3 research outputs found

    Multimodal Neuroimaging Predictors for Cognitive Performance Using Structured Sparse Learning

    Get PDF
    poster abstractRegression models have been widely studied to investigate whether multimodal neuroimaging measures can be used as effective biomarkers for predicting cognitive outcomes in the study of Alzheimer's Disease (AD). Most existing models overlook the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to incorporate an L21 norm and/or a group L21 norm (G21 norm) in the regression models. Using ADNI-1 and ADNI-GO/2 data, we apply these models to examining the ability of structural MRI and AV-45 PET scans for predicting cognitive measures including ADAS and RAVLT scores. We focus our analyses on the participants with mild cognitive impairment (MCI), a prodromal stage of AD, in order to identify useful patterns for early detection. Compared with traditional linear and ridge regression methods, these new models not only demonstrate superior and more stable predictive performances, but also identify a small set of imaging markers that are biologically meaningful

    Network-guided sparse learning for predicting cognitive outcomes from MRI measures

    Get PDF
    Alzheimer's disease (AD) is characterized by gradual neurodegeneration and loss of brain function, especially for memory during early stages. Regression analysis has been widely applied to AD research to relate clinical and biomarker data such as predicting cognitive outcomes from MRI measures. In particular, sparse models have been proposed to identify the optimal imaging markers with high prediction power. However, the complex relationship among imaging markers are often overlooked or simplified in the existing methods. To address this issue, we present a new sparse learning method by introducing a novel network term to more flexibly model the relationship among imaging markers. The proposed algorithm is applied to the ADNI study for predicting cognitive outcomes using MRI scans. The effectiveness of our method is demonstrated by its improved prediction performance over several state-of-the-art competing methods and accurate identification of cognition-relevant imaging markers that are biologically meaningful

    Automated detection of depression from brain structural magnetic resonance imaging (sMRI) scans

    Full text link
     Automated sMRI-based depression detection system is developed whose components include acquisition and preprocessing, feature extraction, feature selection, and classification. The core focus of the research is on the establishment of a new feature selection algorithm that quantifies the most relevant brain volumetric feature for depression detection at an individual level
    corecore