2,400 research outputs found

    Fast Predictive Multimodal Image Registration

    Get PDF
    We introduce a deep encoder-decoder architecture for image deformation prediction from multimodal images. Specifically, we design an image-patch-based deep network that jointly (i) learns an image similarity measure and (ii) the relationship between image patches and deformation parameters. While our method can be applied to general image registration formulations, we focus on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) registration model. By predicting the initial momentum of the shooting formulation of LDDMM, we preserve its mathematical properties and drastically reduce the computation time, compared to optimization-based approaches. Furthermore, we create a Bayesian probabilistic version of the network that allows evaluation of registration uncertainty via sampling of the network at test time. We evaluate our method on a 3D brain MRI dataset using both T1- and T2-weighted images. Our experiments show that our method generates accurate predictions and that learning the similarity measure leads to more consistent registrations than relying on generic multimodal image similarity measures, such as mutual information. Our approach is an order of magnitude faster than optimization-based LDDMM.Comment: Accepted as a conference paper for ISBI 201

    Quicksilver: Fast Predictive Image Registration - a Deep Learning Approach

    Get PDF
    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni- / multi- modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software.Comment: Add new discussion

    Bayesian data assimilation in shape registration

    Get PDF
    In this paper we apply a Bayesian framework to the problem of geodesic curve matching. Given a template curve, the geodesic equations provide a mapping from initial conditions\ud for the conjugate momentum onto topologically equivalent shapes. Here, we aim to recover the well defined posterior distribution on the initial momentum which gives rise to observed points on the target curve; this is achieved by explicitly including a reparameterisation in the formulation. Appropriate priors are chosen for the functions which together determine this field and the positions of the observation points, the initial momentum p0 and the reparameterisation vector field v, informed by regularity results about the forward model. Having done this, we illustrate how Maximum Likelihood Estimators (MLEs) can be used to find regions of high posterior density, but also how we can apply recently developed MCMC methods on function spaces to characterise the whole of the posterior density. These illustrative examples also include scenarios where the posterior distribution is multimodal and irregular, leading us to the conclusion that knowledge of a state of global maximal posterior density does not always give us the whole picture, and full posterior sampling can give better quantification of likely states and the overall uncertainty inherent in the problem

    Fast Image and LiDAR alignment based on 3D rendering in sensor topology

    Get PDF
    Mobile Mapping Systems are now commonly used in large urban acquisition campaigns. They are often equiped with LiDAR sensors and optical cameras, providing very large multimodal datasets. The fusion of both modalities serves different purposes such as point cloud colorization, geometry enhancement or object detection. However, this fusion task cannot be done directly as both modalities are only coarsely registered. This paper presents a fully automatic approach for LiDAR projection and optical image registration refinement based on LiDAR point cloud 3D renderings. First, a coarse 3D mesh is generated from the LiDAR point cloud using the sensor topology. Then, the mesh is rendered in the image domain. After that, a variational approach is used to align the rendering with the optical image. This method achieves high quality results while performing in very low computational time. Results on real data demonstrate the efficiency of the model for aligning LiDAR projections and optical images
    • …
    corecore