243 research outputs found

    Large-Scale Online Semantic Indexing of Biomedical Articles via an Ensemble of Multi-Label Classification Models

    Full text link
    Background: In this paper we present the approaches and methods employed in order to deal with a large scale multi-label semantic indexing task of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge of 2014. Methods: The main contribution of this work is a multi-label ensemble method that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper adaptation of the algorithms used to deal with this challenging classification task. Results: The ensemble method we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. During the BioASQ 2014 challenge we obtained the first place during the first batch and the third in the two following batches. Our success in the BioASQ challenge proved that a fully automated machine-learning approach, which does not implement any heuristics and rule-based approaches, can be highly competitive and outperform other approaches in similar challenging contexts

    Conditional Graphical Lasso for Multi-label Image Classification

    Get PDF
    © 2016 IEEE. Multi-label image classification aims to predict multiple labels for a single image which contains diverse content. By utilizing label correlations, various techniques have been developed to improve classification performance. However, current existing methods either neglect image features when exploiting label correlations or lack the ability to learn image-dependent conditional label structures. In this paper, we develop conditional graphical Lasso (CGL) to handle these challenges. CGL provides a unified Bayesian framework for structure and parameter learning conditioned on image features. We formulate the multi-label prediction as CGL inference problem, which is solved by a mean field variational approach. Meanwhile, CGL learning is efficient due to a tailored proximal gradient procedure by applying the maximum a posterior (MAP) methodology. CGL performs competitively for multi-label image classification on benchmark datasets MULAN scene, PASCAL VOC 2007 and PASCAL VOC 2012, compared with the state-of-the-art multi-label classification algorithms

    Optimizing different loss functions in multilabel classifications

    Get PDF
    Multilabel classification (ML) aims to assign a set of labels to an instance. This generalization of multiclass classification yields to the redefinition of loss functions and the learning tasks become harder. The objective of this paper is to gain insights into the relations of optimization aims and some of the most popular performance measures: subset (or 0/1), Hamming, and the example-based F-measure. To make a fair comparison, we implemented three ML learners for optimizing explicitly each one of these measures in a common framework. This can be done considering a subset of labels as a structured output. Then, we use structured output support vector machines tailored to optimize a given loss function. The paper includes an exhaustive experimental comparison. The conclusion is that in most cases, the optimization of the Hamming loss produces the best or competitive scores. This is a practical result since the Hamming loss can be minimized using a bunch of binary classifiers, one for each label separately, and therefore, it is a scalable and fast method to learn ML tasks. Additionally, we observe that in noise-free learning tasks optimizing the subset loss is the best option, but the differences are very small. We have also noticed that the biggest room for improvement can be found when the goal is to optimize an F-measure in noisy learning task

    Reliable Multi-label Classification: Prediction with Partial Abstention

    Full text link
    In contrast to conventional (single-label) classification, the setting of multilabel classification (MLC) allows an instance to belong to several classes simultaneously. Thus, instead of selecting a single class label, predictions take the form of a subset of all labels. In this paper, we study an extension of the setting of MLC, in which the learner is allowed to partially abstain from a prediction, that is, to deliver predictions on some but not necessarily all class labels. We propose a formalization of MLC with abstention in terms of a generalized loss minimization problem and present first results for the case of the Hamming loss, rank loss, and F-measure, both theoretical and experimental.Comment: 19 pages, 12 figure
    • …
    corecore