677 research outputs found

    Multimodal Transformer Networks for End-to-End Video-Grounded Dialogue Systems

    Full text link
    Developing Video-Grounded Dialogue Systems (VGDS), where a dialogue is conducted based on visual and audio aspects of a given video, is significantly more challenging than traditional image or text-grounded dialogue systems because (1) feature space of videos span across multiple picture frames, making it difficult to obtain semantic information; and (2) a dialogue agent must perceive and process information from different modalities (audio, video, caption, etc.) to obtain a comprehensive understanding. Most existing work is based on RNNs and sequence-to-sequence architectures, which are not very effective for capturing complex long-term dependencies (like in videos). To overcome this, we propose Multimodal Transformer Networks (MTN) to encode videos and incorporate information from different modalities. We also propose query-aware attention through an auto-encoder to extract query-aware features from non-text modalities. We develop a training procedure to simulate token-level decoding to improve the quality of generated responses during inference. We get state of the art performance on Dialogue System Technology Challenge 7 (DSTC7). Our model also generalizes to another multimodal visual-grounded dialogue task, and obtains promising performance. We implemented our models using PyTorch and the code is released at https://github.com/henryhungle/MTN.Comment: Accepted at ACL 2019 (Long Paper

    Multimodal transformer networks for end-to-end video-grounded dialogue systems

    Get PDF
    Agency for Science, Technology and Research (A*STAR) under its AME Programmatic Funding Schem

    Structured Co-reference Graph Attention for Video-grounded Dialogue

    Full text link
    A video-grounded dialogue system referred to as the Structured Co-reference Graph Attention (SCGA) is presented for decoding the answer sequence to a question regarding a given video while keeping track of the dialogue context. Although recent efforts have made great strides in improving the quality of the response, performance is still far from satisfactory. The two main challenging issues are as follows: (1) how to deduce co-reference among multiple modalities and (2) how to reason on the rich underlying semantic structure of video with complex spatial and temporal dynamics. To this end, SCGA is based on (1) Structured Co-reference Resolver that performs dereferencing via building a structured graph over multiple modalities, (2) Spatio-temporal Video Reasoner that captures local-to-global dynamics of video via gradually neighboring graph attention. SCGA makes use of pointer network to dynamically replicate parts of the question for decoding the answer sequence. The validity of the proposed SCGA is demonstrated on AVSD@DSTC7 and AVSD@DSTC8 datasets, a challenging video-grounded dialogue benchmarks, and TVQA dataset, a large-scale videoQA benchmark. Our empirical results show that SCGA outperforms other state-of-the-art dialogue systems on both benchmarks, while extensive ablation study and qualitative analysis reveal performance gain and improved interpretability.Comment: Accepted to AAAI202

    From Knowledge Augmentation to Multi-tasking: Towards Human-like Dialogue Systems

    Full text link
    The goal of building dialogue agents that can converse with humans naturally has been a long-standing dream of researchers since the early days of artificial intelligence. The well-known Turing Test proposed to judge the ultimate validity of an artificial intelligence agent on the indistinguishability of its dialogues from humans'. It should come as no surprise that human-level dialogue systems are very challenging to build. But, while early effort on rule-based systems found limited success, the emergence of deep learning enabled great advance on this topic. In this thesis, we focus on methods that address the numerous issues that have been imposing the gap between artificial conversational agents and human-level interlocutors. These methods were proposed and experimented with in ways that were inspired by general state-of-the-art AI methodologies. But they also targeted the characteristics that dialogue systems possess.Comment: PhD thesi

    A Unified Framework for Slot based Response Generation in a Multimodal Dialogue System

    Full text link
    Natural Language Understanding (NLU) and Natural Language Generation (NLG) are the two critical components of every conversational system that handles the task of understanding the user by capturing the necessary information in the form of slots and generating an appropriate response in accordance with the extracted information. Recently, dialogue systems integrated with complementary information such as images, audio, or video have gained immense popularity. In this work, we propose an end-to-end framework with the capability to extract necessary slot values from the utterance and generate a coherent response, thereby assisting the user to achieve their desired goals in a multimodal dialogue system having both textual and visual information. The task of extracting the necessary information is dependent not only on the text but also on the visual cues present in the dialogue. Similarly, for the generation, the previous dialog context comprising multimodal information is significant for providing coherent and informative responses. We employ a multimodal hierarchical encoder using pre-trained DialoGPT and also exploit the knowledge base (Kb) to provide a stronger context for both the tasks. Finally, we design a slot attention mechanism to focus on the necessary information in a given utterance. Lastly, a decoder generates the corresponding response for the given dialogue context and the extracted slot values. Experimental results on the Multimodal Dialogue Dataset (MMD) show that the proposed framework outperforms the baselines approaches in both the tasks. The code is available at https://github.com/avinashsai/slot-gpt.Comment: Published in the journal Multimedia Tools and Application

    Information-Theoretic Text Hallucination Reduction for Video-grounded Dialogue

    Full text link
    Video-grounded Dialogue (VGD) aims to decode an answer sentence to a question regarding a given video and dialogue context. Despite the recent success of multi-modal reasoning to generate answer sentences, existing dialogue systems still suffer from a text hallucination problem, which denotes indiscriminate text-copying from input texts without an understanding of the question. This is due to learning spurious correlations from the fact that answer sentences in the dataset usually include the words of input texts, thus the VGD system excessively relies on copying words from input texts by hoping those words to overlap with ground-truth texts. Hence, we design Text Hallucination Mitigating (THAM) framework, which incorporates Text Hallucination Regularization (THR) loss derived from the proposed information-theoretic text hallucination measurement approach. Applying THAM with current dialogue systems validates the effectiveness on VGD benchmarks (i.e., AVSD@DSTC7 and AVSD@DSTC8) and shows enhanced interpretability.Comment: 12 pages, Accepted in EMNLP 202
    • …
    corecore