56,404 research outputs found

    Supporting multimedia user interface design using mental models and representational expressiveness

    Get PDF
    This thesis addresses the problem of output media allocation in the design of multimedia user interfaces. The literature survey identifies a formal definition of the representational capabilities of different media.as important in this task. Equally important, though less prominent in the literature, is that the correct mental model of a domain is paramount for the successful completion of tasks. The thesis proposes an original linguistic and cognitive based descriptive framework, in two parts. The first part defines expressiveness, the amount of representational abstraction a medium provides over any domain. The second part describes how this expressiveness is linked to the mental models that media induce, and how this in turn affects task performance. It is postulated that the mental models induced by different media, will reflect the abstractive representation those media offer over the task domain. This must then be matched to the abstraction required by tasks to allow them to be effectively accomplished. A 34 subject experiment compares five media, of two levels of expressiveness, over a range of tasks, in a complex and dynamic domain. The results indicate that expressiveness may allow media to be matched more closely to tasks, if the mental models they are known to induce are considered. Finally, the thesis proposes a tentative framework for media allocation, and two example interfaces are designed using this framework. This framework is based on the matching of expressiveness to the abstraction of a domain required by tasks. The need for the methodology to take account of the user's cognitive capabilities is stressed, and the experimental results are seen as the beginning of this procedure

    Measuring cognitive load and cognition: metrics for technology-enhanced learning

    Get PDF
    This critical and reflective literature review examines international research published over the last decade to summarise the different kinds of measures that have been used to explore cognitive load and critiques the strengths and limitations of those focussed on the development of direct empirical approaches. Over the last 40 years, cognitive load theory has become established as one of the most successful and influential theoretical explanations of cognitive processing during learning. Despite this success, attempts to obtain direct objective measures of the theory's central theoretical construct – cognitive load – have proved elusive. This obstacle represents the most significant outstanding challenge for successfully embedding the theoretical and experimental work on cognitive load in empirical data from authentic learning situations. Progress to date on the theoretical and practical approaches to cognitive load are discussed along with the influences of individual differences on cognitive load in order to assess the prospects for the development and application of direct empirical measures of cognitive load especially in technology-rich contexts

    Human computer interaction and theories

    Get PDF

    Cognitive load theory, educational research, and instructional design: some food for thought

    Get PDF
    Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems that optimize the use of working memory capacity and avoid cognitive overload. Cognitive load theory has advanced educational research considerably and has been used to explain a large set of experimental findings. This article sets out to explore the open questions and the boundaries of cognitive load theory by identifying a number of problematic conceptual, methodological and application-related issues. It concludes by presenting a research agenda for future studies of cognitive load

    Mental tactility: the ascendance of writing in online management education

    Full text link
    A qualitative study of online management education and the role of writing as an indicative measure of thinking and learning. Established educational models, such as Dale\u27s Cone of Experience, are expanded and redeveloped to illustrate the central role of writing as a critical thinking process which appears to be increasing, rather than decreasing, with the advent of online multimedia technology. In an environment of increasing reliance on audiovisual stimulus in online education, the authors contend that tertiary educators may witness an ascendance or re-emergence of writing as central to the academic experience. This may be both supply and demand driven. Drawing on a study of two undergraduate units in the Bachelor of Commerce and applying hermeneutics to develop challenging insights, the authors present a case for educators to remain conversant with the art of teaching writing, and to promote writing to improve educational outcomes. <br /

    Comprehensibility of UML-based Formal Model – A Series of Controlled Experiments

    No full text
    This paper summarises two controlled experiments conducted on a model that integrates the use of semi-formal notation, the Unified Modelling Language (UML) and a formal notation, B. The experiments assessed the comprehensibility of the model, namely UML-B. The first experiment compared the comprehensibility of a UML-B model and a B model. In the second experiment, the model was compared with an Event-B model, a new generation of B. The experiments assessed the ability of the model to present information and to promote problem domain understanding. The measurement focused on the efficiency in performing the comprehension tasks. The experiments employed a cross-over design and were conducted on third-year and masters students. The results suggest that the integration of semi-formal and formal notations expedites the subjects’ comprehension tasks with accuracy even with limited hours of training

    Grammar Animations and Cognition

    Get PDF

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    Teaching complex theoretical multi-step problems in ICT networking through 3D printing and augmented reality

    Get PDF
    This paper presents a pilot study rationale and research methodology using a mixed media visualisation (3D printing and Augmented Reality simulation) learning intervention to help students in an ICT degree represent theoretical complex multi-step problems without a corresponding real world physical analog model. This is important because these concepts are difficult to visualise without a corresponding mental model. The proposed intervention uses an augmented reality application programmed with free commercially available tools, tested through an action research methodology, to evaluate the effectiveness of the mixed media visualisation techniques to teach ICT students networking. Specifically, 3D models of network equipment will be placed in a field and then the augmented reality app can be used to observe packet traversal and routing between the different devices as data travels from the source to the destination. Outcomes are expected to be an overall improvement in final skill level for all students
    • …
    corecore