810 research outputs found

    Whole brain Probabilistic Generative Model toward Realizing Cognitive Architecture for Developmental Robots

    Get PDF
    Building a humanlike integrative artificial cognitive system, that is, an artificial general intelligence, is one of the goals in artificial intelligence and developmental robotics. Furthermore, a computational model that enables an artificial cognitive system to achieve cognitive development will be an excellent reference for brain and cognitive science. This paper describes the development of a cognitive architecture using probabilistic generative models (PGMs) to fully mirror the human cognitive system. The integrative model is called a whole-brain PGM (WB-PGM). It is both brain-inspired and PGMbased. In this paper, the process of building the WB-PGM and learning from the human brain to build cognitive architectures is described.Comment: 55 pages, 8 figures, submitted to Neural Network

    Active Exploration based on Information Gain by Particle Filter for Efficient Spatial Concept Formation

    Full text link
    Autonomous robots are required to actively and adaptively learn the categories and words of various places by exploring the surrounding environment and interacting with users. In semantic mapping and spatial language acquisition conducted using robots, it is costly and labor-intensive to prepare training datasets that contain linguistic instructions from users. Therefore, we aimed to enable mobile robots to learn spatial concepts through autonomous active exploration. This study is characterized by interpreting the `action' of the robot that asks the user the question `What kind of place is this?' in the context of active inference. We propose an active inference method, spatial concept formation with information gain-based active exploration (SpCoAE), that combines sequential Bayesian inference by particle filters and position determination based on information gain in a probabilistic generative model. Our experiment shows that the proposed method can efficiently determine a position to form appropriate spatial concepts in home environments. In particular, it is important to conduct efficient exploration that leads to appropriate concept formation and quickly covers the environment without adopting a haphazard exploration strategy

    AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming

    Full text link
    The combination of aerial survey capabilities of Unmanned Aerial Vehicles with targeted intervention abilities of agricultural Unmanned Ground Vehicles can significantly improve the effectiveness of robotic systems applied to precision agriculture. In this context, building and updating a common map of the field is an essential but challenging task. The maps built using robots of different types show differences in size, resolution and scale, the associated geolocation data may be inaccurate and biased, while the repetitiveness of both visual appearance and geometric structures found within agricultural contexts render classical map merging techniques ineffective. In this paper we propose AgriColMap, a novel map registration pipeline that leverages a grid-based multimodal environment representation which includes a vegetation index map and a Digital Surface Model. We cast the data association problem between maps built from UAVs and UGVs as a multimodal, large displacement dense optical flow estimation. The dominant, coherent flows, selected using a voting scheme, are used as point-to-point correspondences to infer a preliminary non-rigid alignment between the maps. A final refinement is then performed, by exploiting only meaningful parts of the registered maps. We evaluate our system using real world data for 3 fields with different crop species. The results show that our method outperforms several state of the art map registration and matching techniques by a large margin, and has a higher tolerance to large initial misalignments. We release an implementation of the proposed approach along with the acquired datasets with this paper.Comment: Published in IEEE Robotics and Automation Letters, 201

    Robust non-Gaussian semantic simultaneous localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.The recent success of object detection systems motivates object-based representations for robot navigation; i.e. semantic simultaneous localization and mapping (SLAM), in which we aim to jointly estimate the pose of the robot over time as well as the location and semantic class of observed objects. A solution to the semantic SLAM problem necessarily addresses the continuous inference problems where am I? and where are the objects?, but also the discrete inference problem what are the objects?. We consider the problem of semantic SLAM under non-Gaussian uncertainty. The most prominent case in which this arises is from data association uncertainty, where we do not know with certainty what objects in the environment caused the measurement made by our sensor. The semantic class of an object can help to inform data association; a detection classified as a door is unlikely to be associated to a chair object. However, detectors are imperfect, and incorrect classification of objects can be detrimental to data association. While previous approaches seek to eliminate such measurements, we instead model the robot and landmark state uncertainty induced by data association in the hopes that new measurements may disambiguate state estimates, and that we may provide representations useful for developing decisionmaking strategies where a robot can take actions to mitigate multimodal uncertainty. The key insight we leverage is that the semantic SLAM problem with unknown data association can be reframed as a non-Gaussian inference problem. We present two solutions to the resulting problem: we first assume Gaussian measurement models, and non-Gaussianity only due to data association uncertainty. We then relax this assumption and provide a method that can cope with arbitrary non-Gaussian measurement models. We show quantitatively on both simulated and real data that both proposed methods have robustness advantages as compared to traditional solutions when data associations are uncertain.This work was partially supported by the Office of Naval Research under grants N00014-18-1-2832 and N00014-16-2628, as well as the National Science Foundation (NSF) Graduate Research Fellowship

    Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models

    Full text link
    Perceptual aliasing is one of the main causes of failure for Simultaneous Localization and Mapping (SLAM) systems operating in the wild. Perceptual aliasing is the phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. The problem is exacerbated by the fact that those outliers are highly correlated, in the sense that perceptual aliasing creates a large number of mutually-consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This work provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a Discrete-Continuous Graphical Model (DC-GM) for SLAM: the continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization.Comment: 13 pages, 14 figures, 1 tabl
    • …
    corecore