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a b s t r a c t

Building a human-like integrative artificial cognitive system, that is, an artificial general intelligence
(AGI), is the holy grail of the artificial intelligence (AI) field. Furthermore, a computational model
that enables an artificial system to achieve cognitive development will be an excellent reference for
brain and cognitive science. This paper describes an approach to develop a cognitive architecture
by integrating elemental cognitive modules to enable the training of the modules as a whole. This
approach is based on two ideas: (1) brain-inspired AI, learning human brain architecture to build
human-level intelligence, and (2) a probabilistic generative model (PGM)-based cognitive architecture
to develop a cognitive system for developmental robots by integrating PGMs. The proposed develop-
ment framework is called a whole brain PGM (WB-PGM), which differs fundamentally from existing
cognitive architectures in that it can learn continuously through a system based on sensory-motor
information.

In this paper, we describe the rationale for WB-PGM, the current status of PGM-based elemental
cognitive modules, their relationship with the human brain, the approach to the integration of the
cognitive modules, and future challenges. Our findings can serve as a reference for brain studies. As
PGMs describe explicit informational relationships between variables, WB-PGM provides interpretable
guidance from computational sciences to brain science. By providing such information, researchers in
neuroscience can provide feedback to researchers in AI and robotics on what the current models lack
with reference to the brain. Further, it can facilitate collaboration among researchers in neuro-cognitive
sciences as well as AI and robotics.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Infants acquire a wide range of cognitive capabilities through
aily physical and social interactions with their environment.
hrough this developmental process, they acquire basic physical
kills (e.g., reaching and grasping), perceptual skills (e.g., object
ecognition and speech recognition), and social skills (e.g., linguis-
ic communication and intention estimation) (Taniguchi, Ugur,
t al., 2018). This open-ended learning process involving many
ypes of modalities, tasks, and interactions is often referred to as
ifelong learning (Oudeyer, Kaplan, & Hafner, 2007; Parisi, Kemker,

∗ Corresponding author.
E-mail address: taniguchi@em.ci.ritsumei.ac.jp (T. Taniguchi).
ttps://doi.org/10.1016/j.neunet.2022.02.026
893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
Part, Kanan, & Wermter, 2019). The central question in next-
generation artificial intelligence (AI) and developmental robotics
is how to build an integrative cognitive system capable of lifelong
learning and human-like behavior in various environments such
as homes, offices, and outdoors. In this paper, inspired by the
whole brain architecture (WBA) approach, using a whole brain
probabilistic generative model (WB-PGM), we introduce the idea
of building an integrative cognitive system that can alternatively
be referred to as artificial general intelligence (AGI) (Yamakawa,
2021).

A cognitive architecture is a hypothesis about the mechanisms
of human intelligence underlying our behaviors (Rosenbloom,
2011). The study of cognitive architecture involves developing a

presumably standard model of the human mind (Laird, Lebiere,
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Rosenbloom, 2017). It integrates a wide range of cognitive
apabilities: representation and memory, problem-solving and
lanning, learning, reflection, interaction, and the social aspects
f cognition. Notably, the interaction includes perception, motor
ontrol, and the use of language. Social aspects of cognition in-
lude intention sharing, emotional expression, collaborative con-
rol, and language use for communication and collaboration. In
ognitive and developmental robotics, a robot is required to in-
egrate a wide range of sensor information and perform a variety
f cognitive tasks to explore environments, grasp and handle
bjects, and interact with people (Doncieux et al., 2020; Tanevska,
ea, Sandini, Cañamero, & Sciutti, 2019; Vernon, Metta, & Sandini,
007; Vernon, Von Hofsten, & Fadiga, 2016). In such contexts, a
ognitive architecture is required to integrate various elemental
ognitive modules.
To build a cognitive architecture that addresses the functions

f the entire brain, it is desirable to describe the computation
f the entire brain with as few types of theoretical and com-
utational elements (primitive structures, circuits, computational
odes, and so on) as possible (ideally, one type). The probabilistic
enerative model (PGM) is a strong candidate for a computational
odel for this purpose.
A PGM is a probabilistic description of how causes generate

ensations, i.e., observed data. That is, PGM is a statistical model
f the joint probability distribution on observable data (Bishop,
006). PGMs learn to predict these observations. This is also often
eferred to as predictive coding and the free energy principle (FEP).
EP is a powerful idea for explaining the human brain. It is a
ormative framework for Bayesian inference and learning of the
uman brain and is based on a PGM (Friston, 2019; Friston et al.,
021; Hohwy, 2013). According to the FEP, perception and action
an be modeled as self-evidencing (as described in Section 4.1).
any types of elemental cognitive modules have been developed
ased on PGMs; including hidden Markov models (HMMs), latent
irichlet allocation (LDA), variational autoencoder (VAE), and par-
ially observable Markov decision process (POMDP) (Blei, Ng, &
ordan, 2003; Kingma & Welling, 2014; Rabiner & Juang, 1986;
hrun, Burgard, & Fox, 2005) as described in Section 3. Most
GMs can be represented using probabilistic graphical models.
or a human-like developmental cognitive system, unsupervised
or self-supervised) learning is required. PGMs are known to
e suitable for unsupervised learning. In contrast, supervised
earning using human-annotated training data, on which most
urrent AI systems, such as image recognition and machine trans-
ation systems (i.e., single-purpose cognitive modules) depend, is
ot a suitable approach to achieve lifelong learning (Krizhevsky,
utskever, & Hinton, 2012; LeCun, Bengio, & Hinton, 2015; Luong,
ham, & Manning, 2015). Using human-annotated training data
s impractical for lifelong learning conducted by autonomous
gents. In addition to being capable of unsupervised learning,
GMs representing elemental cognitive functions can be inte-
rated to learn together (as described in Section 4.2). Owing
o these features, we focus on the construction of a cognitive
rchitecture based on PGMs in this paper.
Developing a cognitive architecture by integrating elemental

ognitive modules provides us with a large degree of freedom
ith combinatorial complexity. We can reduce the design space
f the integrative cognitive system using the human or animal
rain architectures as a reference model. In the rapidly advancing
ield of neuroscience, researchers are beginning to have some
omprehensive knowledge of human and animal brain architec-
ures and their anatomy, as well as the various neural activities
hat take place in them. However, such knowledge is not or-
anized in a way that is suitable for effectively constraining
he design space of cognitive architectures. Therefore, using the
BA approach, we defined a data format called the brain ref-

rence architecture (BRA), which is a reference model of the
294
brain, and described knowledge in the field of neuroscience in a
standardized way suitable for that application (Yamakawa, 2021).

Adjacent research areas include biologically inspired cogni-
tive architectures (Goertzel, Lian, Arel, de Garis, & Chen, 2010;
Samsonovich, Klimov, & Rybina, 2016) and cognitive compu-
tational neuroscience (Kriegeskorte & Douglas, 2018), which is
an interdisciplinary field of cognitive science and computational
neuroscience. Compared to the BRA, these fields have not made
progress in accumulating design data in a standardized manner.
In neuroinformatics (Amari et al., 2002; Crasto, 2007; Pradeep,
Knight, & Gurumoorthy, 2013), which develops data and knowl-
edge bases for neuroscience, progress has been made in exper-
imental data on anatomical structures (Kuan et al., 2015) and
physiological phenomena (Poldrack & Gorgolewski, 2017). Even
so, no progress has been made in accumulating data such that it
can be used to design cognitive and behavioral functions, as in
the BRA-driven development.

When we seek to build an AGI based on human-brain archi-
tectures, that is, using the WBA approach and having a refer-
ence model for the architecture, two challenges must be over-
come. First, there are numerous alternative machine learning
approaches to choose from to develop and integrate elemental
models into a cognitive architecture. If each elemental cogni-
tive module is developed based on a random machine learn-
ing approach, it will become difficult to integrate them using
a coherent framework. Second, developmental cognitive archi-
tectures should be able to make all cognitive modules learn
together based on the real-world sensory-motor information ob-
tained by a robot. This is crucial for achieving lifelong learning.
However, most elemental cognitive modules, that is, AI func-
tions, have been developed independently under different design
principles. To overcome these problems, a PGM-based approach
is proposed in this paper to create cognitive architectures for
developmental robots. We propose that developing elemental
cognitive modules and integrating them based on the theory of
PGMs, specifically, the SERKET (symbol emergence in robotics
tool kit) framework, can solve the above-mentioned problems
(Nakamura, Nagai, & Taniguchi, 2018; Taniguchi et al., 2020) (as
described in Section 4.2).

Inspired by the human brain architecture, we propose an
approach wherein cognitive architecture is built by integrating
PGM-based cognitive modules to fully mimic the human cogni-
tive system. The framework for the integrative model is called
WB-PGM. This paper describes the approach and the rationale,
the current status, and the future challenges of WB-PGM. The
remainder of this paper is organized as follows. Section 2 de-
scribes the rationale and design principle for our approach in-
cluding its background. Section 3 reviews the relevant literature
on elemental cognitive modules that can constitute the WB-PGM.
Section 4 describes the PGM-based cognitive system integrating
multimodal information (i.e., the world model) and the SERKET
framework, which enables the efficient integration of PGM-based
elemental cognitive modules. Section 5 describes the current
status of a WB-PGM and the future path of the development,
interdisciplinary communication, and collaboration, specifically
the fusion of AI and brain science. Section 6 summarizes the
conclusions.

2. Rationale and design principle for WB-PGM

To develop a cognitive architecture for realizing embodied
AGI, we require a theoretical and practical development frame-
work that enables researchers to efficiently design integrative
artificial cognitive systems capable of lifelong learning, similar
to the human brain. Such systems must integrate multimodal
information and developmentally learn numerous cognitive skills.
The proposed WB-PGM is a development framework that can
contribute to overcoming these problems. This section describes
the development of WB-PGM, and the rationale behind it.
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.1. WB-PGM

To develop a multimodal cognitive system, beyond the de-
elopment of machine learning algorithms and signal processing
odules that emphasize performance of a specific task, it is
ecessary to consider the following points: (1) machine learning
lgorithms (and theories) considering the correspondence with
he structure of the brain, (2) realization of the whole structure
ather than only a partial one, (3) interaction between the body,
ncluding the sensors and the real environment, (4) develop-
ental learning considering timeline, and (5) consideration of
omputational and energy efficiency. Here, we describe the ideas,
urrent trials, and challenges of developing the WB-PGM.
Several related studies have investigated function-based mod-

ling of the entire brain. For example, Eliasmith et al. (2012)
roposed a neural architecture, Spaun (semantic pointer archi-
ecture unified network), which models the entire brain function.
his study aimed to elucidate the mechanism by bridging the gap
etween the neuron response and function as a whole. Sagar,
eymour, and Henderson (2016) developed a system, BabyX, that
ttempts to simulate the entire brain from a functional viewpoint.
sensor–motor system using a functional model of the brain

ould generate realistic facial expressions. These studies aimed
o realize a holistic model, similar to our study. Be that as it may,
imulating the complexity of the brain functions as a whole has
ot been realized. These systems are difficult to extend because
hey do not have a principle based on a unified machine learn-
ng theory governing the entire models and a systematic way
f abstraction. In addition, they have focused on limited tasks,
.g., generating facial expressions, recognizing visual images, and
ontrolling simulated robot arms. An appropriate cognitive ar-
hitecture for developmental robotics should enable a robot to
erform a wide range of tasks in the real environment with its
ody through interactions and lifelong learning capabilities.
The idea behind the WB-PGM is to combine the recent devel-

pments in generative models from the field of machine learning
ith the latest knowledge of the structure and functional level of
he entire brain. Thus, it aims to reproduce the flexible cognitive
unctions of humans, which cannot be achieved by the current
ingle-purpose-oriented AI, which is often built on discrimina-
ive models. Moreover, neuroscience, which tends to study par-
ial regions and specific functions of the brain (with a so-called
orm’s-eye view), may not efficiently grasp the whole structure
t once. Therefore, adopting the bird’s-eye approach that can be
perated/verified as a whole using our proposed WB-PGM model
ay help realize AGI.
Nevertheless, mapping the structure of the entire brain onto
machine learning model is not an easy task. This is because

he neuroscience knowledge required to build it is vast and
omplex. Further, it is extremely difficult for one individual to
esign software for the entire brain. To solve this problem, we
ropose to use BRA-driven development that has been cultivated
n the WBA literature (see Section 2.3). One of the most signif-
cant challenges facing the WB-PGM approach is matching the
B-PGM and BRA. Currently, efforts to match them are under-
ay (Taniguchi, Fukawa, & Yamakawa, 2021) (see Section 2.4.3
s an example of this effort). Fig. 1 illustrates an overview of the
B-PGM.
Miyazawa et al. developed a representative prototype of an

ntegrated cognitive model (Miyazawa, Aoki, Horii, & Nagai, 2019;
iyazawa, Horii, Aoki, & Nagai, 2019) based on the structure
roposed by Doya (1999) (instead of directly using the BRA).
ence, the prototype is based on the hypothesis that the cere-
ellum, basal ganglia, and cerebral cortex are specialized in su-
ervised, reinforcement, and unsupervised learning paradigms,
espectively (Doya, 1999). Their first focus was on the unsu-

ervised learning paradigm in the cerebral cortex, which was
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realized by PGMs that map observations to latent variables. This
paradigm was considered as a basic module, while the reinforce-
ment learning (RL) module corresponding to the basal ganglia and
the supervised learning module for motor control corresponding
to the cerebellum are also connected (Miyazawa, Horii, et al.,
2019). Furthermore, in the prototype, HMM was connected as the
temporal learning mechanism to enable the robots to perform
planning for longer periods of time using dynamic programming
such as the Viterbi algorithm (Miyazawa, Aoki, et al., 2019).

Various prototypes of WB-PGM, inspired by the above basic
hypothesis of the brain, were implemented in an actual robot to
enable basic learning (Araki, Nakamura, & Nagai, 2013; Miyazawa,
Horii, et al., 2019; Nishihara, Nakamura, & Nagai, 2017). For
example, Nishihara et al. (2017) showed that a robot could actu-
ally learn object concepts and associations among concepts and
words through interactions with humans using many real ob-
jects. Miyazawa, Horii, et al. (2019) extended this model further
and showed that the robot could learn to use objects through
its own experiences. Moreover, Taniguchi, Hagiwara, Taniguchi,
and Inamura (2020a) showed that the robot could acquire the
concept and name of a place through interactions with its human
counterpart.

To deal more closely with the anatomical structure of the
brain, we needed to proceed with coordination between the PGM-
based cognitive architecture and BRA (see Sections 2.3 and 2.4).
This process also leads to the challenge of scaling-up the combi-
nation of PGMs to achieve a large-scale WB-PGM (see Section 4).

2.2. PGMs for cognitive systems

The idea that the human brain functions can be described
using various machine learning modules is unprecedentedly pop-
ular. In particular, PGM-based machine learning modules learn
to predict observations. Improving this prediction capability is a
general criterion for mathematical models of cognitive systems.
PGMs have been used to explain brain functions in many contexts
from a Bayesian perspective.

For example, it is believed that the hippocampus and medial
entorhinal cortex (MEC) perform simultaneous self-localization
and mapping (SLAM) (Ball et al., 2013; O’keefe & Nadel, 1978;
Tolman, 1948). From a theoretical viewpoint, to perform SLAM,
it is often assumed that actions, states, and observations follow
a POMDP, and a map is defined as a global parameter of an
observation model. Meanwhile, the Bayesian inference on the
POMDP, a type of PGM, is regarded as a function of SLAM.

The hypothesis that the basal ganglia are responsible for re-
inforcement learning is also widely accepted (Barto, 1995; Doya,
2007; Montague, Dayan, & Sejnowski, 1996). Conventionally, RL
is formulated as a problem in which an agent optimizes its policy
function to maximize the expected cumulative future rewards in
an environment modeled as an MDP, a type of PGM (Sutton &
Barto, 2018). However, the concept of control as probabilistic infer-
ence clarifies that RL can be converted into an inference problem
on an extended PGM for MDP (Levine, 2018) (see Section 3.3).
This also inspired us to model brain functions using PGMs.

In a series of studies on symbol emergence in robotics, many
unsupervised learning systems for robots have been developed
based on PGMs to help observe multimodal sensory signals,
model environments, acquire languages, and adopt behaviors
(Taniguchi, Nagai, et al., 2016). Multimodal latent Dirichlet allo-
cation (MLDA) is a basic example of such a process (Nakamura,
Araki, Nagai, & Iwahashi, 2012). The MLDA was able to integrate
visual, auditory, haptic, and linguistic sensor information and
form object categories without supervision. Many variants and
extensions of the MLDA, including the nonparametric Bayesian
extension, have been proposed (Nakamura, Nagai, & Iwahashi,
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Fig. 1. Constructing WB-PGM based on the functional structure of the brain via BRA. Please note that this figure is intended to provide an overview of the WB-PGM
development process. Model refinement using evaluation process (see Section 2.5) is also considered.
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2011a, 2011b). A series of studies have suggested that a PGM-
based approach has the potential for building an integrative
cognitive system for developmental robots.

Advancements in deep learning have extended the capability
of PGMs by inducing deep PGMs (DPGMs) (Goodfellow et al.,
2014; Kingma & Welling, 2014; Suzuki, Nakayama, & Matsuo,
2016). DPGMs use deep neural networks as part of the generative
process. They can extract features, that is, they are capable of
representation learning. In the 2010s, most PGMs proposed in
conventional studies to develop integrative cognitive systems in
symbol emergence in robotics were based on classical models of
probabilistic distributions such as categorical, Gaussian, Wishart,
and Dirichlet distributions (Taniguchi, Nagai, et al., 2016). These
conventional integrative PGMs were, however, not capable of
feature extraction. To tackle this problem, DPGMs can enable
us to develop more flexible cognitive systems, maximizing the
representation learning capability of deep neural networks.

Based on this evidence, we argue that a PGM is a reasonable
approach to describe the whole brain cognitive system.

2.3. Overview of BRA-driven development for WB-PGM

As already mentioned in Section 2.1, to build a versatile cog-
nitive system similar to a human, the entire system needs to be
designed on a large scale. Given that the design space is vast,
it is advantageous to constrain the design space by mimicking
the architecture of the brain. As a way to embody this, we used
BRA-driven development extended for PGMs.

BRA-driven development is a method of constructing software
that reproduces human-like cognitive functions by referring to

the neural circuits of the whole brain Yamakawa (2021). BRA

296
data, which play a central role in BRA-driven development, form
a reference model consisting of a brain information flow (BIF),
which extracts mesoscopic-level anatomical knowledge related
to human cognitive behavior, and a hypothetical component dia-
gram (HCD), which shows the structure of functional components
organized consistently with respect to the BIF, as shown in Fig. 2.

The BRA-driven development process consists of the construc-
tion and evaluation processes, mediated by BRA data. In the
conventional construction process, BIF is first designed by the
structure-constrained interface decomposition (SCID) method de-
scribed below, HCD is created under the constraints of BIF, and,
then, brain-type software is implemented using the HCD as spec-
ification information. In the WB-PGM development, a process
called generation-inference process allocation (GIPA) is added to
convert HCD into PGM before implementation (see Section 2.4).
In contrast, the evaluation process consists of adequacy evaluation,
hich confirms that the BRA is consistent with existing brain
cience findings, and fidelity evaluation, which evaluates whether
he brain-type software is implemented in a manner consistent
ith the BRA.
As shown in Fig. 2, BRA-driven development separates the de-

ign of the BRA from the implementation of the software based on
t, thus enabling multiple brain scientists and multiple software
evelopers to collaborate on large-scale development.
BRA data (Sasaki, Yamakawa, & Arakawa, 2020) essentially

onsist of BIF and HCD. More precisely, findings from neuro-
cience describe not only BIF, which is anatomical structural
nformation, but also neural activity and the processes that con-
titute it, which are omitted in this description.
BIF: BIF is an information flow diagram that describes the

natomical structure of the entire brain at the mesoscopic level,
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Fig. 2. WB-PGM development as extended BRA-driven development. A devel-
opment method that extends BRA-driven development, which utilizes BRA data
such as BIF and HCD, by adding GIPA, thus creating PGMs. The construction
process is shown in the upward direction, while the downward direction shows
the evaluation process.

without assuming any specific task (Arakawa & Yamakawa, 2020).
It is constructed by analyzing findings from neuroscience, such as
data and connectome (Negishi, Hayami, Tamura, Mizutani, & Ya-
makawa, 2019). It consists of nodes, called circuits, and directed
links, called connections (see Fig. 3 (A)). Consequently, BIFs can
provide the basis for an architecture that combines numerous
computational mechanisms. To prevent too fine granularity, the
lower bound of granularity is defined as a population of (sub-
)types of neurons that are considered almost homogeneous and
belong to the same brain organ. This population of neurons is
called a uniform circuit (see Fig. 3(A)).

HCD: HCD is a diagram that breaks down the task or function
performed by a particular region of interest (ROI) in the brain
into its functional components, where the structure of the func-
tional decomposition must be consistent with the mesoscopic
level anatomical structure (see Fig. 3(B)). A component diagram
is a major type of diagram in the unified modeling language for
modeling the structure of object-oriented software (Bell, 2004).
It illustrates the static aspects of the operating principles of
software through a network of components that perform compu-
tational functions and the semantics of the dependencies among
those components in any complex system. As demonstrated sub-
sequently, the PGM developed in this study is based on the
component diagram.

2.4. Construction of WB-PGM

The construction process of the WB-PGM consists of the design
rocess of BRA by the SCID method and the conversion process
rom HCD to PGM by GIPA, as described below.

.4.1. SCID method for designing BRA
The SCID method is a protocol for designing HCD, which

s brain-inspired software specification information based on
nowledge from the neuroscience field (Fukawa, Aizawa, Ya-

akawa, & Yairi, 2020; Yamakawa, 2020, 2021). The method (
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constructs a BIF for a specific ROI based on anatomical knowledge
and then designs an HCD that can realize the top-level function
(TLF) of the ROI consistent with the BIF.

The SCID method consists of the following three steps, al-
though Step 1 and Step 2 are often executed back and forth.

• Step 1: BIF construction: Surveying anatomical knowledge
in ROI

• Step 2: Determining ROI and TLF consistently
Including the creation of provisional component dia-

grams
• Step 3: HCD creation

– Step 3-A: Enumeration of candidate component dia-
grams

– Step 3-B: Rejection of HCDs that are inconsistent with
scientific knowledge

Conventional computational neuroscience study models neu-
ral activities in the brain by interpreting them based on changes
in the external world. Given that the range of neural activities
that can be interpreted in the brain is limited, the SCID method
can organize the structure of functions to achieve its goal, consis-
tent with anatomical knowledge of the brain, at the mesoscopic
level. Since this anatomical knowledge is now being accumulated
over a relatively wide region of the brain, the SCID method can
potentially be used to create HCD over a wide region of the brain.

2.4.2. GIPA for mapping HCD to PGM
This section provides a foothold for building a probabilis-

tic graphical model representation of a PGM that is consistent
with the BRA data. As mentioned in Sections 2.3 and 2.4.1, the
HCD designed using the SCID method represents a dependency
structure between components corresponding to each specific
brain region. Thus, to construct a probabilistic graphical model
corresponding to a brain neural circuit, the dependency inter-
faces in the HCD should be classified such that they correspond
either to the generative or inference processes. This task is called
GIPA (Taniguchi, Fukawa, & Yamakawa, 2021). Here, the links in
both the generative and inference processes can be considered
to be specialized dependencies. In other words, GIPA should be
performed for every interface (Taniguchi, Fukawa, & Yamakawa,
2021).

Problems: In preparation, the dynamic recurrent property
should be discussed with respect to PGMs and brain structures.
First, there are many loops in the brain’s anatomical circuits,
whereas a PGM needs to be a directed acyclic graph. In most
cases, it is difficult to assign acyclic PGMs to brain circuits.1

The PGM is a model that provides a consistent link structure
in the data generation process using directed links that represent
the signal transfers between random variables.2 When inferring
latent variables, an inference model is used to calculate the pos-
terior probability distribution of the latent variables conditioned
by the observed values. In ordinary PGMs, signal propagation in
the inference process causes signals to propagate in the opposite
direction to the links used in the generation process. In contrast,
in brain neural circuits, signal propagation between the regions
by electrical spikes that propagate terminally on axons is essen-
tially unidirectional. Therefore, to realize a PGM in its normal
form, the condition, ‘‘whenever there is a connection between
two regions, it is a mutual connection’’, must be satisfied in the
brain. However, in most regions of actual brain neural circuits,
satisfying this condition is difficult.

1 Although, the occurrence of apparent loops in the static structure, which
s obtained by degenerating the temporal evolution of an acyclic PGM, is not a
roblem.
2 Each of these variables is, in principle, associated with a ‘uniform circuit,’

see Section 2.3), which is the minimum descriptive unit of the BIF.
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Table 1
Counter stream pathways in the neocortex.
Pathways Feedforward Feedback

Direction From the outside
world to the internal
state (from lower to
higher areas)

From the internal
state to the outside
world (from higher to
lower areas)

Laminar on cortical
microcircuits (Markov
et al., 2013, 2014)

Layer 3, and Layer 4 Layer 2

Meaning of signals
(Yamakawa, 2020)

Observation Prediction

Graphical model
representation of PGM

Inference process Generative process
Solution strategy: To avoid this problem, we adopt an amor-
ized inference to define the link structure of the inference pro-
ess independently of the link structure of the generative pro-
ess (Gershman & Goodman, 2014). Amortized inference is a type
f variational inference, an approach that introduces functions
or efficient approximate inferencing of latent variables. A typical
xample of this is the VAE, which is a DPGM using a neural
etwork for the probabilistic encoder (Kingma & Welling, 2014).
n HCD can be modeled as a PGM using amortized inference
Fig. 3(C)). We can model the network using amortized inference
ith a high degree of freedom, as long as it is consistent with the

ink structure of the generative process. Therefore, in this type of
robabilistic graphical model, it is easy to relate the link structure
o the actual structure of the brain neural circuits.

The major interarea connections of the neocortex can be al-
ocated to either of the generation or inference processes. In the
eocortex, there is a feedforward pathway that transmits signals
rom lower to higher areas while processing signals received
y sensors, and a feedback pathway that transmits signals in
he opposite direction (Markov et al., 2013, 2014) (see Table 1).
n computational neuroscience theories, such as the Bayesian
rain Doya, Ishii, Pouget, and Rao (2007), Friston (2012) and
redictive coding (Rao & Ballard, 1999), inference and generation
re assumed to be processed by the feedforward and feedback
athways, respectively. The HCD for the neocortical interarea
onnections was designed based on these findings (Yamakawa,
020). During GIPA in the neural circuits adjacent to the cor-
ex, care must be taken to avoid inconsistencies in GIPA at the
nterface with the cortex.

.4.3. Construction example: PGM for hippocampal formation
An example of PGM by applying GIPA to the hippocampal

ormation (HF)3 (Taniguchi, Fukawa, & Yamakawa, 2021) is illus-
trated in this section. As shown in Fig. 3, first the BIF of the HF
(Fig. 3(A)) is constructed. Then, the HCD (Fig. 3(B)) is designed
using the SCID method. The PGM on HF (Fig. 3(C)) is constructed
by performing a GIPA. The dotted arrows represent the inference
process, while the lined arrows represent the generative process.

The connection from POR to MEC II superficial on the BIF can
be regarded as a feed-forward pathway. According to Table 1,
an inference process can be allocated to the connection from
variable RPOR to variable X in Fig. 3. Similarly, the connection
from the deep MEC to the POR on the BIF can be regarded as a
feedback pathway. According to Table 1, a generation process can
be allocated to the connection from variable g to variable RPOR in
he probabilistic graphical model representation (Fig. 3). Never-
heless, there exist limitations to performing GIPA in terms of the
nside of the hippocampus when considering only its connectivity
ith the neocortex. Therefore, the engineering formulation of the
LAM modeled as PGM was used as a reference.

3 HF is a brain organ containing the entorhinal cortex and hippocampus.
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Fig. 3. BIF, HCD and graphical model representation of PGMs. Corresponding
areas in the three figures are indicated by same-colored borders. (A) BIF with
the hippocampus and medial entorhinal cortex (MEC) as the ROI. This figure
is obtained by organizing the anatomy at the mesoscopic level of the brain.
Projection from POR to the MEC sup represents feedforward coupling, whereas
the projection from the MEC deep to the POR is feedback coupling. CA1 pro:
Cornu ammonis 1 proximal; CA3: Cornu ammonis 3; DG: Dentate gyrus; MEC
deep: MEC, deep layers; MEC II sta: MEC, Layer 2, stellate cell; MEC sup:
MEC, superficial layers; ParaSb: parasubiculum; POR: Postrhinal cortex; RSC:
Retrosplenial cortex; ROI: Region of Interest; Sdis: Subiculum distal. (B) HCD
associated with the above BIF. The diagram is constructed using the SCID
method to assign functions to the components that correspond to the BIF
and perform SLAM functions. r: Cluster information regarding positions; H:
Pattern separation/completion, information integration; X and X ′: Self-posture;
g: Prediction at the future time regarding movement/speed amount or posture;
RPOR: Allocentric visual information; u: Rotational speed movement. (C) A
probabilistic graphical model created from the above HCD. Probabilistic graphical
models are converted from an HCD by GIPA, that is, assigning all interfaces on
that HCD to either generative or inference processes. The flat arrow with ∆t
indicates the generation of the variable in the next time step.
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The graphical model representation of the PGM for HF in
Fig. 3(C) was constructed to be consistent with SLAM’s PGM
using the GIPA procedure based on the above discussion. For
engineering SLAM, we considered a PGM that estimates the future
self-posture X(t+1) directly from the current self-posture X(t). In
contrast, the self-posture X at the next time in HF is generated via
variables such as H , r , X ′, and g . Since the probabilistic graphical
model representation of the HF in Fig. 3(C) degenerates over time,
there is a circulation in the generation process at a glance. To
make it clear that circulations with an increment of a time step
(e.g., POMDP and state-space models such as the Kalman filter)
are acceptable for PGMs, the notation ‘‘next time generation
process’’ is introduced. Generation with one-time step progress is
represented by a double line orthogonal to the generation arrow,
plus the symbol ∆t . Note that there is the arbitrariness of position
at which the time progress can be allocated in the loop of PGMs.4

2.5. Evaluation of WB-PGM

To ensure that the developed software mirrors the brain ef-
ficiently, the evaluation method proposed for BRA-driven de-
velopment (Yamakawa, 2021) was used. It comprises the two
evaluations described below.

The first method entails evaluating the software adequacy
by estimating the consistency between existing neuroscientific
findings and BRA. The second method is the fidelity evaluation,
wherein the reproducibility of the BRA in the brain-inspired
software is evaluated.

2.5.1. Evaluating adequacy
Adequacy evaluation can be divided into that for BIF and that

for HCD.
(1) Adequacy evaluation of BIF
The consistency of the anatomical structures and neural activ-

ity described in the BIF with those described in neuroscientific
papers and data is evaluated.

Two main inspection criteria are used to verify that the de-
scription of BIF is sufficient. The first criterion is ensuring that
the description element of the structure or phenomenon that is
provided in the data submitted for registration is not already
registered in the BRA database (i.e., novelty). The other criterion
is that the element must be directly or indirectly supported by
current neuroscientific findings (i.e., authenticity). As a rule, the
authenticity of facts is guaranteed by their inclusion in one or
more peer-reviewed articles.

(2) Adequacy evaluation of HCD
The functionality of the HCD and its consistency with the BIF

are evaluated to determine whether the process generated by the
behavior of the structured components in the HCD can achieve
the goals of the ROI.

The consistency evaluation determines whether the HCD cor-
responds to the description of the BIF according to two aspects:

1. The dependency structure of the HCD corresponds to the
anatomical structure contained in the ROI of the BIF.

2. The behavior of the components within the HCD is con-
sistent with the physiological findings described in the
BIF.

2.5.2. Evaluating fidelity
The biological plausibility of brain-inspired software can be

evaluated by comparing it with BIF and HCD in the BRA data.

4 It is arbitrary in the sense that the International Date Line can be placed
t any longitude on Earth.
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The estimated degree of consistency between the software and
BRA is referred to as fidelity.

To date, four methods have been explored for the evaluation
of fidelity.

• Structural similarity: An evaluation of how strongly the
static structure of the software matches the BIF in the BRA.

• Functional similarity: An evaluation of how strongly the
behavior of a particular component that is implemented
during the execution of a specific task matches the behavior
(e.g., behavior timing) that is designed in the HCD in the
BRA.

• Activity reproducibility: An evaluation of how effectively
the behavior of a certain variable in the internal compo-
nents of the software implemented according to the BRA
reproduces the characteristics of neural activity (e.g., activ-
ity timing and patterns in the corresponding brain region
during the execution of a specific task).

• Performance: An evaluation of the performance and ability
of the software as a whole (integrative testing).

Among these evaluation methods, structural similarity and
erformance are easy to use for the evaluation of the whole
oftware. Nevertheless, functional similarity and activity repro-
ucibility are useful for unit tests for each component as well
s for integrative development. Furthermore, it is possible to
onsider an evaluation method wherein dysfunction states are
nduced by intentionally destroying/ablating parts of the software
nd comparing them with the brain functioning under conditions
uch as mental illness or brain injury.

.6. WB-PGM for lifelong-learning robots (AGI)

At some point in the future, BRA may be able to cover the
ntire brain, the PGM-based design that is being developed based
n BRA may also cover entire brain, and the construction of
B-PGM may help in realizing lifelong-learning robots. A PGM-
ased approach is suitable for developing an integrative cognitive
rchitecture for lifelong-learning robots because it enables inte-
rative cognitive systems to perform unsupervised learning that
oes not require human-annotated data for training. Since PGM-
ased cognitive systems learn internal models, representations,
nd behaviors by inferring latent variables of the system based on
ensory-motor observations, with the learning process requiring
nly sensory-motor information (i.e., performing unsupervised
earning). This process is also called predictive coding (Ciria,
chillaci, Pezzulo, Hafner, & Lara, 2021). In particular, the WB-
GM is expected to be able to adapt the entire cognitive system
or lifelong learning by exploiting findings from the fields of
euroscience and cognitive science in its development.
Many scientific fields attempt to reach a better understanding

f the human mind, including cognitive science, neuroscience,
obotics, with each field adopting a unique approach. In partic-
lar, cognitive architectures are often regarded as the standard
odel of a human-like mind (Laird et al., 2017).
The study of cognitive architectures has a long history, with

architectures proposed, including Soar, ACT-R, Sigma, and their
variants (Anderson, 2009; Laird, 2012; Rosenbloom, Demski, &
Ustun, 2016). Traditional models were based on symbolic AI,
whereas more recent approaches such as neural networks and
PGMs have also been considered for modeling cognitive architec-
tures. Although most studies on cognitive architecture adopted
a top-down theoretical approach, they were rarely implemented
and tested on embodied artifacts in real-world physical and social
scenarios such as cognitive and social robotics. That is, they were
not based on real-world multimodal information, unlike modern
AI (e.g., deep learning-based pattern recognition and synthesis
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s well as concept formation and representation learning (Fadlil,
keda, Abe, Nakamura, & Nagai, 2013; LeCun et al., 2015).

Therefore, the proposed WB-PGM should be validated by eval-
ating it on real-world tasks. As human intelligence has con-
tantly evolved during our evolutionary period to adapt to the
hanges in the environment, our cognitive systems were also
eveloped to enable us to survive real-world physical and social
cenarios. In view of this, a human-like cognitive system, i.e., AGI,
hould be evaluated in a real-world environment in which human
ognitive system evolved. In other words, if some tasks cannot
e achieved in a real-world environment by a developed AI sys-
em, then the corresponding aspects of human intelligence are
issing. Thereby, a cognitive system should learn various skills
y organizing multimodal sensory-motor information observed
y the system itself. For this purpose, the cognitive system ought
o have a body to actively and autonomously explore the physical
nd social environment. That is, it should be tested using robots
hat have bodies to act in a real environment. This is part of the
erformance test for evaluation fidelity mentioned in Section 2.5).
From the viewpoint of brain science, where researchers seek

o understand how human minds and brains work in greater
etail, a standard model, such as the WB-PGM, can provide top-
own guidance to interpret actual experimental results, which
re always obtained from a partial cognitive process and under
imited conditions. Furthermore, such a model can suggest new
xperiments for efficiently uncovering the mystery of the hu-
an brain and cognition. Therefore, the cognitive architecture in

his study is located at the intersection of neuroscience, AI, and
obotics. There is strong evidence that the proposed WB-PGM can
lso extend neuroscience studies.

. PGM-based cognitive modules

The WB-PGM is developed by integrating cognitive modules
nto a single PGM by using SERKET framework (see Section 4.2).
wide range of elemental cognitive modules has been developed
ith regard to their respective cognitive capabilities. This section
rovides a survey of the PGM-based cognitive modules to further
ntegrate them to realize the WB-PGM.

As mentioned in the Introduction, if the entire brain-like cog-
itive structure can be constructed as a unified model, called
B-PGM, then its development will be more efficient. Yet, the
uestion remains as to whether each part of the brain can be
reated as a PGM. Here, we outline that the computational ele-
ents of each area of the brain involved in higher-order cognitive

unctions can be represented generally as a module of the PGM.
Historically, information processing, primarily in the visual

ortex, has been modeled as a PGM. However, all neocortical
reas are composed of canonical microcircuits with homogene-
ty to some extent (Bastos et al., 2012; Beul & Hilgetag, 2014;
ouglas, Martin, & Whitteridge, 1989), and the network between
eocortical areas constitutes a counter stream of feedforward and
eedback systems (Markov et al., 2013). As this mechanism allows
s to regard the flow of observational and predictive signals as
pposing (Yamakawa, 2020), it acts as the basis for the PGM
echanism for the whole brain. Recently, it has also been pointed
ut that the PGM mechanism in the neocortex has the duality
f cognition and control (Doya, 2021) (See also Section 4.1).
dditionally, it is reasonable to consider the hippocampus, which
s connected to the neocortex via the entorhinal cortex, as a
GM because it performs computations similar to SLAM, which is
ssentially described as a PGM (Taniguchi, Fukawa, & Yamakawa,
021). Further, the basal ganglia and amygdala can estimate the
esirability of a certain state from the system’s viewpoint, and the
eocortex can use this information to perform optimal control as
PGM (see Section 3.3). Moreover, the cerebellum can also be
300
thought of as a mechanism that accelerates the PGM by partially
extracting the computations performed by the neocortex and
basal ganglia and quickly performing alternative computations
(see Section 3.3).

3.1. Visual perception and representation learning

The mammalian brain has a minimum of two processing mod-
ules for each sensory modality, one for action and the other for
recognition or consciousness (Goodale & Milner, 1992; Sakagami
& Pan, 2007; Ungerleider, 1982). For example, the visual infor-
mation in the retina is sent to the primary visual cortex (V1),
which includes two cortical pathways. The dorsal pathway from
V1 to the parietal cortex determines the spatial layout of objects
and computes their disposition for actions. The ventral pathway
from V1 to the inferotemporal cortex mediates object recogni-
tion and contributes to the formation of our cognitive world.
Anatomical data further reveal that the parietal cortex projects
primarily to the premotor and dorsolateral prefrontal cortices
(DLPFC) (Pandya & Seltzer, 1982). Specifically, the reciprocal con-
nection between the parietal cortex and DLPFC contributes to
spatial attention and spatial working memory (Constantinidis &
Klingberg, 2016). In contrast, the inferotemporal cortex has many
efferents to the prefrontal cortex, especially the ventrolateral
prefrontal cortex (VLPFC) (Ungerleider, Gaffan, & Pelak, 1989).
In particular, the projection from the inferotemporal cortex to
the VLPFC appears to be critical for concept formation (e.g., cat-
egorization) and generation of new information (deductive infer-
ence) (Pan, Sawa, Tsuda, Tsukada, & Sakagami, 2008; Tanaka, Pan,
Oguchi, Taylor, & Sakagami, 2015). Recently, Bengio, Courville,
and Vincent (2013) have demonstrated that their machine learn-
ing algorithm could successfully simulate representation learning
in the ventral pathway.

In representation learning, a good representation entails gen-
eralizability to arbitrary tasks, with various hypotheses proposed
as properties that such a representation should satisfy (Ben-
gio et al., 2013; Goodfellow, Bengio, Courville, & Bengio, 2016).
Inspired by the idea of human concept formation, one of the
most important proposed hypotheses is disentanglement (Hig-
gins et al., 2016), which holds that each element of a representa-
tion should be semantically meaningful. For example, if we have
a picture of a cat, we observe that the picture consists of various
meaningful elements, such as the cat type, its orientation, and the
position of the light source.

Further, scene interpretation corresponds to the ventral path-
way in the brain. It is the study of recognizing the images
of multiple objects using VAEs in an unsupervised manner to
decompose the disentangled representation corresponding to
each object. In this study, the models are designed to assume
several latent variables corresponding to the objects and generate
decomposed images from them (Fig. 4). Eslami et al. (2016)
proposed the attend–infer–repeat (AIR) approach, which decom-
poses the latent variables of each object into what the object is
and its location in the image and infers the latent variables of the
objects in the image. The AIR approach can recognize and recon-
struct each object end-to-end on images of multiple handwritten
digits. Kosiorek, Kim, Teh, and Posner (2018) extended the AIR
approach temporally by introducing latent variables that corre-
spond to objects that have been present since the previous step
and those that only just appear in the current step. Furthermore,
to properly decompose images with multiple complex objects,
an approach was introduced, whereby a mask is employed for
each object as a latent variable, which is also inferred in the
recognition process (Burgess et al., 2019; Engelcke, Kosiorek,
Jones, & Posner, 2020; Greff et al., 2019).
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Fig. 4. Graphical model of scene interpretation and its process of image decomposition. The decomposed images were generated using GENESIS (Engelcke et al.,
2020).
3.2. Value and reinforcement

The reward and value system is fundamental to the survival
f a biological system in a given environment. In the RL theory, a
alue function is defined as the expected sum of future rewards.
euroscience studies have revealed several brain areas that play
ajor roles in RL, including the amygdala and basal ganglia.
hese areas receive strong projections of dopaminergic neurons,
hich have been demonstrated to encode reward prediction er-
ors (Schultz, Dayan, & Montague, 1997). The projection from the
ortex to the basal ganglia has distinct forms of plasticity, de-
ending on the presynaptic input and postsynaptic spike output,
ollowed by the dopamine input, that is, the dopamine-dependent
lasticity (Iino et al., 2020; Reynolds, Hyland, & Wickens, 2001;
agishita et al., 2014). Owing to these observations, RL models
f the cortico-basal ganglia circuit have been proposed (Barto,
995; Doya, 2007; Montague et al., 1996). A specific hypothesis,
hich has been supported by neural recording experiments (Ito
Doya, 2015; Lau & Glimcher, 2008; Pasquereau et al., 2007;

amejima, Ueda, Doya, & Kimura, 2005), is that the neurons in
he basal ganglia learn state and action value functions (Doya,
000). The circuit of the basal ganglia is composed of multiple
athways starting from the striosome and matrix compartments
n the striatum (Yoshizawa, Ito, & Doya, 2018) and the direct
nd indirect pathways downstream (Hikida, Kimura, Wada, Fun-
biki, & Nakanishi, 2010). Incidentally, recent RL algorithms for
obust and efficient performance use multiple types of value func-
ions (Haarnoja, Zhou, Abbeel, & Levine, 2018; Wang, Elfwing, &
chibe, 2020), possibly hinting at the need for multiple pathways
n the basal ganglia.

In addition, effective RL critically depends on the represen-
ation of states and actions. The cerebral cortex provides multi-
odal, hierarchical representations of states and actions through
nsupervised representation learning and inference of hidden
ariables (Doya, 1999). Although backpropagation in a deep Q-
etwork solves the problem of value-oriented representation
earning, it is known to be highly data-demanding (Lake, Ull-
an, Tenenbaum, & Gershman, 2017). Furthermore, although

epresentation learning in the cortex appears to be unsupervised,
xperimental observations suggest that learning is modulated by
eward or value signals (Bao, Chan, & Merzenich, 2001; Seitz,
im, & Watanabe, 2009). A recent study that applied variational
ecurrent neural networks to RL demonstrated that task-critical
atent variables can be learned (Han, Doya, & Tani, 2020b).

Moreover, to achieve fast learning and fine control, it is im-
ortant to select the right level of abstraction. The amygdala and
he cortico-basal ganglia circuit appear to form a hierarchical RL
ystem. The evolutionarily old amygdala is crucial for immedi-
te actions for primary reward and punishment. The amygdala
s composed of a cortex-like lateral part and a basal ganglia-
ike central part (Cassell, Freedman, & Shi, 1999), which may
301
be seen as a prototype cortico-basal ganglia circuit. The cortico-
basal ganglia circuit is composed of multiple parallel loops: the
limbic loop through the ventral striatum, the prefrontal loop
through the dorsomedial striatum, and the motor loop through
the dorsolateral striatum (Balleine, Dezfouli, Ito, & Doya, 2015; Ito
& Doya, 2015; Voorn, Vanderschuren, Groenewegen, Robbins, &
Pennartz, 2004). These parallel loops appear to form a hierarchical
RL system, spanning different levels of abstraction (Balleine et al.,
2015; Haber, Fudge, & McFarland, 2000; Ito & Doya, 2015; Voorn
et al., 2004). Determining the right set of action options and their
combinations is an active area of research (Bacon, Harb, & Precup,
2017; Han, Doya, & Tani, 2020a).

3.3. Action planning and control

Although model-free RL provides a generic solution to con-
trol problems, learning requires many trials, and evidence sug-
gests that humans deploy model-based strategies using action-
dependent state transition models or forward models (Wolpert,
Miall, & Kawato, 1998). The classic framework for model-based
optimal control is dynamic programming based on the Bellman
equation (Bellman, 1952). The similarity between the equations
for optimal state inference and optimal control is known as the
Kalman duality (Kalman, 1960), which indicate the similarity be-
tween the computation of the log posterior in dynamic Bayesian
inference and the state value function in optimal control (Doya,
2021; Levine, 2018; Todorov, 2008). The framework is recognized
as planning as inference (Botvinick & Toussaint, 2012) or control as
inference (CaI) (Levine, 2018).

Levine (2018) introduced a binary optimality variable that
indicates whether the state and action at each time in the MDP
are optimal and formulated the reward function as the probability
for the optimality variable to take one (Fig. 5). In the CaI frame-
work, we can derive the entropy regularized expected reward
objective by performing variational inference for the optimality
variable at all times, from which we can derive the soft actor–
critic (SAC) (Haarnoja et al., 2018). In addition, we can derive
an iterative planning method based on the inference of the plan,
that is, a series of actions, instead of policy optimization, as
in the SAC. Okada and Taniguchi (2020) demonstrated that the
difference between various planning methods can be generalized
as the choice of the posterior distribution in the inference of
optimality variables. This idea was extended to POMDP settings
as well (Okada, Kosaka, & Taniguchi, 2020).

In the cerebral cortex, while the posterior half is mostly in-
volved in sensory inference, the anterior half is mostly involved in
control and planning. Thereby, the CaI framework can provide an
answer to the basic question of why common circuit architectures
can be used for both inference and control (Doya, 2021). An
important difference between the sensory cortex and the motor
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Fig. 5. MDP model featuring optimality variable O (Levine, 2018). The dotted
ine represents the inference to action from the optimality variable over the
uture and the current state, which is the optimal policy.

r frontal cortex, in addition to the thickness of different lay-
rs, is that the latter receives inputs from the cerebellum and
he basal ganglia through the thalamus. Further, while proba-
ilistic dynamic models and value computation are realized in
he cortical circuit, these subcortical circuits may provide useful
hortcuts. The cerebellum has been proposed to provide deter-
inistic forward models learned by supervised learning (Doya,
999; Wolpert et al., 1998), which can supplement probabilistic
odels in the cortex. Additionally, the basal ganglia can provide

earned value functions (Daw, Niv, & Dayan, 2005; Doya, 1999) to
omplement online computations of value functions. The network
inking the cortex, basal ganglia, and cerebellum is involved in
otor learning (Tanaka et al., 2018) and action planning (Fermin,
oshida, et al., 2016), and their exact roles are a topic of active
esearch.

.4. Spatial cognition and mapping

In neuroscience, it has long been assumed that the HF, con-
isting of the hippocampus and entorhinal cortex, is responsible
or functions such as episodic memory, spatial cognition, and
esponse inhibition. Interestingly, memories are transferred to
he neocortex through the phenomenon of memory replay and
onsolidation during sleep.
Thus, HF has various functional aspects. Even so, for the fol-

owing reasons, it would be useful to learn from the brain by
ocusing on spatial cognitive functions that play an important
ole in the navigation of mobile robots. This is because the SLAM
echnology (Thrun et al., 2005; Uchiyama, Ikeda, & Taketomi,
017), which combines the functions of self-position estimation
nd map formation, has been formulated as PGM. Thereby, this
unction can be naturally incorporated as part of the WB-PGM.
urthermore, as described below, there has been extensive neu-
oscientific research on spatial cognition related to HF, mainly in
odents.

Further, involvement in spatial cognitive abilities in the hip-
ocampus has long been considered responsible for cognitive
aps (O’keefe & Nadel, 1978; Tolman, 1948). There have also
een epoch-making discoveries of space-encoding cells such as
lace, border (Savelli, Yoganarasimha, & Knierim, 2008; Solstad,
occara, Kropff, Moser, & Moser, 2008), head-direction (Taube,
uller, & Ranck, 1990a, 1990b), and grid cells. Place cells are
eurons that are active in specific locations within the hippocam-
us (O’keefe & Nadel, 1978), while grid cells are neurons in the
EC that are cyclically active as rodents and other animals move

hrough space (Hafting, Fyhn, Molden, Moser, & Moser, 2005).
Essentially, spatial cognitive abilities involve the transforma-

ion of self-centered (egocentric) information obtained directly
rom sensors into a representation of world-centered (allocentric)
nformation. In particular, grid cells contribute to the represen-
ation of this world-centered coordinate system. Since the begin-
ing of the 21st century, research on the relationship between the
302
Fig. 6. Graphical model of SpCoSLAM (Taniguchi et al., 2017), which has self-
position, environmental map, position distribution, multimodal place categories,
word sequences, and language models as latent variables. The blue, red, green,
and orange areas represent SLAM, the position distribution, the multimodal place
categorization, and speech recognition and word segmentation, respectively.
Using a Rao-Blackwellized particle filter procedure (Doucet, Freitas, Murphy, &
Russell, 2000), SpCoSLAM can infer these model parameters and latent variables.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

HF and the posterior parietal lobe, which represents self-centered
and world-centered information, has been conducted (Whitlock,
Sutherland, Witter, Moser, & Moser, 2008; Wilber et al., 2014;
Wilber, Skelin, Wu, & McNaughton, 2017).

Subsequently, we discuss the evolution of the SLAM technol-
ogy from a practical perspective. The SLAM-related mathematical
theory and implementation have made rapid progress in the last
decade. SLAM models can be represented by PGMs based on
the POMDP. PGM-based SLAM models are estimated based on
Bayes filters such as landmark-based (Montemerlo, Thrun, Koller,
& Wegbreit, 2002) and grid-based (Grisetti, Stachniss, & Burgard,
2007) FastSLAM.

Furthermore, the semantic mapping approach, which includes
the meaning of places and objects, has been actively developed
as the next direction of SLAM (Kostavelis & Gasteratos, 2015)
due to its effectiveness in performing human–robot interaction
tasks. Specifically, it is important to appropriately generalize and
form place categories while dealing with observation uncertain-
ties. To address these issues, PGMs for spatial concept formation
have been constructed (Hagiwara, Inoue, Kobayashi, & Taniguchi,
2018; Katsumata, Taniguchi, Hafi, Hagiwara, & Taniguchi, 2020;
Taniguchi, Hagiwara, Taniguchi, & Inamura, 2017;
Taniguchi, Taniguchi, & Inamura, 2016). Taniguchi et al. (2017)
proposed the spatial concept formation using SLAM (SpCoSLAM),
that is, place categorization and mapping through unsupervised
online learning from multimodal observation. SpCoSLAM is an
integrated PGM composed of SLAM, a Gaussian mixture model
(GMM), a multimodal Dirichlet process mixture model (MDPM),
and speech recognition, as shown in Fig. 6. Katsumata et al.
(2020) successfully transferred global spatial knowledge related
to multiple environments to a new environment by integrating
the spatial concept model with generative adversarial networks
(GANs). This approach to spatial concept formation was also
adopted for tasks in the World Robot Summit (El Hafi et al., 2020;
Taniguchi, Isobe, Hafi, Hagiwara, & Taniguchi, 2021). We consider
the above models as candidates for a cognitive module with
functions similar to the HF. Details are discussed in Taniguchi,
Fukawa, and Yamakawa (2021).
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.5. Social interactions and inference

Social behavior is an individual’s behavior that arises from
nteractions with others under certain circumstances. Specifically,
umans have a special characteristic in their prosocial behavior,
hat is, the tendency to benefit others by sacrificing their own
rofit. It is assumed that human prosocial behavior is calcu-
ated in the cortical model-based process (Knoch, Pascual-Leone,
eyer, Treyer, & Fehr, 2006), although Rand, Greene, and Nowak

2012) demonstrated that human subjects tend to exhibit more
rosocial behavior intuitively while being more selfish in deliber-
tion. Furthermore, Fermin, Sakagami, et al. (2016) indicated that
he subcortical areas, particularly the amygdala, play an impor-
ant role in prosocial behavior, whereas cortical areas, specifically
he prefrontal cortex, are critical for pro-self behavior. Yamagishi
t al. (2017) suggested that the prosocial bias, which was related
o the dependency of model-free or model-based processes, var-
ed across individuals. Thus, it can be conjectured that certain
ocial habits are acquired under stereotyped stimulus–response
ircumstances through RL of model-free systems, whereas oth-
rs are mediated by goal-directed calculation of model-based
ystems. However, many neural mechanisms underlying social
ehavior remain unclear.
Except for some aspects that will be subsequently explored,

ocial communication is a broad concept that has not been suffi-
iently investigated from the angle of PGMs.
Nevertheless, as social communication involves estimating

nd understanding the intention of others, the intent estimation
an be modeled as an inference of the latent variables of others
o predict their behavior. In other words, since if we estimate a
erson’s intention, we can predict their behavior more accurately,
ntention estimation can be modeled as a prediction problem
o some extent. In the early days following the postulation of
his idea, Wolpert, Doya, and Kawato (2003) argued that inten-
ion estimation can be modeled using multiple forward-inverse
odels. Even so, the discussion can be reinterpreted with PGMs

n a more sophisticated manner. The intention is regarded as a
atent variable within a system, that is, the inference of the latent
ariable can be regarded as intention estimation.
It should be noted that if we attempt to model each per-

on’s behavior by assuming latent variables, the complexity of
he model increases. For example, when we play football, we
pparently do not predict the players’ behavior one by one. Thus,
GMs that enable a cognitive system to predict the behaviors of
group of people and conduct a cooperative task are required.

.6. Speech recognition and language

The language faculty was acquired through the human evo-
utionary process. It has enabled us to transfer knowledge and
orm communities and societies through communicating complex
nformation by combining linguistic symbols using our vocaliza-
ion system. An important aspect of the human language is that
he symbolic system is not directly encoded in the biological
ene (genome); rather, it is encoded in a cultural gene (meme).
nowledge is transferred using language. Further, language has
on-biological and non-physiological effects on the development
nd function of the brain (Deacon, 1998).
In particular, speech recognition and generation are funda-

ental parts of our spoken language. The motor theory of speech
erception, which is well-known and widely debated in cognitive
nd brain sciences, argues that we use generative models of
peech signals per utterance (Galantucci, Fowler, & Turvey, 2006;
aurent, Barnaud, Schwartz, Bessière, & Diard, 2017; Liberman,
ooper, Shankweiler, & Studdert-Kennedy, 1967). In other words,
t claims that the objects of speech perception are the speakers’
303
vocal tract gestures. According to this brain theory, a PGM-based
approach is suitable for speech recognition and language.

Before deep learning-based approaches became dominant,
speech recognition and synthesis were conventionally studied
using PGMs (Zhang, Chan, & Jaitly, 2017). The HMM, a type
of PGM for time-series data, has been widely used for speech
recognition systems (Lee & Kawahara, 2009; Rabiner & Juang,
1986). Generally, a speech recognition system is composed of
an acoustic model and a language model. The acoustic model
mimics the acoustic features of speech signals for phonemes. It is
a generative model of acoustic features. In contrast, the language
model represents the generative process of word sequences. A
word corresponds to a sequence of phonemes. This two-layer
hierarchy for speech generation is typically applicable to spoken
language and is termed ‘‘double articulation’’. In particular, the
hierarchical Dirichlet process-hidden language model (HDP-HLM)
is a total generative model that involves language and acoustic
models within a unified PGM (Fig. 7). Taniguchi, Nagasaka, and
Nakashima (2016) proposed HDP-HLM and derived a blocked
Gibbs sampler for the PGM. It was demonstrated that the machine
learning-based method could perform simultaneous phoneme
and word discovery from only speech signals.

The syntactic nature of language has also been studied from
the viewpoint of generative models for a long time. Probabilistic
models for generative grammar, such as probabilistic context-
free grammar and combinatory categorial grammar, assume that
there exists a latent tree structure behind a sentence, that is, a
word sequence (Bisk & Hockenmaier, 2013; Liang, Petrov, Jordan,
& Klein, 2007). Thereby, inferring the latent structure corresponds
to parsing in syntactic analysis.

Recently, a neural network-based approach to natural lan-
guage processing has become dominant, with many GAN- and
VAE-based methods for speech signal processing developed
(Kameoka, Kaneko, Tanaka, & Hojo, 2018; van Niekerk, Nortje,
& Kamper, 2020). Such DPGMs involving neural networks can
exploit the advantages of deep learning for speech signal process-
ing. Although HMM-like PGMs have become less popular in the
late 2010s, this does not mean that a PGM-based approach is not
valid, as the mathematical framework of PGMs involves DPGMs as
well. Specifically, to leverage non-annotated data, unsupervised
learning methods based on PGMs and self-supervised learning
methods are promising. Self-supervised learning methods for
language, for example, BERT and GPT-3, exhibit remarkable per-
formance (Brown et al., 2020; Devlin, Chang, Lee, & Toutanova,
2019). In addition, when considering the integrative cognitive
model involving not only speech recognition but also spoken
language acquisition (e.g., phoneme and word discovery), the
PGM-based approach is still promising.

Nevertheless, developing a cognitive architecture to achieve
such linguistic communication remains a difficult challenge in
brain and cognitive science, AI, and robotics (Taniguchi et al.,
2019). For example, a service robot is required to understand
human utterances whose meaning is not always explicitly deter-
mined. If speaker suggests or implies with an utterance using an
implicature, such as, ‘‘it is too hot’’, he or she actually implies
‘‘please turn on the air conditioner’’ or ‘‘please wait a while until
the coffee becomes less hot’’. In pragmatics, people believe that
the meaning of an utterance is context-based. The context could
involve a speaker, place, situation, and habit. Such information is
not encoded by the utterance itself. Therefore, an assumption in
which an utterance and meaning are regarded as the input of a
function and output, respectively, is not plausible, as contextual
information is provided by the multimodal sensor information
and a history of interactions. This suggests that language under-
standing inevitably involves latent variables, and PGMs can model
the cognitive system that facilitates linguistic communication.
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Fig. 7. Graphical model of HDP-HLM (Taniguchi, Nagasaka, & Nakashima, 2016),
which has language, word, and acoustic models as latent variables. Using a
blocked Gibbs sampling procedure, HDP-HLM can infer these models and latent
sequences of words (i.e., latent words) and phonemes (i.e., latent letters).

Nevertheless, the social aspects of language are not limited to
what we have described above. Although language is a social
phenomenon, it is clearly realized by human cognitive systems.

In summary, the cognitive architecture that enables social
nteraction (see Section 3.5) and language processing (see Sec-
ion 3.6), which are described in this section, require complex
oordination of cognition and behavior. Such higher abilities are
eneficial to the brain for learning. Given this situation, if all
omputational elements can be unified into PGMs, the efficiency
f design and implementation is expected to improve.

. Integration of cognitive modules

The WB-PGM is developed by integrating a wide range of
lemental cognitive modules. This section describes the PGM-
ased approach to integrating cognitive modules. First, we revisit
achine learning-based methods for world models that involve

epresentation learning and the integration of multimodal in-
ormation, including action and sensation, using PGMs. The FEP,
hich provides a unified view of biological perception and be-
avior based on this PGM-based world model, is also introduced.
inally, we introduce the SERKET framework, which allows us
o develop an integrated PGM-based cognitive system, that is,
B-PGM, by combining elemental PGM-based cognitive modules.

.1. World models and FEP

Humans can construct a mental model of the world by recog-
izing and learning from information obtained from the external
orld in a self-supervised manner. This model, which represents
ur hypothesis about the world, can be used as a simulator to
redict the unknown or the future based on current observations.
urthermore, by incorporating our own behavior into this model,
e can predict the future in the long term. A framework that
ealizes these human functions in machine learning is called a
orld model (Ha & Schmidhuber, 2018; Hafner, Lillicrap, Ba, &
orouzi, 2020; Hafner et al., 2019; Hafner, Lillicrap, Norouzi, &
a, 2021).
The key to realizing a world model is to compress the vast

nd multimodal information of the external world in a spatio-
emporal manner to obtain their latent representations. If such

epresentations can be appropriately acquired, future predictions
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can be made easily by transitioning through representations on
the time direction. In addition, by assuming the structure of the
world as an inductive bias for the model before learning, we
can acquire a world model with higher generalizability more
efficiently. PGMs are good tools for designing a world model that
meets these requirements. Specifically, in the case of a time-
evolving environment, POMDP models are often assumed because
input stimuli are considered to be partial observations of the
environment. The generative process of observations designed by
PGMs corresponds to predictions, with the inference of represen-
tations from those observations regarded as perceptions from the
external world.

In the inter-area signal transmission of the neocortex, the
pathway responsible for prediction is called feedback. It is in-
volved in the generative process in the PGM. In contrast, the
perceptual pathway is called feed-forward and is involved in the
amortized inference process in PGMs (see Table 1).

The world model has been studied as a model of the envi-
ronment in model-based RL. Early attempts to ‘‘make the world
differentiable’’ using RNNs Schmidhuber (1990) were not applied
to large-scale environments because they were not equipped with
representation learning techniques. Ha and Schmidhuber (2018)
introduced a recurrent neural network (RNN)-based model that
combined VAEs to enable spatial abstraction, and trained it on
the trajectories, that is, the time series of images and actions,
of complex game environments. They proved that agents that
were reinforcement-trained only on the world model behaved
appropriately in real-game environments. Therefore, we can ob-
tain a model of the world that has sufficient predictive power for
good representation learning, similar to mental imagery training
in humans.

Recently, PlaNet (Hafner et al., 2019) and Dreamer (Hafner
et al., 2020, 2021), which are model-based RL methods with more
sophisticated DPGMs based on POMDPs, have shown high sample
efficiency and performance in long-term control tasks based on a
series of images in the environment. Moreover, the uncertainty
in the latent state representation of these models conveys the
model’s beliefs about the world; thus, the amount of information
gleaned by the model from the environment is directly corre-
lated to its level of certainty. Gregor et al. (2019) introduced a
decoder based on this world model on a two-dimensional map
and demonstrated that although the generated map is blurry in
the early stages of exploration in an unknown environment, it
becomes more accurate with experience.

Further, the FEP is a promising theory that provides a unified
view of biological perception and behavior based on a PGM-based
world model. Von Helmholtz (1867) hypothesized that percep-
tion is the inference in an internal model. Subsequently, the
Bayesian brain hypothesis and predictive coding were considered
as works to minimize prediction errors or surprises.

Friston (2005), Friston, Kilner, and Harrison (2006) extended
these models with insights from statistical machine learning and
thermodynamics, arguing that decision-making, as well as per-
ception, is unified within a framework of variational inference or
free energy minimization.

In addition, Friston, Daunizeau, Kilner, and Kiebel (2010), Fris-
ton et al. (2015) proposed active inference, in which the organism
selects a sequence of actions to minimize the expected free en-
ergy, that is, the expected value of the free energy with respect
to observation, considering the observation as a latent variable,
i.e., an unknown to be obtained in the future. This framework is
similar to that of CaI (Levine, 2018), in that it considers decision-
making as inference, though they differ in the way they consider
‘‘preferences’’ for states and actions (Millidge, Tschantz, Seth,
& Buckley, 2020). CaI introduces preference as a new random
variable (i.e., optimality) in the model, while CaI introduces pref-
erence as a new random variable (i.e., optimality) into PGMs,
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ctive inference considers that preference is encoded as the bias
f PGMs. Under this assumption, the terms corresponding to the
xtrinsic and intrinsic values are derived from the expected free
nergy. The extrinsic value refers to the value of exploitation,
hich encourages agents to be goal-oriented, whereas the in-
rinsic value refers to the value of exploration, which encourages
gents to act to obtain novel observations. Therefore, based on
nly the expected free energy of active inference, we can derive
he term corresponding to the trade-off between exploitation and
xploration in RL.

.2. SERKET and multimodal integration

Similar to the human brain, a robot’s cognitive system must
ntegrate many types of sensory-motor information, find rela-
ionships between them, and utilize organized internal repre-
entations. That is, the cognitive system must be very complex.
he multi-layered MLDA (mMLDA) was proposed by combining
any PGMs of MLDA (Fadlil et al., 2013). Specifically, MLDA was
ombined with the nested Pitman–Yor language model (NPYLM),
hus obtaining MLDA+NPYLM5 to achieve unsupervised word seg-
entation using multimodal object category information formed
y the MLDA (Nakamura, Nagai, nad Shogo Nagasaka, Taniguchi,
Iwahashi, 2014). SpCoSLAM integrates PGMs for multimodal

ategorization, SLAM, and automatic speech recognition systems,
hich involves the word discovery capability. Thus, it achieves
ultimodal categorization and lexical acquisition about places

Taniguchi et al., 2017). By maximizing the trajectory probability
ased on the CaI framework, path planning based on semantic
nformation can be conducted using PGMs, that is, SpCoSLAM.
his method is called SpCoNavi (Taniguchi, Hagiwara, Taniguchi,
Inamura, 2020b). These results clearly demonstrate that the

GM-based approach has the flexibility of integrating a broad
ange of cognitive modules and the capability to make them learn
ogether.

The benefit of cognitive architectures integrating multimodal
ensory-motor information is evident. First, when a unimodal
ignal does not have sufficient information and suffers from
oise or uncertainty, the system can find latent structures (e.g.,
bject categories and word units) using multimodal sensory-
otor data (Nakamura et al., 2012, 2014; Taniguchi et al., 2020a;
aniguchi, Taniguchi, & Inamura, 2018). Second, many cognitive
unctions, including localization using images and utterances,
anguage understanding, and action planning, can be realized
s a cross-modal inference within such multimodal cognitive
rchitecture (Fadlil et al., 2013; Taniguchi et al., 2017, 2020b).
inally, owing to the second feature, we can construct multi-
urpose and system-oriented cognitive architectures rather than
single-purpose or goal-oriented function.
Nevertheless, when attempting to develop a large-scale cog-

itive system involving a wide range of cognitive functions of
he human brain, developing efficient large-scale computational
odels based on PGMs becomes a critical problem. The use of a
robabilistic programming language (PPL) is a possible solution.
any types of PPLs that enable the efficient development of
GMs have been proposed (Bingham et al., 2019; Goodman,
ansinghka, Roy, Bonawitz, & Tenenbaum, 2008; Sato & Kameya,
997; Tran, Hoffman, Saurous, Brevdo, Murphy, & Blei, 2017).
hen developing a WB-PGM using only a PPL, it is necessary to

e-implement each cognitive module using the PPL. However, this
ay cause a reusability problem from the viewpoint of software
evelopment. Thus, we need a development framework that al-
ows us to use elemental PGMs developed in a heterogeneous and
istributed manner.

5 The abbreviation, MLDA+NPYLM, used in this paper was not used in the
riginal paper, but was used in later articles.
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SERKET is a framework for integrating PGM-based cognitive
modules and developing cognitive architectures involving multi-
ple cognitive functions (Nakamura et al., 2018). Although building
integrative cognitive systems using PGMs is a promising ap-
proach, designing an inference procedure for the developed PGMs
sequentially is highly tasking. Further, modern integrative cog-
nitive models for multimodal concept formation and language
acquisition by robots (e.g., mMLDA and SpCoSLAM) involve many
nodes; thus, variables and inference procedures are proposed for
each model. Nonetheless, we found that most of such integrative
PGMs can be regarded as composites of several elemental cog-
nitive modules, that is, PGMs, whose inference procedures have
already been developed. SERKET provides a protocol with which
the inference procedure of an integrative PGM is divided into in-
ference procedures for each elemental PGM and communication
among them. In addition, Neuro-SERKET is a natural extension
of SERKET (Taniguchi et al., 2020) in that although SERKET does
not support neural network-based PGMs, that is, DPGMs, Neuro-
SERKET supports them. Further, Neuro-SERKET allows elemental
cognitive modules to learn in a heterogeneous manner. Each
module uses different learning methods. For example, two mod-
ules trained using Gibbs sampling and variational inference can
be integrated. Practically, this flexibility helps people develop an
integrative cognitive system using pre-existing and distributed
cognitive modules. In the deep learning-based approach, dif-
ferentiability is required throughout the system. In this sense,
each cognitive module must be homogeneous from the viewpoint
of optimization. In contrast, the SERKET framework allows us
to use heterogeneous cognitive modules, that is, the learning
and inference processes of each module can be encapsulated.
This characteristic can improve the reusability of the elemental
cognitive modules in a practical sense.

Fig. 8 shows an overview of the SERKET framework. Generally,
PGMs have three types of connections: (a) head-to-tail, (b) tail-
to-tail, and (c) head-to-head. A complex PGM can be decomposed
into two modules at the shared node (i.e., z in Fig. 8). In the infer-
ence phase, the internal variables in each elemental PGM can be
updated independently, and the shared node can be updated by
exchanging probabilistic information (i.e., posterior distributions
conditioned by observations). The right side of Fig. 8 shows the
possible decomposition of SpCoSLAM (Section 3.4). The total PGM
of SpCoSLAM can be decomposed into SLAM, GMM, MDPM, and
an automatic speech recognition system. Communication – mes-
sage passing – between elemental cognitive modules enables the
whole cognitive model composed of many elemental modules,
that is, the proposed WB-PGM composed through the SERKET
framework, to be trained throughout the integrative system. For
more details, please refer to the original papers (Nakamura et al.,
2018; Taniguchi et al., 2020).

From the viewpoint of the practical implementation of the
SERKET framework, there is the question of how to realize the
communication protocol. Using a PPL or a library, for example,
Pixyz (Suzuki, Kaneko, & Matsuo, 2021), is a promising approach.
In addition, SERKET can reduce developmental efforts to create an
integrative cognitive system. For example, Taniguchi et al. (2020)
showed that an unsupervised machine learning system that cate-
gorizes raw image data and speech signals simultaneously can be
developed quickly and efficiently. In particular, using the Neuro-
SERKET framework, a complex learning system can be developed
by connecting pre-existing modules (e.g., VAE, GMM, LDA, and
automatic speech recognition system).

The possible integrative cognitive architecture has a huge de-
gree of freedom to pick up elemental cognitive modules, connect
them, and enable them to work and learn together. This is a
design problem of cognitive architectures. Since the human brain

is an excellent example of an integrative cognitive system that
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Fig. 8. Three types of connection of PGMs and their decomposition in SERKET framework (left). In the development phase, each PGM was developed in a distributed
manner. In the inference phase, the modules work together by exchanging probabilistic information as an integrated cognitive system. For example, SpCoSLAM
(Section 3.4) can be decomposed into four elemental modules (right).
,

can work in a real-world environment and perform a wide range
of complex tasks, learning the human brain architecture is a good
approach to reduce the complexity of the design problem

Thus, the WB-PGM should be interpreted from the viewpoint
of the brain architecture. Such interpretability allows researchers
to identify what is missing and what is implemented. It also
facilitates communication between AI and robotics researchers
and brain and cognitive science researchers.

5. Current status of WB-PGM

This section describes the current status of the development
of WB-PGM, including elemental modules and integration. Future
issues are also discussed.

As mentioned in Sections 2.3 and 2.4, to create a PGM of the
entire brain, it is crucial to construct a BIF of the entire brain,
design the corresponding HCDs, and then run GIPA to create
PGMs. For hippocampal formation, data have been created for the
PGM (Taniguchi, Fukawa, & Yamakawa, 2021)6. For the intercon-
nections between the neocortex, thalamus, and basal ganglia, we
plan to proceed with BIF and HCD data creation based on the
existing research results (Yamakawa, 2020). For eye movement,
the claustrum, basal ganglia, and cerebellum, we are currently
constructing a BIF. To cover the entire brain, other brain regions,
including the amygdala, midbrain, and pons, need to be designed
as well. Owing to the physical structure of BIF, it is expected to
converge to a stable content once sufficient knowledge of neu-
roscience is accumulated. Depending on the diversity of human
cognitive functions, multiple HCDs will be described on a specific
region of BIF data; thus, these HCDs should be integrated prior to
creating PGMs as possible.

5.1. Primitive structure in WB-PGM

The WB-PGM has a primitive function structure, similar to
the basic layered structure of the cerebral cortex. As mentioned
above, the WB-PGM uses a PGM as a primitive structure (i.e., a
cognitive module), which corresponds to the circuit in the BIF.
From a computational viewpoint, we consider that PGMs can be
classified into three generations.

6 https://wba-initiative.org/wiki/en/brain_reference_architecture, accessed:
021-7-2.
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The first generation is a PGM described in the probabilistic
generative process, which is the most basic structure. Model
learning is a parameter estimation problem for probability dis-
tributions and is realized using Gibbs sampling or variational
inference (Nakamura, Nagai, & Iwahashi, 2007).

The second generation is a DPGM represented by VAE, which
replaces the parameter estimation of the probability distribu-
tions with learning through neural networks. Learning is real-
ized by maximizing the evidence lower bound using a neural
network (Kingma & Welling, 2014; Suzuki et al., 2016).

As for the third generation, there is a structure that uses a
self-attention mechanism and self-supervised learning. The self-
attention mechanism has attracted attention owing to its ex-
tremely high performance in natural language processing tech-
niques, such as transformer, BERT, and GPT (Brown et al., 2020;
Devlin et al., 2019; Vaswani et al., 2017). The application of BERT
to multimodal expansion and RL is advancing (Miyazawa, Aoki,
Horii, & Nagai, 2020). In particular, multimodal BERT may become
the basic module of the third generation. Contrastive learning,
which is a representative approach of self-supervised learning,
enables neural networks to perform representation learning with-
out supervision or explicit definition of the generative process.
This approach is used in a variety of tasks, including visual recog-
nition and RL (Chen, Kornblith, Norouzi, & Hinton, 2020; Laskin,
Srinivas, & Abbeel, 2020; Okada & Taniguchi, 2021).

5.2. Connection of the building blocks

How is the overall structure constructed by combining primi-
tives (i.e., cognitive modules)? By integrating the modules, a path
is opened toward the construction of a large-scale representation
learning system that imitates the cerebral cortex. In fact, an
integrated system is achieved by Miyazawa, Horii, et al. (2019);
although, it is not yet sufficiently large. Thus, modules for vision,
speech, and language are incorporated into the system.

Furthermore, an RL module and a temporal module for long-
term temporal planning are connected via the latent space held
by the representation learning module. To connect building blocks
the SERKET framework is used as described in Section 4.2 (Naka-
mura et al., 2018; Taniguchi et al., 2020).

When connecting primitives, time management poses a chal-
lenge in the course of connecting building blocks to configure

https://wba-initiative.org/wiki/en/brain_reference_architecture
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he entire structure. To handle information flexibly, it is im-
ortant to consider the physical characteristics of each signal
nd the time scale, according to how it is used. Since the brain
rocesses information on a multi-scale and asynchronous ba-
is, it is necessary to realize such an integration mechanism.
ecently, Taniguchi, Fukawa, and Yamakawa (2021) abstracted
neural activity phenomenon called phase precession into a
echanism called discrete-event queues when constructing the
GM of the HF. This type of brain-inspired research could help us
andle time in PGMs.
In the current prototype of WB-PGM (Miyazawa, Horii, et al.,

019), the latent variable for perception level (i.e., lower level) is
ntegrated by a latent variable at the higher level. Furthermore,
he model is a simple mechanism for executing long-term action
lans by modeling the temporal relationship on latent variables
t the higher level7.

.3. Implementation

Implementation of the WB-PGM is ongoing. Miyazawa, Horii,
t al. (2019) integrated a representation learning module, a lan-
uage learning module, and an RL module using Neuro-SERKET,
nd demonstrated the possibility of a real robot learning language
nd behavior simultaneously (Fig. 9). The example was developed
sing the Neuro-SERKET framework (Taniguchi et al., 2020). As
entioned above, Neuro-SERKET can easily implement complex
tructures and optimize the entire structure by combining mod-
les. Note that (Neuro-)SERKET allows an integrated cognitive
ystem to be trained as a whole throughout the system (as men-
ioned in Section 4.2). This is because SERKET decomposes the
ayesian inference of every latent variable of the integrated cog-
itive system into intra-module probabilistic inference (i.e., train-
ng) and inter-module communication (i.e., message passing).
n addition, it can incorporate an existing speech recognition
odule and deep learning models.
Despite the success of the implementation, we are at a prelim-

nary stage of the development of the WB-PGM. Ideally, the WB-
GM should involve whole-brain cognitive modules and func-
ions, but current examples of PGM-based integrative cognitive
rchitecture only involve very limited brain functions.
When considering the realization of the WB-PGM, there are

roblems to be considered in relation to brain functions, such as
he range of influence and scheduling of inference based on sub-
odules and hierarchy. Thus, learning human brain architecture
an be beneficial in solving these problems as well.

.4. Future perspectives

We have described the current status of the WB-PGM in the
revious subsection. Yet, numerous aspects must be considered.
As described in Section 3, a wide range of cognitive mod-

les has been developed for functions corresponding to brain
egions, which can be used to develop an integrative cognitive
rchitecture. However, the exploration of the selection and in-
egration of modules remains a future challenge. Furthermore,
he current Neuro-SERKET framework does not support third-
eneration PGMs (i.e., cognitive modules based on self-supervised
earning explained in Section 5.1). Thus, future research should
xtend Neuro-SERKET to a framework that can integrate all types
f PGMs.
Regarding time management discussed in Section 5.2, it is

mportant to study the technology through which various mod-
les process information at different time intervals and asynchr-

7 This type of model, in which latent variables of the higher-level layer are
egarded as downsampled versions of the lower-level ones, is well known as a
‘coarse-to-fine’’ model in generative models of images.
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onously/non-linearly and integrate them. One approach would
be to incorporate an integrated execution platform (e.g., BriCA)
(Takahashi et al., 2015), which factors the asynchronous nature
of the brain, into PGMs.

Through fidelity evaluation (see Section 2.5), the precision of
the correspondence between the WB-PGM and BRA should be
increased because the resolution of the correspondence between
the current brain structure andWB-PGM is still coarse. It is crucial
to consider the problem of dividing the area, such as how to
manage time in the model and how to infer at a particular time.
Further, considering missing elemental modules are also crucial.

In the future, it is expected that BRA-driven development spe-
cialized for PGMs, will bring about refinements in the evaluation
of the implemented brain-inspired software. The GIPA process
was introduced to convert and build HCD into PGM, as shown
in Fig. 2 in Section 2.5. Given that PGMs are not considered
in fidelity evaluation, which estimates the conformance of the
software to HCD, it would be useful to add software to evaluate
fidelity to PGM, PGM fidelity to HCD, and the fidelity of software
implemented in PGM to HCD.

It is also important to introduce a developmental perspective.
For that purpose, it will be necessary to construct a physical body
that can constantly work and learn and even grow. In this respect,
the use of soft robots can be promising and may lead to realizing
lifelong learning. This leads us to the suggestions on endowing
robots with the following capabilities:

1. learning of causality: generalizability, sample efficiency
2. emotions (maintaining its own body): from self/other to

sociality
3. creativity: social value, imagination
4. explainability: communication
5. consciousness: global workspace, meta cognition, qualia

In our future work, we will develop the WB-PGM by address-
ing these issues.

6. Conclusions

In this study, we proposed WB-PGM, an approach to de-
velop an integrative cognitive architecture for developmental
robots based on brain-inspired PGMs. PGMs and their inferences
can learn knowledge from sensory-motor observations without
manually crafted annotation/label data. Unlike most modern AI
systems, biological cognitive systems, especially the human brain,
can acquire a wide range of cognitive capabilities without su-
pervision. We argue that a PGM-based approach is promising
for the development of an integrative cognitive architecture. Al-
though previous PGM-based integrative cognitive systems for
developmental robots have been proposed, their cognitive capa-
bilities were limited. Furthermore, elemental cognitive modules
were introduced or discussed in relation to PGMs. Subsequently,
we hypothetically described a prototype of integrative cognitive
architecture.

Building a WB-PGM has two advantages. First, it can serve as
a reference for brain studies. The PGM describes explicit infor-
mational relationships between variables, that is, internal repre-
sentations. This description provides interpretable guidance from
computational sciences to brain science. By providing such infor-
mation, researchers in neuroscience can provide feedback to re-
searchers in AI and robotics on what the current models lack with
reference to the brain. Our WB-PGM approach can facilitate dis-
cussion and collaboration among researchers in neuro-cognitive
sciences as well as AI and robotics.

We admit that world models and the FEP are general and
critical ideas for developing next-generation AI, which has to
be integrative, autonomous, and developmental. Current studies
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Fig. 9. Our current prototype of the WB-PGM; probabilistic graphical model representation of the WB-PGM prototype (left), and SERKET implementation
(right) (Miyazawa, Aoki, et al., 2019).
related to these theoretical ideas are mostly limited to simple
problems and experiments in a simulation environment. How-
ever, to study cognition, it is crucial to test hypothetical ideas in
a real-world environment. Developing robots and making them
perform practical tasks in real-world environments are impor-
tant processes for the exploration of next-generation AI (Friston
et al., 2021). To this end, top-down engineering of cognitive
architecture is required. A theory-based practical implementation
of artificial cognitive systems in robots is crucial.

We argue that referring to the WBA, that is, the structure of
he human brain, is beneficial for developing a cognitive architec-
ure. It might equally be argued that such brain structures should
merge from data learned by a large neural network. Current suc-
ess in very large language models, for example, BERT and GPT-3,
eems to corroborate this idea. We do not have an answer to this
uestion; nevertheless, such a general approach is not feasible
or realizing AGI. The WB-PGM is a more promising approach to
evelop a cognitive architecture for a developmental robot that
dmits the current technological background. In addition, even if
e can develop a meta-cognitive system that can facilitate the
mergence of whole brain structures, the BRA and WB-PGM will
e a good reference for evaluating the emerged structure.
The emphasis in this paper was on PGMs, which are basi-

ally considered as directed graphs in this paper. Another type
f Bayesian network is Markov networks, which are undirected
raphs. We selected PGMs for two reasons. First, latent variable
odels based on PGMs, for example, LDA, HMM, and VAE, have
een successful at modeling cognitive systems and exhibiting
ood properties from engineering and practical viewpoints. Sec-
nd, in generative models, arrows represent predictions, and the
haracteristics fit the idea of predictive coding. The latter, though,
s not a strict argument. It is acceptable to partially introduce a
arkov network into the proposed WB-PGM.
In addition, it may be argued that the human brain has a

ecursive structure and bilateral connections. However, in a prob-
bilistic graphical model representing a PGM, a directed arrow
onnecting two variables does not imply the absence of an in-
erse connection between two nodes, as the arrows represent
he generative process and not the physical connections. In the
nference process, an inverse information stream should be con-
idered. This point is clearly underscored by amortized inferences
onnecting nodes inversely in inference networks. In this sense,
hen we compare probabilistic graphical models and the neural
onnections in the human brain, it is necessary to differentiate
enerative processes from the inference ones.
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