-programmable gate array. Compared
with the ARIMA, the LSTM scheme obtained superior results
in radio frequency spectral prediction. Another contribution
in [166] proposed a time-series prediction scheme for data
mining, where the RCLSTMmodel was used in the extraction
of useful information records to determine future values of
certain parameters.

The authors in [118] proposed a DL scheme for address-
ing the trade-offs between QoS and energy saving using
balanced optimization. Here, the authors used a DL-based
computational-resource-aware energy consumption tech-
nique that uses an exploration technique of the system
state-space and traffic load prediction to come up with a
balanced and better trade-off betweenQoS and energy saving.
The performance of the exploration technique was evaluated
against a traditional random tree technique, which it outper-
formed with a 9%margin. In another contribution, the LSTM
was used in the design of an online optimization algorithm
called energy-aware and adaptive management, abbreviated
ENAAM by [119]. The ENAAM algorithm was proposed
for energy saving and QoS provisioning by exploiting the
short-term traffic load and harvested energy forecasts using
an LSTM network. Based on foresight control policies where
the BSs and virtual machines (VMs) could be switched
ON/OFF dynamically with the objective of saving network
energy, this contribution was inspired by the convergence of
communication and computing that led to the emergence of
the MEC paradigm. With the computing resources, which are
supported by VMs and distributed at the edge of the mobile
network, the results obtained indicated that the BSs were able
to ensure reliable and ultra-low latency services and reduced
the network energy consumption.

4) THE AUTO-ENCODER
Auto-encoders (AEs) are actually unsupervised learning
techniques that also pose as a supervised learning technique
in disguise, while at the same time it is also an unsupervised-
ish DL technique. AEs were initially designed for unsuper-
vised learning purposes in an attempt to copy the inputs to
their corresponding outputs. Their underlying principle of
AEs is to learn the compact representation of input data for
the purpose of dimensionality reduction [120]. However, they
are also as supervised learning techniques since it does have
a target value (i.e., original inputs), thus it is considered to
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have some degree of supervision. On the other hand, it is
considered an unsupervised learning technique since the tar-
get value is not in addition to the input data. Yet another
characteristic of an AE is that it belongs to the family of
NNs, but it is also very closely related to principal component
analysis (PCA) [121]. Here is how the relationship between
the application of AEs in unsupervised learning and DL can
be understood: (i) AEs are an unsupervised algorithm that is
similar to PCA; (ii) in DL problems, it is used to minimize
an objective function similar as in PCA; (iii) it is a NN; and
(iv) the target output of a NN is its input. Since an AE in DL
problems is used for mapping the original input data from
the input layer into a code, so that it can be able to recover
the data that closely matches the original input data at the
output layer [122], it is a DL technique. In summary, AEs
are unsupervised learning in design, but the depth of their
architecture renders them DL techniques.

A typical application of an AE in an end-to-end communi-
cation system was discussed in [123], where the transmitter
communicates with the receiver over a time-varying wireless
channel. Here, the AE was modeled as a feed-forward NN
with several layers, and the transmitter and receiver were
represented using fully connected DNNs that were jointly
optimized over an additive white Gaussian noise (AWGN)
channel. The time-varying frequency response of the wire-
less channel was characterized in terms of the time delays,
the Doppler frequency shifts, as well as channel gains, all
of which were assumed to vary randomly in the modeling.
As a result, the channel was represented using a single layer
that provides the likelihood transfer function p(y|x) between
the transmitter and receiver. Here, the receiver receives the
channel output signal y and processes it to the received signal
r via several transformations. Other extensions of the same
AE-based concept were applied in multi-user communica-
tions over interference channels for orthogonal frequency
division multiplexing (OFDM) systems with multipath chan-
nels in [124]. It was also used in the transceiver operation
of a purely data-driven DL method without the use of accu-
rate CSI in [125]. There is also another variation of the
AE, namely the de-noising AE [126], which is a basic AE
architecture that takes partially corrupted inputs in a random
manner in order to address the identity-function risk, which
the AE then has to recover or de-noise.

5) THE STACKED AUTO-ENCODER
The last of the DL applications uses a hierarchy of stackedAE
(SAE), which consists of a stack of multiple layers of sparse
AEs. A SAE employs greedy-wise training and has since been
utilized with a Gibbs softmax activation layer to fine-tune a
sub-band power allocation model in [127]. This hierarchical
model of AEs is used to extract high-level features as well
as correlations from input data through its multiple layers of
non-linear processing units, which improves the accuracy of
prediction. DL architectures that have been built in this way
can be trained to reduce computational and time complexity,
since once the model has been trained it can be able to achieve

multiple objectives without the need of retraining and can
also make inferences within the order of milliseconds. The
computation of distinct features from the input data has since
become easy with the advent of the SAE. For example, mod-
ulation identification and the classification of the transmitted
signals in modern and intelligent systems such as CRs have
remained a huge challenge using traditional methods, but they
have since become easy through the use of the SAE.

A spectrum sensing algorithm for detecting OFDM signals
using DL and covariance matrix graph by exploiting the
proficiency of DL algorithms in image processing was pro-
posed in [128]. The proposed spectrum sensing scheme was
conducted by firstly approaching the detection of the OFDM
signals through the analysis of the structural characteristics
of the covariance matrix. Here, the covariance matrix was
transformed into a gray-level representation, after which the
gray-scale map of the covariance matrix was established.
Then a CNN that was designed based on a LeNet-5 network
was utilized to learn the training data so as to hierarchically
obtain more abstract features. During testing, the test data
was fed as input into the trained SAE model to complete
the spectrum sensing process of OFDM signals. Another
SAE application on spectrum sensing problems based on
time domain signals was proposed in [129], as is shown in
FIGURE 9 below.

FIGURE 9. Implementation of time-domain signals in spectrum sensing
using a SAE.

Here, the authors proposed a novel spectrum sensing
framework for OFDM signals to address the issues of noise
uncertainty, time delay and carrier frequency offsets suf-
fered by conventional OFDM. The stacked AE was designed
to extract the hidden features of OFDM signals and to
use these features to classify the OFDM user’s activities.
In another implementation, the authors proposed to improve
the spectrum accuracy under low SNR conditions using
time-frequency domain signals as shown in FIGURE 10
below.

Here, despite the cost of higher computational complexity,
higher spectrum sensing accuracy was achieved compared
to the time domain implementation shown in FIGURE 9
above. In [130], a blind spectrum sensing method based on
DL was studied in order to improve spectrum sensing in
low SNR situations without any a priori information of the
licensed users. In this contribution, three kinds of NNs were
used together: a CNN, LSTM and fully connected NNs and
resulted in improved performance compared to the traditional
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FIGURE 10. Implementation of time-frequency signals in spectrum
sensing using a SAE.

energy detector, especially in low SNR regimes. The effect of
different LSTMmemory layers is also analyzed and explored
the reason why the DL-based detector achieved better per-
formance. The motivation for using several LSTM layers
was to establish a more efficient model for the probability
distribution of the observed sequence of HMMs, and to also
extract the timing features of the signals as well as to distin-
guish the signal and noise from the timing regularity of the
input data. The SAE model consisted of several LSTM layers
and a regularization layer, whose role was to speed up the
training of the model as well as improve on the regularization
capability of the model. The fully connected NNs uses a stack
of multilayer NNs to form a DNNmodel in order to refine the
output features of the LSTM and also attenuate the influence
of task-independent features on the decision results. The last
layer of the model, which is the decision layer of the entire
network, used a linear NN.

The authors of [131] proposed an energy saving and QoS
provisioning scheme to address the issue of energy consump-
tion in distributed CRNs. The authors focused on single BS
management as the objective of their study, where physical
resource blocks were considered as the spectrum units to
be allocated to SUs. Here, the dynamic resource allocation
problem was solved using a bipartite matching algorithm in
order to obtain the resource consumption efficiency, then
a predictive control scheme that uses a SAE method was
employed and was utilized to predict the traffic load of
the BS towards achieving better energy saving. Then, under
quite general assumptions about the traffic arrival and ser-
vice processes, the arrival of workload and their departure
at the BS were defined using the Markovian arrival pro-
cess and general service process, respectively. The possible
impatience of packets waiting in the buffer was also taken
into account in terms of the required transmission deadlines
and two scheduling schemes were employed at service. As a
result, the BS processor was treated as a hybrid switching
system, toggling between the two packet scheduling schemes,
first-come-first-served and processor sharing all treated with
mean slowdown, depending on the forecast traffic load and
required computational requirements. The simulation results
that were obtained indicated that the proposed predictive
control scheme achieved superior energy saving using the
processor sharing even when the traffic load was increasing.

In an intelligent application of the DL technique to offer
efficient load balancing in network slicing, the authors

in [132] proposed a DeepSlice model. The implementa-
tion of the proposed model used a NN implementation for
in-network DL to manage network load efficiency and avail-
ability through prediction. The available network key per-
formance indicators (KPIs) were used to train the model to
analyze incoming traffic and predict the network slice for
unknown device types. The proposed model was able to make
smart decisions in terms of selecting the most appropriate
network slice, even in the case of network failure. However,
fulfilling the flexibility, agility, and intelligence towards the
provisioned services and infrastructure management tasks in
increasingly heterogeneous, dynamic, and large-dimensioned
networks is a challenging task that contradicts the existing
network slicing solutions. To tackle this issue, the authors
in [133] proposed a DL solution using a two-stage slicing
optimization model with time-averaged metrics to safeguard
the network slicing in the dynamic network. Here, it was
assumed that prior knowledge about the environment was
unknown, but could be partially observed at run-time. How-
ever, because of the unknown future system realizations
before decision-making, obtaining an offline solution for this
problem proved to be intractable, the DL technique was aug-
mented with Lyapunov theories. This augmented approach
enabled the system to learn safe slicing solutions using his-
torical records and run-time observations. This proved to be
always feasible and near optimal up to a constant additive
factor as the results demonstrated a 2.6 times improvement
over three other baseline algorithms. A comparison of the
algorithms discussed is shown in TABLE 5 below.

D. ADVANTAGES OF DEEP LEARNING FOR
SPECTRUM MANAGEMENT
Since it is evident from the discussion in the above section
that DL strategies have not fully penetrated spectrum man-
agement, this section discusses the most pervasive advan-
tages of DL that can be very instrumental in solving mobile
and wireless networking problems, especially in spectrum
management.

1) MULTIMODAL INFORMATION UNDERSTANDING
Multimodal learning refers to integrating a variety of modes
or methods in executing certain processes. As opposed to its
unimodal counterpart, which considers the understanding of
a single mode of data, multimodal information understanding
entails the harnessing of multiple modalities of informa-
tion [134]. This approach to learning and understanding data
combines extant theories of evidence accumulation in order
to develop an integrated framework for modeling multiple
processes manifesting in real-time. This approach to informa-
tion learning and understanding will be very useful in solving
a variety of problems in urban computing, where a number
of contextual scenes need to be learned in real-time. The
presentation of an urban computing scenario and informa-
tion aggregation is elaborately discussed in future research
directions in Section VII-D. DL, with its rich family of

VOLUME 9, 2021 113979



M. C. Hlophe, B. T. Maharaj: AI Meets CRNs: Prospective Review on Application of Deep Architectures

TABLE 5. Application of deep learning techniques in mobile and wireless communications and spectrum management.

methods, which encompasses different NN models, hierarchy
of probabilistic models, and a wide variety of supervised
and unsupervised feature learning algorithms enables for
the development of fundamentally new ways to think about
communication systems. The area of mobile and wireless
communications is a field that is rich with expert knowledge
on how wireless channels of different types can be modeled
in order to compensate for various hardware imperfections.
Due to the capability of DL models to enable the implicit
capturing of the intricate structures of large-scale data, they
have helped in designing of optimal signaling and detection

schemes that ensure reliable data transfer [168]. While it is
an impossible task to write robust algorithms that can handle
multiple tasks and handle large amounts of data of different
modes using traditional optimization techniques, DL makes
the implementation of algorithms that can learn to accomplish
such tasks beyond the level of accuracy of traditional methods
a possibility [136]. As a result, with DL, it is possible to
design algorithms that enable straightforward analytic algo-
rithms for symbol detection for a variety of channels and
modes of information. Such models can be used to implicitly
capture the intricate structures of large-scale data through
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detecting the different constellation symbols from wireless
channels other than AWGN [137].

2) MULTIVARIATE REPRESENTATION OF DATA
Multivariate data representation entails representing data
with different topology orders and different variables. A sim-
ple example of multivariate data is geometric data, which
refers to multivariate data that is represented by coordinates,
topology, metrics and order [139]. The DL technique is effec-
tive in handing geometric mobile data using a rebranded
technique called geometric DL [138]. Geometric DL is the
niche field under the umbrella of DL that aims to build NNs
that can learn from non-Euclidean data. This niche field is a
conundrum for the other ML techniques, since by far most
DL is performed on Euclidean data, which is either 1D or
2D. Since all that can be observed in the real-world exists
in three-dimensions (3D), multivariate representation of the
data using geometric DL will enable the data to reflect that.
Therefore, it is about time that DL approaches get to that
level since the use of flying platforms such as unmanned
aerial vehicles (UAVs) is rapidly growing in wireless net-
works [140]. Using this technique, mobile data related to
mobile user locations as well as network connectivity can be
represented using point clouds on graphs to reveal important
geometric properties. Therefore, utilizing such an architec-
ture has a great potential of revolutionizing the way mobile
data is analyzed.

3) FEATURE EXTRACTION AND PATTERN RECOGNITION
Feature extraction, mainly associated with dimensionality
reduction, entails the conversion of any given input data into a
set of features [141]. Feature extraction usually begin with an
initial set of consistent data, then develops some borrowed
values, also known as features. The borrowed values are
expected to be descriptive, and to simplify the consequent
learning and observed steps [142]. DL methods, through the
use of DNNs, are able to automatically extract high-level fea-
tures through the layers of different depths from data that have
complex structures and inner correlations. The importance of
feature extraction and pattern recognition can be amplified
in the context of spectrum sensing for PU signal classifica-
tion, where the pattern of signals generated by heterogeneous
sources can easily be recognized [143]. Since some signals
are often noisy and usually exhibit some non-trivial spa-
tial/temporal patterns, labeling them using feature engineer-
ing would require outstanding human effort and skills [144],
DL would prove beneficial for this task. The role of DL in
such problems would be to reduce the cost of the hand-crafted
feature engineering in the processing of heterogeneous and
noisy mobile data. The attractive advantage of DL in this
task is its effectiveness in recognizing patterns in unlabeled
data. Supervised learning also has exceptional capabilities
in execution of pattern recognition tasks; however, it only
thrives with labeled data. However, most of the currentmobile
systems generate either unlabeled or semi-labeled data, which
presents a quantitatively different situations for supervised

learning [145]. Supervised learning cannot utilize unlabeled
data explicitly while DL provides a variety of methods for
this task, such as the RBMs, which allow for the exploiting
of unlabeled data in order to learn the useful patterns from
the data in an unsupervised manner. Examples of applica-
tions include data clustering, data distributions approxima-
tion, unsupervised or semi-supervised learning, as well as
one/zero-shot learning. This amazing capability of DLmakes
it attractive in solving mobile and wireless communication
networking problems than the other ML methods. This is
because it provides a means for achieving most of what is
impossible to achieve using the other ML techniques.

4) COMPRESSED REPRESENTATION OF DATA
Compressed representation of data, or data compression,
is an old signal processing technique of encoding information
using fewer bits than in its original representation. While
compressive representation is not easy to achieve using other
ML paradigms such as linear regression and random forests,
compressive representations learned by DNNs can be shared
across different tasks. Because of the vast amounts of data
at our disposal that require to be operated on continuously,
regardless of the storage and access distribution and respond
quickly to new information, DL techniques can be very ben-
eficial in model compression and accelerated data retrieval
using DNNs [146]. Thus, for purposes of reducing the huge
amounts of overheads in data storage and processing in
mobile networks, data compression can be instrumentally
beneficial in compressing the size of data while maintaining
their integrity and utility. In this case, it would be possible
to train a single model to fulfill multiple objectives with-
out requiring complete model retraining for the different
objective tasks. Therefore, it can be argued that compressed
representation of data is essential for mobile and wireless net-
work engineering, as it reduces computational and memory
requirements of mobile systems when performing multi-task
learning applications [147]. Even though there is an explo-
sive proliferation of DL applications in mobile and wireless
communications, by contrast, the application of DL strategies
in spectrum management is not straight-forward, except for
spectrum sensing. Although DL strategies enable for the
creation ofmachines that have high accuracy in specific tasks,
they are still limited in making certain decisions. They are
relatively weak in problems beyond classification and dimen-
sionality reduction, and this has limited their applicability in
the wireless network economics involved in spectrum access.
Hence the need for DRL strategies.

VI. DEEP REINFORCEMENT LEARNING
Deep reinforcement learning (DRL) strategies are an exten-
sion of RL strategies that embrace the advantage of using
DNNs as powerful function approximators. DRL is a reward
(or throughput) maximization technique that uses either
CNNs, ANNs or DNNs to represent Q-networks, and to
train this Q-network to predict future reward. In a DRL
scheme, the DNN is the agent that is used to improve the
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accuracy and speed of learning for RL algorithms in dealing
with the high dimensional and continuous control problems
through the continuous interaction with the environment.
As a result, DRL strategies are able to provide autonomous
decision-making mechanisms for the different network enti-
ties by learning and building from previous knowledge.
In a DRL architecture, the DNN agents learn the mapping
of the state-action pairs to rewards by using coefficients
(i.e., weights) in order to approximate the function that relates
the inputs onto the outputs [148]. This kind of a learning
mechanism consists of finding the right weight coefficients
by iteratively adjusting them along gradients that promise
to reduce the error. The optimization is carried out using a
DNN via logistic sigmoid activation functions and the error is
propagated back to the first hidden layer to improve the opti-
mization process. However, it should be noted that CNNs and
DNNs perform differently in DRL strategies, so the choice of
the type of NN that fits the application is very paramount.

A. DEEP REINFORCEMENT LEARNING
ALGORITHMIC DESCRIPTION
In a DRL strategy, the initialization of the DNN coefficients
is performed in a random/stochastic manner from the begin-
ning. Performing an action depends on the future actions
and states, thus the duty of the DNN agent is to rank the
possible actions to execute and subsequently choose the
best action using the policy, π . When a stochastic policy
is applied, π (s) maps the state to a distribution all possible
action at the given state. Then, the action selected at time t
is a = argmaxa∈A π (s). For example, when using a distinct
Q-learningmethod, the agent learns theQ-function, i.e., state-
action, instead of policy. The reward is then defined by reward
function, r(st , at ). Ignoring the effect of environmental noise
disturbances, the system state can be defined using the packet
arrival rate, stk and the level of resource utilization at the BS,
stu , such that the state space is the union of the two, as follows:

st = stk ∪ stu . (22)

Then, assuming that there are M equally split physical
resource blocks (PRBs) at the BS, the resource assignment
can be defined as the action, such that the action space is
defined as follows [149]:

at = {1, 2, · · · , |M |}. (23)

Then, considering the effects of power consumption,
the available PRBs, and the reliability of the BS, the instan-
taneous reward function can be defined as follows:

Rt = ω1P(t)− ω2PRB(t)− ω3Re(t), (24)

where the weighting factors, ω1, ω2, and ω3, are negative
indicating their influence on the overall reward. The term
P(t) is the total power consumption, denoting the energy
cost component. The term PRB(t) denotes the number of
available resources, which depend on the number of packets
still in the system, thus inversely correlated with the packet

latencies - representing a negative component of the total
reward. Finally, the term Re represents the system reliability.
Then, using the discrete-time based definition ofQ(s, a) given
in (5), the DRL agent selects the action, at , using an ε-greedy
policy. At the next, t+1, decision epoch, the Q-value updates
using both the t-th and the t + 1-th estimates as follows:

Q(k)
t+1(s, a

(k)
t ) = ᾱtQ

(k)
t (s, a(k)t )

+αt

[
R(k)t (s, a(k)it )+ γ tQ

(k∗)
t (s′)

]
, (25)

where the term ᾱt , (1 − αt ), Q
(k∗)
t (s′) is the Q-value

of the k th SU that corresponds to the maximum Qk∗t (s′) =
maxbQ

(k)
t (s′, a′) in the new state s′ after taking and executing

action a(k)t . In the case of (25), having assigned the values
of the expected rewards, the Q-function has to select the
state-action pairs that have the highest Q-value. Then, using
feedback from the environment, the DNN agent utilizes the
difference between the expected reward and the ground truth
reward. This difference, known as the TD error, is used to
adjust the DNN weights towards improving the interpreta-
tion of the state-action pairs. This operation results in an
even more complete expression of a Q-function that takes
into account not only the immediate rewards resulting from
an executed action, but also the delayed ones that may be
returned several time steps deeper into the sequence of the
algorithm’s trajectory. Thus, when the Q-function is called
on any given state-action pair, the call of a nested Q-function
is required in order to predict the value of the next state.
However, this is dependent on theQ-function of the state after
that one, and so on. This characteristic makes DRL strategies
to be very useful in applications where agents need to act
on time-series data in time-series modeling where RNNs are
one of the state-of-the-art models present [112]. A typical
implementation of an RA scheme in CRNs using the DRL
strategy is shown in FIGURE 11 below.

FIGURE 11. A resource allocation procedure using the DRL algorithm.
Using a DNN and a logistic function.

Dynamic spectrum management shown in FIGURE 11
above is a goal-directed phenomenon, which, due to the
decision-making involved, DL algorithms cannot solve alone.
This is an exemplary application of DRL in CRNs, extended
from FIGURE 5, where the plurality of users (i.e., SUs)
and number of BSs is indicated by the circles around them.
Here, the terms r1, r2, · · · , rK represent the transmission
rates required by the K SUs, ri1, ri2, · · · , rKK denotes the
available data rates allocated by the BS to the SUs. In CRNs,
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each SU is an agent that acts by independently executing
a DRL algorithm to select and opportunistically access the
vacant licensed channel. The set of all actions depends on
the number of channels that can be accessed, such that for
N number of channels, the set of channels is denoted asN =
{1, 2, · · · ,N }. As a result, the action space is represented as
A = {a1, a2, · · · , an} that each SU can select from at time
step t ∈ T , where n denotes the channel index. The set of
all states, represented as S = {s1, s2, · · · , sn}, denote the
state of the channel selected by the SU. Therefore, the utility
obtained after channel access is represented using the reward
R = {r1, r2, · · · , rK ,K }, which represent the available rates
offered by the BS. At this point, the problem becomes one of
finding a policy that will maximize the received discounted
reward Vi with a discount factor γ t , using the value function
as follows [94]:

Vk (s, π) =
∞∑
t=0

γ tE(R(k)t |π, s0 = s), (26)

where the term s0 = s represents the start state. In spectrum
management, spectrum access in particular, each SU seeks
to find an optimal policy that will maximize its satisfaction
(i.e., throughput), while adhering to the predefined SINR
constraints. It does so by selecting an action from the set
of all the available actions and follows a policy that will
adapt its transmission power and other related transmission
parameters such as the modulation scheme. It then observes
the changes in the system in terms of the achieved reward
as well as the new state. Assuming that each SU does not
have any knowledge about the actions taken by other SUs
or even the strategies that they follow, or even the effect of
joint actions on states, it has to consider other SUs as part
of the environment. The SU keeps improving its decision
until it finally arrives at an optimal policy that maximizes
the expected sum of discounted rewards using the appropriate
Bellman equation. Thus, by using the Bellman optimality
principle, equation (26) above can be solved by taking the
optimal action if all the strategies thereafter are optimal,
as follows:

V ∗k (s, π
∗) = max

a

[
R(k)(s, a)+ γ t

∑
s′
p(s′|s, a)Vk (s′, π∗)

]
,

(27)

where p(.) represents the transition probability function that is
determined by the power allocation of the SUs, and V ∗k (s, π

∗)
can be approached by the Q-function and updated as in (25).
A DRL application was investigated in [151] for solving
resourcemanagement problems in a network slicing scenario,
which included a radio resource slicing as well as a priority-
based core network slicing. Also, a DRL-based approach for
circumventing the missing gradient problem when training
transmitters was proposed in [83]. Here, the transmitter was
regarded as the agent to be trained to convert source data
into transmit symbols, while the wireless channel and the
receiver were treated as the environment. At each instant of

time, the transmit data are treated as the system state that the
transmitter has to observe, while the transmit signals are taken
as the actions executed by the transmitter. Then, the end-to-
end loss on each sample was computed at the receiver and
fed back to the transmitter agent as the reward from the envi-
ronment. At the end, this approach helped the transmitter to
learn the optimization of the end-to-end loss without the use
of gradients from the wireless channel, but through the use of
the policy gradient algorithm. Another example was the use
of the DRL strategy in deriving an optimal time scheduling
policy for the gateway by back-scattering in order to deal with
large state and action spaces, which was proposed in [152].
This shows the capability of DRL algorithms, which makes
it versatile in being modeled under different strategies. The
formulation in FIGURE 11 uses logistic sigmoid techniques
as the algorithm activation functions. When the Q-learning
algorithm is used, the DRL strategy becomes a DQN [153],
which is discussed in the following subsection.

B. DEEP Q-LEARNING NETWORKS WITH
EXPERIENCE REPLAY
In the previous section, it has been elaborated how DRL
strategies are the most conservative in most of its applica-
tions. Now that the application of DNNs in RL has been
discussed, another important concept is the extension of the
DRL strategies called DQNs. These are powerful algorithms
with an exceptional ability of creating cheat sheets for DRL
strategies. However, care must be taken in creating the cheat
sheet - it must not be too long. With a very long cheat sheet,
things might quickly spiral out of control. Using a DQN is
like taking some random actions and learning from them
through the Q-value function and it is a regression problem
(i.e., `2-loss is used) where two networks are used for train-
ing. However, when the learning objective is to maximize the
expected cumulative reward, either policy gradients or the
Monte-Carlo methods are used. With this feature, the DQN
technique is a very important advancement of the DRL strat-
egy, and the flowchart that details this procedure is illustrated
in FIGURE 12 below [155].

FIGURE 12. Flowchart of a DQN algorithm with experience replay.

In the DQN strategy, when the optimization focus is on
a class of RL algorithms that learn by performing gradient
descent on policy parameters, policy gradients are used in the
place of the cost criteria. The flowchart of a DQN shown in
FIGURE 12 above is supposed to learn a strategy that will
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lead to the best possible reward using experience replay. The
DQN uses two separate MLP networks to act as Q-network
approximators, denoted by θ and θ−, respectively. With
action selection performed using the action-value function,
the experience replay will assist the DRL agent to figure out
which actions to execute.

1) THE OPTIMIZATION OBJECTIVE OF DQNs
The objective of the DQN is to obtain solutions that can
effectively address high-dimensional and continuous con-
trol problems through the use of DNNs acting as powerful
function approximators. The difference between the ordinary
DRL strategy and a DQN algorithm is it combines Q-learning
with two DNNs, which it uses as separate Q-value networks,
as is seen in FIGURE 12 above. DRL with experience replay,
also known as DQNs with policy gradients, is an extension
of the traditional RL method, which is aimed at reducing
training time by storing a number of transitions to be sampled
from later for the agent to learn from. Then, the objective
of DQNs with experience replay is to address the problems
that lead to a DRL agent misunderstanding the environment.
The only thing that can result in a DRL agent’s misunder-
standing of the environment are consecutive interdependent
states that also look very similar [155]. Since the objective
is that of maximizing the expected cumulative discounted
reward, the gradient of the objective function is given as
follows [154]:

OθEπθ

[
∞∑
t=0

γ trt

]
= Eπθ

[
Oθ logπθ (s, a)Qπθ (s, a)

]
, (28)

whereQπθ (s, a) is the expected cumulative discounted reward
obtained from deterministically selecting an action a under
the guidance of the policy πθ . However, in the case of the
Monte-Carlo technique, the agent must sample multiple tra-
jectories and then uses an empirically computed cumulative
discounted reward, vt , as an unbiased estimate of Qπθ (st , at ).
The result of this is the well-known REINFORCE algorithm
reported in [60], which is used to update the policy parameters
using gradient descent as follows:

θ ← θ + α
∑
t

Oθ logπθ (st , at )vt . (29)

Here, the input state st , which might be a clip of a time-
series, is mean-value-normalized and the value of Q for a
given state-action pair. This is the estimated expectation of
total future rewards, i.e., reward or cost for the present task,
discounted at the current step. The first step initializes the
network P with random parameters θ , and the procedure
predicts the action probabilities P(A|A; θ ) and samples an
action following policy π . This leads to the maximization of∑

t logP(yt |xt ; θ) defined as follows:

J (θ ) =
∑
t

logP(yt |xt ; θ ) · Ât , (30)

which is performed at every time step until the last episode
using xt and yt as training examples. Then, at the last hidden

layer, the error ∂
∂θ
J (θ ) is propagated back to the first hidden

layer for an update of the cost function

OJ (θ ) =
∑
t

O logP(yt |xt ; θ )︸ ︷︷ ︸
Actual - Predicted

·Â. (31)

In the Monte-Carlo method, the term Ât is defined as the
advantage which, when it is positive, pushes up the proba-
bilities for all actions, otherwise it pushes them down. Using
policy gradients is like learning the optimal behavior directly
from the experiences, i.e., using value function; and it is a
classification problem, i.e., the maximum log likelihood is
used with some minor changes. DQNs with policy gradients
are also referred to as DRL strategies with experience replay.

2) TRAINING A DQN WITH EXPERIENCE REPLAY
Except for the experience replay, the procedure is the same
as the DRL - a DNN is used in approximating the Q-value
function where the state is given as the input to generate an
output consisting of a Q-value of all possible actions. Here,
the computation of the loss function is actually a regression
problem, where an MSE is regressed from the predicted
Q-value and the target Q-value, Q̂, which is calculated as
follows:

L(θi) = E[(Q̂i(s, a; θi)− Qi(s, a; θ−i ))2], (32)

where Q̂i(s, a; θi) is the action-value function approximator,
and Qi(s, a; θ

−

i ) represents the target action-value function
approximator. The parameters θi represents the current net-
work parameter, such that the target Q-value Q̂ can be uti-
lized to determine the gradient of the loss function L(θi)
with respect to θ . The same narrative applies to the previous
network parameter θ−i . However, since the knowledge of the
target or actual value is not present, it becomes an ordinary RL
problem. Then, it can be argued that the system is predicting
its own value, but since the reward rt ∈ R is an unbiased
and true reward, the network will update its gradient using
backward propagation until it finally converges. In every iter-
ation, the previous network parameter, θ−i , is replaced by the
current and updated parameter θi. The network parameters are
updated using the SGD algorithm, and the DQN subsequently
completes the learning mechanism in (32) by computing the
cost function using an SGD algorithm as follows:

L(θi)=E
[
(ri(s, a)+γ t max

a′∈A
(Q̂i(ŝ, â; θ

−

i ))− Qi(s, a; θi))2
]
.

(33)

Similar to the traditional RL strategy, the action selection
procedure of a DQN follows the usual ε-greedy approach. But
in order to ensure a sufficient exploration of all actions,
the Gibbs softmax action selection strategy is applied, which
is given as follows: π (s, a) = eQ(s,a)/τ∑

a∈A e
Q(s,a)/τ . This is an

off-policy technique borrowed from the Boltzmann distri-
bution, where the parameter τ represents the temperature
parameter controlling the expected reward for the probability
of a given action executed. The reward rt (s, a) ∈ R that
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is obtained by following the prescribed policy either results
in the satisfaction (i.e., maximized reward) of the agent or
penalties if certain constraints were not met.

Thus, in order to solve (25) using this technique, assuming
that a DNN is employed as an efficient nonlinear approxi-
mator that will be used to estimate the action-value function
Qi(s, a; θi) ≈ Q∗i (s, a), using the advantage of experience
replay, the sampling procedure is illustrated in FIGURE 13
below [94]:

FIGURE 13. An illustration of a memory object using a sumtree to
represent the sampled data.

In FIGURE 13, at each sampling instant, the experience,
eti = (sti , a

t
i , r

t+1
i , st+1i ) of the agent is stored in an expe-

rience replay buffer memory D : Dti = e1i , · · · , e
t
i . Thus,

at each time-step, the network parameters θi are updated
using a mini-batch of random samples of transitions pi =
(si, ai, ri, ŝi) from the replay memory Di.
To explain this, take the example of an autonomous vehicle

that is being trained on how to drive itself on a straight
road. If the first section of the toad is straight, the DRL will
learn that and not how to deal with curved sections that may
appear later. It will, however, save that initial experience as a
straight road experience in its memory. Then, if it reaches a
curved section along the road, it also learns driving around
a curved road and save that experience in memory. The
good thing about experience replay is that the knowledge
experiences are not put through the DRL agent immediately,
but are saved in memory buffer first. These experiences are
characterized by the state that the vehicle was in, the action
that it executed, the state that it arrived at, and the reward that
it received. Then, once the vehicle reaches a certain threshold,
this is where the concept of experience replay becomes very
important. The vehicle will be instructed by the agent to
learn from it by sampling experience from the batch of saved
experiences. The DRL agent can randomly select uniformly
distributed samples from the batch of experiences to learn
from. The reason of random sampling the experiences is to
break the bias that comes with the sequential nature of the
environment.

C. APPLICATION OF DEEP Q-LEARNING NETWORKS IN
SPECTRUM MANAGEMENT
When executing the procedure illustrated in FIGURE 11
above using a DQN, the agent learns to perform resource

allocation tasks and obtains high rewards by choosing better
actions. At each time-step t ∈ T , the DNN agent is given
observations in previous time-steps and then it chooses an
action, which results in a reward. This procedure can be
performed based on either univariate or bivariate methods.
In the univariate case, the model is tested on whether it
can capture the underlying dynamics, while in the bivariate
case the model is tested on whether it can utilize the hidden
relationship among inputs. For both cases, the inputs are pos-
itive values and a typical application of DQN and experience
replay in a CRN environment can be done as illustrated in
FIGURE 13 above.

An evolutionary game theoretic framework was combined
with DRL in distributed DSA to improve spectrum
management through effectively utilization of spectrum
resources [156]. The main framework utilized in this method
is a DQN where individual users independently used the
DQN algorithm for channel selection. Also, a replicator
dynamic that uses an evolutionary game theory strategy
was added to setup the reward function so that the DRL
can effectively balance the collaborations among SUs. This
improved the spectrum utilization and reduced the collision
rate among SUs. A joint routing and resource management
scheme for addressing energy consumption and transmission
delays was proposed in [157]. Here, an energy-efficient cross-
layer design was done using an apprenticeship DRL scheme,
and in order to guarantee energy-efficient operations and
also compress huge action space, a dynamic adjustment
rating concept was introduced in order to efficiently regulate
transmission power using a multi-level transition mechanism.
Then, a technique called prioritized memories DQN from
demonstrations (PM-DQfD) was utilized to speed up the
convergence and reduce memory occupation. In the same
contribution, the PM-DQfD was applied to the cross-layer
routing design in order to improve power efficiency subject
to routing latency reduction. In another contribution in [158],
a sensing-throughput trade-off scheme that allows SUs to
detect the presence of PUs and transmission data simulta-
neously was proposed. Here, a DRL-based joint spectrum
sensing and power control algorithm for downlink commu-
nications in a cognitive small cell was utilized to adapt in
unknown environments and achieved performance closer to
a genie-aided method with the optimal spectrum utilization,
especially in high-SNR regimes.

The authors in [159] proposed a DRL framework for
solving a spectrum allocation problem in a large-scale IAB
network. The objective herewas tomaximize the sum log-rate
of all UE groups. Thus, the available spectrum resources
were divided into several orthogonal sub-channels, whereby
both the donor base station (DBS) and all the IAB nodes
had to share the same spectrum resource for allocation. The
DBS utilized those sub-channels for access links of associ-
ated user equipment (UE) as well as for backhaul links of
associated IAB nodes, while IAB nodes could utilize all the
sub-channels for its associated UEs. The spectrum allocation
problem was formulated using a mix-integer and non-linear
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programming. To tackle the time-varying nature of the IAB
network, a DRL method was proposed by integrating an
actor-critic spectrum allocation scheme and DNN. This was
to achieve real-time spectrum allocation for different IAB
deployment scenarios.

The authors in [160] proposed a DRL-based technique
for CR DSA that performs distributed joint multi-resource
allocation to satisfy the primary link interference constraint
while simultaneously maximizing the performance of the
secondary network. The satisfaction of SUs was measured
using the mean opinion score metric to enable seamless
integrated RA for dissimilar traffic. The RA problem was
solved using a DQN algorithm. Here, the learning process
was improved by incorporating transfer learning to the learn-
ing procedure and simulation results showed a substantial
reduction of the iterations towards convergence compared to a
DQN without transfer learning. A DQN framework that used
a QoE-driven CR scheme where SUs offered heterogeneous
traffic to the network was proposed in [94]. Here, docitive
learning schemes were used to improve SU perception of
the QoE through transfer learning. SU experience evaluation
of multimedia services on-the-fly was done using the mean
opinion score for heterogeneous traffic. The DQN frame-
work demonstrated that it can combine deep exploration with
DNNs for exponentially faster learning and convergence. The
work in [94] was improved using an SU-experience-oriented
resource allocation scheme for efficient real-time CR pro-
cesses in [107]. The objective of the authors was to improve
CR adaptation and intelligent RA using deep neuroevolution
(DNE). The DNE technique combined DRL with an evo-
lutionary algorithm in order to improve RA stability when
the number of SUs increased. A stable learning framework
was achieved by introducing the phenotypic plasticity of
transmission rates and delay constraints inside an MLP.

The 5G and MEC have recently been envisaged to serve
various emerging use cases with diverse multiple require-
ments such as radio, transport, and computation. In this
way, the provisioning of network slices within the two
paradigms requires end-to-end resource orchestration, which
is very challenging. Since AI at the edge enable real-time
decision-making, it is central to achieving objective of net-
work slicing, as such it is paramount for promoting the
long-term sustainability of mobile and wireless networks.
To this effect, the authors in [161] proposed a decentral-
ized resource orchestration system for dynamic end-to-end
network slicing using the DRL strategy called EdgeSlice.
The proposed scheme consisted of a performance coordinator
and multiple orchestration agents for efficiently orchestrating
end-to-end resources. The role of the performance coordi-
nator was to manage the resource orchestration agents in
order to avoid SLA violations in the network slices. It does
so by learning the resource demands of network slices and
then orchestrates the RA accordingly to optimize the per-
formance of the slices under constrained networking and
computing resources. Then, a radio, transport, and comput-
ing manager were designed to dynamically configure the

end-to-end resources at runtime. The performance evalua-
tion of the EdgeSlice was evaluated through both exper-
iments and trace-driven simulations, and the results indi-
cated that the EdgeSlice outperforms baseline algorithms
in terms of improved performance, scalability, as well as
compatibility.

A joint allocation of spectrum, computing, and resource
storage in an MEC for supporting different vehicular appli-
cations was proposed in [162]. Here, the authors considered
two MEC architectures and multi-dimensional resource opti-
mization problems. Since these architectures have high com-
putational complexity and very long problem-solving time,
the problem was divided into two sub-problems. Since the
two formulated problems were computationally intractable
in real-time for the RL strategy, a DRL was utilized to
transform and solve them using deep deterministic pol-
icy gradient (DDPG) and hierarchical DDPG (HDDPG)-
based algorithms. Using these two hierarchical architectures,
the network dynamics could be learned automatically via off-
line training, and appropriate RA decisions could be obtained
to satisfy the QoS requirements of the different vehicular
applications. The obtained simulation results indicate that the
proposed DDPG and HDDPD-based resource management
schemes could converge within acceptable training episodes
and also outperformed the DPG-based schemes in terms of
both QoS satisfaction and latency/QoS satisfaction ratio.

In another multi-use case scenario, a double use case net-
work slicing method for enabling adaptive and automated
slicing was studied in [163] for efficient RA in dynamic
vehicular and smart city environments. The primary objective
was to dynamically allocate limited resources at the network
edge to vehicular and smart city users with heterogeneous
latency and computing demands. To efficiently utilize the
limited resources, the authors developed a model based on
a cluster of nodes coordinated by an edge controller. For
individual service requests within a cluster, the edge con-
troller decides on whether the request has to be served locally
or referred to the cloud. In order to adaptively learn the
optimal slicing policy, the problem was formulated as an
infinite-horizon MDP and solved using a DRL strategy. The
results showed that the proposed scheme could quickly learn
the optimal policy in different scenarios and different design
objectives. In order to address the dynamic coupled RA prob-
lem faced when using model-based optimization methods,
such as queuing-theoretic techniques, the authors in [164]
proposed a novel DRL strategy for bandwidth and virtual
machine (VM) allocation. The optimization problem was for-
mulated by setting two service types: (i) service upon arrival,
and (ii) batch service. Buffers were introduced to address the
problem of allocating multiple resources simultaneously. The
overall problem was solved as a constrained problem and the
performance evaluation step; two workload traces were used,
one for CPU and the other one for bandwidth requests. The
proposed scheme was then evaluated with four scenarios of
resource budget, and the results indicated an improved overall
resource utilization.
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An end-to-end architecture network slicing RA algorithm
suitable for multi-slice and multi-service scenarios using a
DQN strategy was proposed in [165]. In order to achieve
a dynamic allocation of resources that maximizes the num-
ber of access users, the proposed algorithm considers the
RAN and core network slices. A mixed integer program-
ming problem that needs to be adjusted according to a
non-static environment was used to build the model. Then,
due to the capability of a DQN to perceive environmental
changes and make dynamic decisions, it was used to solve
the mixed integer programming problem. Since the reward
value of the DQN had to be computed under each decision,
the problem was divided into the core and access sides, and
dynamic knapsack and link mapping algorithms were used
to obtain the overall reward. The simulation results obtained
indicated that the DQN scheme provides an average access
rate higher than 97%. When compared with optimal alloca-
tion schemes of the access side, a 9% increase in average
access rate was obtained for delay-constrained slices, while
a 5% increase was observed for rate-constrained slices in a
dynamic environment.

In [166], a network slicing scenario consisting of sev-
eral slices in a RAN where BSs share the same physical
resources was considered. Here, the variation of service
demands was considered as the environmental state, while the
allocated resources were considered as the actions. A genera-
tive adversarial network-powered deep distributed Q network
(GAN-DDQN) was proposed to reduce the effects of the
annoying randomness and noise embedded in the received
service level agreement satisfaction ratio and spectrum effi-
ciency. The role of the GAN-DDQN was to learn the
action-value distribution by minimizing the discrepancy
between the estimated action-value and the target action-
value distribution. Then, a reward-clipping mechanism was
used to stabilize the GAN-DDQN against the effects of
widely-spanning utility values. A dueling GAN-DDQN that
uses a specially designed dueling generator was then devel-
oped in order to learn action-value distributions by estimating
the state-value distributions as well as the action advantage
function. Finally, we verify the performance of the proposed
GAN-DDQN and Dueling GAN-DDQN algorithms through
extensive simulations.

The authors in [167] considered the network slicing prob-
lem as a game-theoretic radio access network (RAN)-only
slicing model. Here, the physical infrastructure was split into
slices that provide computation and communication func-
tionalities. Using the game-theoretic framework, a limited
number of channels were auctioned across scheduling slots to
mobile users of multiple tenants, i.e., service providers. Each
tenant behaves selfishly in order to maximize its expected
long-term reward from competing with the other tenants for
channel orchestration. This provides its mobile users with
the opportunities to access the computation and communica-
tion slices. The problem was the formulated using stochastic
games where the decision-making of each tenant was based
on the global network dynamics as well as the joint control

policy of the other tenants. An abstract stochastic gamemodel
among the tenants was constructed with local conjectures
of channel auctions in order to approximate the Nash equi-
librium solutions. A per-tenant MDP was formulated and
linearly decomposed in order to simplify the decision making
for each tenant. Then a DRL strategy was used to derive
an online scheme to approach the abstract control policies.
In the performance evaluations, two observations were made:
(i) each tenant was able to behave independently with the
conjectures of other tenants’ behaviors; (ii) the decisions on
channel auction and computation offloading as well as packet
scheduling decisions could be made sequentially. These two
observations indicated that the proposed framework could
find optimal abstract control policies and achieved significant
performance gains compared to other baselines.

Leveraging the knowledge and insights retrieved from
the data, the authors in [168] developed a novel ML-based
scheme for dynamic resource scheduling for network slic-
ing. The objective of the developed scheme was to achieve
automatic and efficient resource optimization and end-to-end
service reliability. However, obtaining user-related data that
is crucial for understanding user behavior and requests is
difficult due to privacy issues. In addressing this issue, a DRL
strategy was leveraged to extract knowledge from experience
by interacting with the network and enabling dynamic adjust-
ment of the resources allocated to various slices. This was
done to maximize the resource utilization while guaranteeing
the QoS. The experimental results showed that the proposed
resource scheduling scheme allocates resources dynamically
to multiple slices and the corresponding QoS requirements
were met.

With the concept of performance isolation between net-
work slices requiring fine-grained resource reconfiguration,
which leads to extremely high computational complexity.
which affects the operations of all the different layers of
the protocol stack, a problem which was revisited in [169].
Here, the authors investigated the fine-grained reconfigu-
ration within the core network slice with the objective of
minimizing long-term resource consumption. However, due
to the curse of dimensionality of the DRL strategy, the prob-
lem seemed intractable even with the conventional DQN
architecture as the multi-dimensional discrete action space is
difficult to explore efficiently. In order to address the curse
of dimensionality, a discrete branching dueling Q-learning
network (BDQN), which incorporate a branching architecture
into the conventional DQN in order to decrease the num-
ber of estimated actions was proposed. Then, an intelligent
network slice reconfiguration algorithm (INSRA) was devel-
oped based on the discrete BDQN, and was evaluated through
extensive simulation experiments. The numerical results indi-
cated that the INSRA can minimize the long-term resource
consumption and also achieve high resource efficiency com-
pared with several baseline algorithms.

In a multi-use case scenario, the network slicing prob-
lem needs to accommodate the diverse resource demands
and various performance metrics. A multi-use case network
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TABLE 6. Application of deep reinforcement learning techniques in spectrum management.

slicing problem was studied in [170] in order to effectively
allocate network slices to the different use cases. The authors
proposed a DeepSlicing technique that integrates alternating
direction method of multipliers and the DRL strategy. The
DeepSlicing technique entails that the problem is decom-
posed into several sub-problems, and the authors decom-
posed the network slicing problem into a master problem and
several slave problems. A deep deterministic policy gradi-
ent (DDPG) algorithm with an augmented state space and
reward shaping to enable for the coordination of the DDPG
agents in solving the constrained RA problem was used. The
master problem was solved based on convex optimization,
while the slave problems were solved using a DRL strategy
which learns the optimal RA policy. The performance of
the proposed algorithm was extensively evaluated through
network simulations and the results obtained significantly
outperformed the baseline method and closely approaches the
optimal solution.

In another contribution, the authors in [171] considered a
scenario with several slices in a radio access network (RAN)
where the BSs share the same physical resources. In order to
solve the problem, they leveraged a DQN algorithm, where
the advantages of the actor-critic (A2C) functionality were
used to handle the varying demands. In their formulation,

the varying demands were treated as the environmental state,
while the allocated resources as the environmental action.
In order to perceive the environmental state in the midst
of user mobility, a LSTM was incorporated into the A2C
functionality. Then, the LSTM-A2C algorithm was used to
track user mobility and improve system utility. The results
obtained show that the proposed LSTM-A2C improves spec-
trum efficiency and also guarantees the SLA on the different
services in cases with large fluctuations in user requests.

The provision of resources in network slicing depends
on the number of slices, but the allocated resources can-
not be accurate if the number of slices keep on changing.
In the radio access network, the number of slices controlled
by the BS fluctuates in terms of user ingress and egress from
the BS coverage area and service switching on the respective
sets of user requirements. In order to address this problem,
the authors in [172] proposed a radio access network slicing
method that flexibly allocates access resources using a DRL
strategy called Ape-X. The proposed method makes optimal
RA independent of the number of slices using a DRL strategy
that learns the best action for each state through trial and
error. In achieving the independence from the number of
network slices, Ape-X manages resources on a one-slice-by-
one-agent basis. The advantage of theApe-X is that the agents
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are employed in parallel and the model that learns various
environments can be generated through trial and error of
multiple environments. In addition to the Ape-Xmethod, they
designed a model that satisfies the slicing requirements with-
out over-provisioning resources. This additional model made
it possible to optimally allocate resources independently of
the number of slices by changing the number of agents. The
proposed method was evaluated in multiple test scenarios,
and the evaluation results indicated a mean satisfaction of
slice requirements of approximately 97%. A comparison of
DRL algorithms used in dynamic spectrum management is
shown in TABLE 6 below.

VII. CONCLUSION AND RECOMMENDATIONS FOR
FUTURE RESEARCH
In this article, a prospective review of the application of
deep architectures in CRNs were performed. Based on the
recent advancements in the application of deep architectures
in spectrum management, it has been found that DRL strate-
gies are indispensable tools in enabling intelligent spectrum
management. It was also realized that the recently adopted
variant of DRL - the DQN has so far seen limited application
in spectrum management. DQNs have a great potential of
revolutionizing future spectrummanagement by empowering
DL techniques by exploiting and extracting the rich features
of DRL strategies. In order to realize the level of intelligence
required in spectrum management, the objective should be
to create efficient algorithms that unite function approxima-
tion and target optimization by mapping state-action pairs to
expected rewards [56], [150].

A. IMPROVING SERVICE PROVISIONING THROUGH
PREDICTIVE ANALYTICS
In order to meet the greater demand through willingness
to understand subscriber requirements and ensure targeted
customer offerings, while maintaining best quality networks
despite increasing costs, it is imperative to look at predictive
analytics. Future generations ofmobile andwireless networks
will be more sporadic and manifest themselves in several
forms such as time, subscriber, location and application [173].
Through the use of thousands of mobile handsets stream-
ing content from the internet, telecommunication operators
currently have a mound of data containing continuous infor-
mation. From the thousands of infrastructure elements and
millions of handheld devices, the generated data are huge
and makes for an exciting exercise to understand what the
data are all about, as well as how it can be used for greater
value creation. Usage variables such as access, mobile device,
personal computer, length of connection, login frequency, can
be presented as percentages in order to obtain better data
visibility. However, due to the lack of proper data analysis
equipment, this information is far beyond what they can be
able to grasp andmake sense of.With the IoT forming the key
component of next generation mobile and wireless network
deployment strategy, there is an escalating requirement for
network service providers to understand the needs of their

subscribers. If one can add some exploration of this huge
amount of data to exploit the paradigm shift brought about
by the IoT, and then exponentially multiply the number of
data points and devices, this can result in gigantic volumes of
data.

Big Data and predictive analytics provide new light to
companies who seek to develop greater understanding of its
benefits. Thus, looking into Big Data and predictive analytics
will enable enterprises to direct their efforts towards effi-
ciently meeting customer needs. For example, in examining
the subscriber in terms of their location, one might realize
the percentage of users that consume most of the data and
their location in the network. In order to achieve this kind
of insight into the usage behavior of subscribers, network
operators can adopt data analytics techniques and put in
place relevant predictive approaches. Using these approaches,
analytics can reveal exactly which users are consuming how
much of bandwidth and where they are located within the
network [174]. In this way, communication and computation
resources can be appropriately provisioned for that location,
hence improve the QoS and QoE. This level of foresight
is the key to not only unlocking the full potential of net-
work slicing and self-organizing networks in the radio access
network, but also to maximizing return on investment for
software-defined networking (SDN) and network function
virtualization (NFV) in the core. Therefore, integrating Big
Data analytics into the operation of mobile and wireless
networking can be explored through network optimization to
reach the objective of improving user QoE. Here, the first
objective can be the Big Data-driven framework for mobile
network optimization; the Big Data characteristics collected
from both the user side and the network side and presented
together.

B. IMPROVING DATA PRIVACY THROUGH
FEDERATED INTELLIGENCE
With the proliferation of AI-based applications and services,
data privacy and security have become the most topical and
critical challenges in Big Data. Using traditional methods
that employ the centralized approach, data is collected and
aggregated in a data center (DC) in order to train ML-based
learning models. However, the IoT and Big Data era, where
systems are predominantly generating distributed and essen-
tial data, transferring such vast amounts of data to a DC
seems cumbersome [175]. As such, federated intelligence has
emerged as a prospective solution to address this problem
by facilitating distributed collaborative learning. Federated
intelligence involves the application of federated machine
learning (FML) techniques in collaborative training without
disclosing original training data. In FML, the training data is
distributed unevenly across all the learning agents, instead of
being centralized [176]. Then, instead of the learning agents
sharing their training data, they use their local data to train
ML models using SGD algorithms [177]. After training, only
a summary of their data, i.e., gradients, are shared with the
central entity such as the MEC server that is co-located with
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the BS. In return, the MEC server then computes a global
model by averaging the individual models into an aggregated
model, which is then shared back to the individual learning
agents via the BS. This application is primarily inspired by the
expected applications of 5G networks where information pri-
vacy is paramount and communication costs are the principal
constraint. A graphical representation of the processing steps
of the SGD algorithm applied in secure spectrum sensing is
shown in FIGURE 14 below [110].

FIGURE 14. Spectrum occupancy data processing using matrix
factorization and stochastic gradient descent.

The training technique shown in FIGURE 14 above was
applied in spectrum sensing for distributed cooperative CRN
environments. This FML technique can serve as a security
defense mechanism against Byzantine attacks in CRNs. This
is because each learning agent, i.e., user devices, indepen-
dently computes an update of its current local model using
the data set stored in its memory and then communicates only
the gradient to the MEC server. At the MEC server, the local
updates from each user device are aggregated into a single
global model that is broadcast back to the learning agents.

Federated intelligence typically reduces computation costs
as well as the two-way communication costs where commu-
nication efficiency was of utmost importance. The SGD algo-
rithm the perfect choice for this application for the following
reasons: (i) structured updates, where updates are learned
directly from a restricted space that is parameterized using
a smaller number of variables that are either of low-rank
or random masked; and (ii) sketched updates, where full
models are learned and then compressed using a combination
of quantization, random rotations, and sub-sampling before
sending them to theMEC server. This can reduce the commu-
nication cost by several orders of magnitude since it enables
the collaborative training of ML models and also enables DL
for mobile edge network optimization.

C. INTELLIGENTIZATION OF CORE AND EDGE
NETWORK FUNCTIONS
With the era of network softwarization (i.e., 5G) already at
its height, the era of intelligentization (i.e., 6G) is quickly
making its way into the wireless communications space,

BS infrastructure and network configurations have to be
virtualized. In both generations, i.e., 5G and 6G, network
operations are characterized by specifications of higher data
rate demands and higher quality of experience (QoE) on
the user side. This is paralleled by the low complexity and
continued cost reduction of radio access and packet core
on the network side. In order to offer better QoE for their
subscribers, telecommunication companies have to instanti-
ate predictive analytics to avoid network disruptions. This
entails the automation of network operations and mainte-
nance through data analytics. To this effect, consider the typi-
cal edge computing-enabled wireless network in FIGURE 15
below.

FIGURE 15. An edge computing and cache-enabled wireless network
management framework.

In FIGURE 15 above, the general assumption is that the
BS is co-located with anMEC server hosting a number of vir-
tual machines (VMs) that account for its total computational
resources [178]. Here, network data analysts can be able to
visualize network performance in terms of KPIs. This kind of
radio network performance is reported continuously through
the radio network information service (RNIS) to the data
center [179]. In case network performance has degraded to
inconvenience network subscribers, urgent and prompt atten-
tion might be required. The grievances from the subscribers
may be of poor service, resulting to problems like: (i) poor
network connectivity, (ii) high number of dropped calls,
and (iii) high service termination - to name just a few. From a
technical perspective, these complaints are not different from
one another, but might require different technical solutions.
However, from a customer service perspective, these simi-
larities and/or differences might not be clear, hence proper
analytics are needed. For example, using data visualization
techniques, the best possible diagnosis might be (i) signal
booster failure, (ii) operating update issues, and (iii) contract
data cap limits.

Assuming that the provider’s customer service department
receives a large volume of such grievance from already
impatient subscribers in real-time. Taking the subscribers’
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impatience into account, the process of going through such
massive data, extracting patterns, diagnosing the problems,
and assigning field technicians to the different sites might
be labor intensive and time consuming. Therefore, the whole
process can be automated as follows:

1) DATA MINING AND INFORMATION EXTRACTION
Using data mining techniques such as clustering algorithms
similar complaints can be grouped together for collective
diagnosis. It must, however, be noted that the grievances
received from the subscribers might be in text format, some
preliminary pre-processing might be required in order to
be a data set that is ready for processing and analysis. For
the preliminary pre-processing step, a natural language pro-
cessing and lexicon processing algorithm might be used to
‘‘mine’’ similar text structures. After grouping similar textual
information using classification algorithms to observe some
correlations in the text data for further processing.

2) DATA ANALYTICS AND DIAGNOSTICS
Using data mining techniques, a lot of information can be
extracted, classified in terms of their similarities and dif-
ferences and diagnostic techniques applied in each cluster
of information to diagnose problems. In the diagnostic step,
the classified data is processed in order to obtain a good diag-
nostic visibility of the network problems. From the customer
service side, this visibility can assist the service providers
with information such as regions of the network, BS sites,
user behavior and applications. Using this information, diag-
nosis of what the real problems might be can be performed.

3) SOLUTION RECOMMENDATION
Within a short space of time potential solutions are evaluated
and the best one is recommended and commissioned through
the use of virtualized functions. For example, problems such
as software maintenance and upgrades can be virtualized
instead of allocating a technician on site. In this case, the soft-
ware agent runs a solution recommendation module (SRM)
and sends recommendations to the decision module, which
proposes a network function virtualization (NFV) to the rel-
evant BS site [180].

However, due to the nature of the diagnosed problems,
the recommendation processes differ from one another due to
the difference in user behavior in different network regions.
As a result, the agent that handles the recommendation pro-
cess must reside at the MEC in order to dynamically launch
tasks of relevant VM instances to resolve dynamic problems.
Therefore, the VM launching can be managed using a DRL
strategy as contemplated in [181].

D. ENABLING QUANTUM MACHINE LEARNING
IN URBAN COMPUTING
The increasing development of ubiquitous technologies are
producing a wealth of information, reflecting different fea-
tures of our lives over the last decade. Quantum comput-
ing (QC) and AI, combined together into quantum machine

FIGURE 16. An illustration of the urban computing hierarchy.

learning (QML), can revolutionize urban computing. The
term ‘‘Urban Computing’’ is framed by the aspirational nar-
ratives surrounding smart cities and the technologies devel-
oped for its operation [182]. The fact that technology has
truly become pervasive implies that processes have to shift
from single systems to large-scale heterogeneous systems.
This heterogeneity involves many devices and individuals
collaborating over different spatial and temporal scales to
cope with the dictates of the IoT [183]. With the dictates of
the IoT continuing to demand more efficiency and reliabil-
ity in connection and communication, AI is forced to push
its boundaries towards cyber-physical convergence. Cyber-
physical convergence means that the field of mobile and
wireless communications has become an inter-disciplinary
field [184]. This inter-disciplinary field is shaped by at least
five main interacting dimensions that link the technological
perspective closely to the social, economic and cognitive sci-
ences. As a result, the traditional deep architectures discussed
above may not be able to handle important processes such
as control and prediction. Since urban computing applica-
tions require instantaneous services, this led to ML tech-
niques being considered as potential enablers of this emerging
paradigm. However, with all these interacting dimensions,
the mobile and wireless network environment can now be
viewed as a quantum state [185]. Thus, the technological
drivers that could facilitate such a perspective change are well
known - QC and QML.

Unlike the traditional ML techniques, QC and QML and
their synergies with communication networks offer a radi-
cally different model of computation for engineering con-
trol and prediction. Due to their capabilities in combining
database techniques withML algorithms in datamining tasks,
QC and QML are the prospective enablers of urban comput-
ing. However, in order to unlock the power of knowledge
from data across different domains, it is the data analyt-
ics layer of the urban computing hierarchy that needs this
improvement. For the scope of this article, focus is placed
only on the data analytics module of the urban computing
hierarchy, which is shown on the left-hand side of FIGURE16
above. At the data analytics layer of the urban computing
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hierarchy, a diversity of data mining models and AI strategies
are required to cope with the ‘‘Tsunami’’ of urban data. The
reason for this lies in the fact that the data analytics layer
adapts basic data mining and ML models such as, modeling
and simulations to enable predictive analytics. These include
the steps of data collection, data classification, and data visu-
alization, as discussed below.

1) DATA COLLECTION
The digital traces emanating through human daily interac-
tions with pervasive computing devices are valuable sources
of data for capturing the operational pulses of the city in
an astonishing degree of temporal and spatial details. The
increasing use of ubiquitous devices, such as mobile phones
and vehicle navigation systems, creates a new sensing theory
in which humans serve as distributed sensors within the city
that can be used to address urban dynamics towards achieving
smart cities. The development of smartphones as sensing
platforms, with various sensors such as GPS, accelerome-
ters, microphones, as well as cameras, have accelerated this
progress. If collected well, these raw data can be useful in
developing data analytical tools in order to improve the under-
standing of urban dynamics and consequently make urban
systems more efficient.

2) DATA CLASSIFICATION
In this way, classification models, such as quantum-inspired
classifiers, can be utilized to work on the data collected from
all these sensors. In order to enable urban systems to better
understand both human actions and the environment, the clas-
sical data (X) can be mapped onto quantum data (|ψX 〉).
For example, in the case of quantum-inspired classification,
a model is trained using classical ML techniques such as
supervised learning. However, in the case of quantum kernel
classifiers, the model is kernel-ed on a quantum device, then
measurements are performed to convert the output labels back
to classical [186].

3) DATA VISUALIZATION
Due to the massive and dynamic nature of city life, the prop-
erties of the classified data, i.e., spatio-temporal data, may
consist of multiple disparate datasets, such as spatial dis-
tance, spatial hierarchy, temporal closeness, period and trend.
Visualizing these multiple datasets using traditional ML tech-
niques presents itself as a huge challenge. One of the main
challenges regards the modeling of human activity, which is
a key obstacle in differentiating contextual conditions and
user characteristics encountered in a large-scale sensing envi-
ronment such as this one. In order to address this obstacle,
the discriminative features in the data from the classifiers
need to be extracted in order to recognize different human
activities, varying from user to user. In order to be able
to fuse the knowledge from this cross-domain data fusion
methods such asmulti-view-based, probabilistic dependency-
based, similarity-based, as well as transfer-learning-based
data fusion techniques can be used [187]. QML techniques

have disrupted the field of AI with its capability in dealing
with probabilistic states using new ways of coding and new
algorithms for information processing.
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